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Abstract

Acidic pH is a common characteristic of human tumours. It has a significant impact on tumour progression and response to

therapies. In this paper, we develop a simple model of three-dimensional tumour growth to examine the role of acidosis in the

interaction between normal and tumour cell populations. Both vascular and avascular tumour dynamics are investigated, and a

number of different behaviours are observed. Whilst an avascular tumour always proceeds to a benign steady state, a vascular

tumour may display either benign or invasive dynamics, depending on the value of a critical parameter. Analysis of the model allows

us to assess novel therapies directed towards changing the level of acidity within the tumour.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The tumour microenvironment is significantly differ-
ent from that of normal tissue. Marked fluctuations can
be seen in glucose, lactate, acidic pH and oxygen
tensions. These variations have their roots in poor
perfusion and metabolic changes. The chaotic vascula-
ture of tumours creates an unbalanced blood supply and
significant perfusion heterogeneities. As a consequence,
many regions within tumours are found to be transiently
or chronically hypoxic (oxygen deficient). Cells respond
to periods of hypoxia by converting to anaerobic
respiration, or glycolysis, which in turn produces lactic
acid and brings about lower tissue pH. However, the
pioneering work of Warburg (1930) showed that tumour
acidification can occur independently of hypoxia. The
increased reliance on glycolysis to produce energy in
many aggressive tumours occurs even in the presence of
e front matter r 2005 Elsevier Ltd. All rights reserved.
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sufficient oxygen (Vaupel et al., 1989; Warburg, 1930).
This constitutive adoption of increased glycolysis,
known as the glycolytic phenotype, is likely to have
evolved in response to Darwinian selection dynamics in
which phenotypes best suited to their microenvironment
have a proliferative advantage over their non-trans-
formed counterparts. Hence tumour acidification is an
intrinsic property of both poor vasculature and altered
tumour cell metabolism.
Cancer cell populations are extremely heterogeneous,

displaying a wide range of genotypic and phenotypic
differences (Fidler and Hart, 1982). For example, studies
of clinical breast cancers have shown that every tumour
cell exhibited a novel genotype (Kerangueven et al.,
1997). As a result, no prototypic cancer cell can be
defined. It is likely that several of the lethal phenotypic
traits of cancer, such as invasion and metastasis, are not
the direct result of genetic changes, but rather arise from
the unique physiological environments of tumours.
Tumour hypoxia and acidity, for example, significantly
affect the treatment and progression of cancer. These
effects can either be directly mediated by low pH or low
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pO2; or they can result from selective pressure that these
parameters place upon cells in these hostile environ-
ments. Hypoxia and acidity are not simply phenomena
of cancer growth, but may be in fact essential
intermediates in the progression from benign to meta-
static growth. Acidity, in particular, has been shown to
have three clear effects on tumour phenotype: resistance
to chemotherapy (Raghunand et al., 2001), increased
mutation rate (Morita et al., 1992) and increased
invasion (Martinez-Zaguilan et al., 1996).
Non-linear processes dominate the way in which

tumour cells interact with their microenvironment. It is
clear that the intuitive, verbal reasoning approaches
favoured by many oncologists are insufficient to describe
the resulting complex system dynamics. Nor can these
approaches keep pace with the vast amounts of
oncological data being published each year in response
to the rapid technological advances in molecular biology.
Rather, experience from other areas of science has taught
us that quantitative methods are needed to develop
comprehensive theoretical models for interpretation,
organization and integration of this data (Gatenby and
Maini, 2003). Once thought of as too simplistic to
describe complex tumour phenomena, we now see that
mathematical models, continuously revised by new
information, can be used to guide experimental design
and interpretation. Many of the recent mathematical
models found in the literature focus on the growth of
multicellular spheroids (MCSs): clusters of cancer cells
grown in vitro to mimic the early stages of in vivo
avascular tumour growth and to test the applicability of
new cancer treatment strategies. MCSs have a well-
defined structure, possessing a central core of necrotic
cells, with proliferating cells restricted to the outer rim of
the tumour. Existing models of MCS and avascular
tumour development (Byrne, 1999; Franks et al., 2005;
McElwain and Morris, 1978), essentially extensions of
the original models of Burton (1966) and Greenspan
(1972), describe the evolution of the tumour outer
boundary in response to vital nutrients (in particular
oxygen) and growth factors. Using the assumption of
spherical or cylindrical symmetry, these models give good
qualitative agreement with experimental results, reprodu-
cing both the growth patterns and macroscopic hetero-
geneities typical of MCSs and avascular tumours.
In this paper, we derive a model, similar to that

developed by Greenspan (1972), for examining the role
played by acidity in tumour growth and invasion. The
commonality of altered tumour metabolism, in particular
the adoption of the glycolytic phenotype in most cancers,
led Gatenby and Gawlinski (1996, 2003) to propose the
acid-mediated tumour invasion hypothesis. The key idea
is that the transformed tumour metabolism with in-
creased use of glycolysis and acid secretion alters the
microenvironment by substantially reducing tumour
extracellular pH (pHe), usually by more than 0.5 pH
units. The Hþ ions produced by the tumour then diffuse
along concentration gradients into the adjacent normal
tissue. This acidification leads to death of normal cells
due to activation of p53-dependent apoptosis pathways,
as well as loss of function of critical pH-sensitive genes.
Tumour cells, however, are relatively resistant to acidic
pHe; due to mutant p53 genes. Whilst normal cells die in
environments with a persistent pH below about 7,
tumour cells typically exhibit a maximum proliferation
rate in a relatively acidic medium (pH 6.8) (Casciari et al.,
1992). As a result, the tumour edge can be seen as
forming a travelling wave progressing into normal tissue,
preceded by another travelling wave of increased micro-
environmental acidity. Modelling this hypothesis on the
macroscopic scale allows us to investigate the general
tissue dynamics in both vascular and avascular tumour
growth. In particular, for tumour cells displaying the
glycolytic phenotype, we determine the critical para-
meters that cause the change, within our modelling
framework, from a benign to invasive growth pattern,
which in turn suggests new therapeutic regimes for
counteracting this invasive growth.
2. Model analysis

Following previous models, we assume that the tumour
acts as an incompressible fluid. As such, local changes in
the cell population, caused by the birth or death of cells,
give rise to internal pressure gradients that induce cellular
motion and the expansion or contraction of the tumour
colony. This expansive force is counterbalanced by
cell–cell adhesion forces at the tumour periphery that
maintain the tumour as a compact mass. Subsequent
tumour growth is determined by the interaction between
these expansive and restraining forces.
We model the tumour as a sphere and assume that

spherical symmetry prevails at all times. Whilst this
assumption is valid for early tumour and MCS growth,
during later development tumours often become asym-
metric. Moreover, it has been suggested that some
measure of the irregularity of the tumour boundary may
provide clinicians with useