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MORPHOGENESIS, BIOLOGICAL

write w(x)g (x)

= Sy w(x)q(x) dx

and apply importance sampling to both numerator and
denominator to yield the following approximation:
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An approximate sample from 7 can be obtained by
sampling from the discrete distributions 7, or 7.

Applications

The range of applications of Monte Carlo methods is
vast. Listed below are some of the more well-known
areas.

Integral equations: 1S methods have been widely
used to solve linear systems and integral equations
appearing in particle transport problems. The basic idea
is to give a probabilistic approximation of operators of
theform (I — H)™! = Y o H'; see Sobol (1994) for
details.

Computational physics and chemistry simulation:
Monte Carlo methods are used in physics and chemistry
to simulate from Ising models, simulate self-avoiding
random walks, and compute the free energy, entropy,
and chemical potential over systems; see, for example,
Frenkel & Smith (1996).

Quantum physics: To compute the dominant
eigenvalue and eigenvector of a positive operator, it
is possible to use a stochastic version of the power
method. This is often applied to the Schrodinger
equation; see Melik-Alaverdian & Nightingale (1999)
for a recent review.

Statistics: Performing inference in complex statis-
tical models invariably requires sampling from high
dimensional probability distributions. See Gilks et al.
(1996) for applications of MCMC and Doucet et al.
(2001) for applications of IS-type methods to such
problems.
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See also Random walks; Stochastic processes
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One of the central problems in developmental biology
is to understand how patterns and structures are laid
down. From the initially almost homogeneous mass of
dividing cells in an embryo emerges the vast range of
pattern and structure observed in animals. For example,
the skeleton is laid down during chondrogenesis when
chondroblast cells condense into aggregates that lead
eventually to bone formation. The skin forms many
specialized structures such as hair, scales, feathers,
and glands. Butterfly wings exhibit spectacular colors
and patterns, and many animals develop dramatic coat
patterns.

Although genes play a key role, genetics say nothing
about the actual mechanisms that produce pattern and
structure—the process known as morphogenesis—as
an organism matures from embryo to adult. Tissue
movement and rearrangement are the key features
of almost all morphogenetic processes and arise as
the result of complex mechanical, chemical, and
electrical interactions. Despite the recent vast advances
in molecular biology and genetics, little is understood
of how these processes conspire to produce pattern and
form. There is the danger of falling into the practices of
the 19th century, when biology was steeped in the mode
of classification and there was a tremendous amount of
list-making activity. This was recognized by D’Arcy
Thompson, in his classic work first published in 1917
(see Thompson (1992) for the abridged version). He
was the first to develop theories for how certain forms
arose, rather than simply cataloging different forms, as
was the tradition at that time.

At the heart of a number of developmental
phenomena is the process of convergence-extension, in
which a tissue narrows along one axis while extending
along another. This process represents the integration
of local cellular behavior that produces forces to
change the shape of the cell population. In fact,
convergence-extension is essentially responsible for the
transformation of the spherical egg into the elongated,
bilaterally symmetric vertebrate body axis (Kelleretal.,
1992).
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Cell fate and position within the developing embryo
can be strongly influenced by environmental factors.
Therefore, to investigate the process of morphogene-
sis, one must really address the issue of how the em-
bryo organizes the complex spatiotemporal sequence
of signalling cues necessary to develop structure in a
controlled and coordinated manner. Structure can form
through tissue movement and rearrangement. Theoret-
ical studies in this area include the early purse-string
model (Odell et al., 1981) for tissue folding in which,
in response to a large deformation, cells were proposed
to actively contract and, in doing so, cause a large de-
formation in neighboring cells which, in turn, also con-
tract, setting up a propagating contraction wave which
leads to tissue folding. This model was applied to a vari-
ety of developmental problems and provided the precur-
sor to the mechanochemical theory of developmental
patterning developed by Oster, Murray, and coworkers
(for review, see Murray, 2003). This approach empha-
sized the link between tissue mechanics and chemical
regulation and has been applied widely in both devel-
opmental biology and medicine.

Discrete-cell modeling approaches have subse-
quently been developed in which morphogenesis is hy-
pothesized to occur via mechanical rearrangement of
neighbors in an epithelial sheet, and computational fi-
nite elements have been developed to test various the-
oretical explanations for morphogenesis (Weliky et al.,
1991 Davidson et al., 1995).

In all these models, individual cell movements
within the tissue are determined by the balance of
mechanical forces acting on the cell. Such models
can exhibit tissue folding, thickening, invagination,
exogastrulation, and intercalation, and have been shown
to capture many of the key aspects of processes such
as gastrulation, neural tube formation, and ventral
furrow formation in Drosophila. Cells can also sort
out depending on their type, and this has led to the
theory of differential adhesion and energy minimization
(Steinberg, 1970).

Models for tissue motion are not amenable to
a mathematical analysis and tend to be highly
computation based. However, models for how cells
differentiate can be addressed mathematically. Broadly
speaking, there are two classes of such models. In
one class, the chemical pre-pattern models, it is
hypothesized that a chemical signal is set up in some
way and cells respond to this signal by differentiating.
In the other class, the cell movement models, it is
hypothesized that cells respond to mechanochemical
cues and form aggregates. Cells in high density
aggregates are then assumed to differentiate (see
Murray, 2003, for details).

The fact that such models can lead to the generation
of spontaneous order was first realized by Alan Turing
(1952), who showed that a system of chemicals, stable
in the absence of diffusion, could be driven unstable by
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diffusion. He proposed that such a spatial distribution
of chemicals (which he termed morphogens) could
set up a pre-pattern to which cells could respond
and differentiate accordingly. He was one of the first
to postulate the existence of such chemicals, and
morphogens have now been discovered. It is still not
clear that morphogen patterns in biology are set up by
the mechanism proposed by Turing, but Turing patterns
have been found in chemistry (see Maini et al., 1997,
for a review).

A variety of models based on different biology
give rise to mathematical formulations in terms of
coupled systems of highly nonlinear partial differential
equations. The analysis of these models has, to date,
yielded a number of common behaviors. This has
led to the idea of using such models to determine
developmental constraints. That is, independent of
the underlying biology, such models predict that
only certain patterns are selected at the expense
of others and thus there is a limited variation.
This has consequences for evolution. For example,
application of mitotic inhibitors to developing limbs
produces smaller limbs with reduced elements. Some
of the resultant variants look very similar to the
pattern of evolution in other species, suggesting that
these species may be more closely related than
previously thought (Oster et al., 1988). Moreover,
the construction rules generated by a study of
developmental constraints is another, perhaps more
mechanistic, way of describing how different species
are related other than the topological deformation
approach of D" Arcy Thompson.

Other approaches to morphogenesis and pattern for-
mation include cellular automata models, in which in-
dividual entities (cells, for example) behave according
to a set of rules. Such models allow one to include much
more biological detail and to investigate finer grain pat-
terns than those possible in the continuum approaches
discussed above (see, for example, Alt et al., 1997).
However, to date they lack a detailed mathematical un-
derpinning.

The recent spectacular advances in molecular genet-
ics raise the issue of how we can combine the enormous
amount of data now being generated at this level with
the data available from the classical experiments at the
cell and tissue level to provide a coherent theory for
pattern formation and morphogenesis. This leads to the
problem of modeling across a vast range of spatial and
temporal scales. The mathematics for this has not yet
been developed and is one of the challenges presently
being addressed.

Puirip K. MAINI

See also Brusselator; Cellular automata; Pat-
tern formation; Reaction-diffusion systems; Turing
patterns
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MULTIDIMENSIONAL SOLITONS

Although strict analogs of the Korteweg—de Vries
soliton (exponentially localized solution with a specific
relation between velocity and amplitude and particular
scattering properties) have not been found in the
multidimensional context, solvable equations with
three or more independent variables exhibit a large
variety of soliton-like solutions.

As with the Kadomtsev—Petviashvili equation, wide
classes of exact explicit solutions have been constructed
for other (2+ 1)-dimensional nonlinear equations
solvable by the inverse scatterin g method. We consider
here two basic examples, the first being the Davey—
Stewartson (DS) equation

i 1
19+ 2 (Uqux +(1’_\-‘)=) == |‘?|2q —q¢$=0,

bux — 2y, = 2(Ig1%) (1

5 g
whe s y P
5l € q(x,y,1) is a complex-valued function, ¢ is a
Valu;alugd function, and the parameter o2 takes two
i DSfU =ill. The DS equation describes propaga-
4 two-dimensional long surface wave on water

589

of finite depth. In the one-dimensional limit ¢, = ¢, =0,
it reduces to the nonlinear Schrodinger equation.

The DS equation (1) has a Lax representation with
the two-dimensional Dirac operator as the Lax operator,
but it has quite different properties for o2 =1 (DS-I
equation) and for o2=—1 (DS-II equation). In both
cases, there are multi-soliton solutions which do not
decay in certain directions on the x, y plane. Similar to
the Kadomtsev—Petviashvili equation these solutions
describe elastic scattering of line solitons that decay
exponentially in the direction of propagation and do
not decay in the orthogonal direction. The phase shift
can be explicitly calculated.

In addition, the DS equation possesses novel classes
of solutions. Thus, the DS-II equation has an infinite
set of nonsingular exponential-algebraic solutions, the
simplest of which looks like

q(x,y1)=
2vexp [)L(x +iy) —A (x — iy) —i (sz + Iz)t]
|x + iy + u—2irt|? + |v]?

(2)

where A, pt, and v are arbitrary complex constants. It
decays like (x? + }-'3)_] as x, y — 00.

The DS-Iequation also possesses solutions for which
q decays exponentially in both space dimensions. The
simplest of them is of the form

q(x,y,1) =
4p/Awexp [ (x+y) +4 (x—y) +i (1?+22) 1]
[[ + 32#(x+}')] [1 + ezal(x—y)] + |p|?

3)

where X, p are arbitrary real parameters and p is
an arbitrary complex parameter. The function ¢ has
the nontrivial boundary values as x, y — oo. Called
dromions, such solutions exhibit not only a two-
dimensional phase shift during interaction but also a
change of the form. Basically, these solutions are driven
by the boundary conditions on the function ¢.

Our second example—the Ishimori equation—is of
the form

Si+ 85 x (Sxx ¥ UZS_‘E}") + ¢x S)’ + ¢_s-‘S.r e 0,
ijx = Gz‘i’y}‘ +2(TZS = (Sx > S__\,) = 0’
4

where S= (51,52, 83) is a unit vector S%=1,
rrzzzl:l. and ¢ is a scalar real-valued func-
tion. It represents an integrable (2 + 1)-dimensional
generalization of the Heisenberg Ferromagnet
model equation S=5xS,,. An important
feature of the Ishimori equation is that its solu-
tions can be characterized by the topological invariant



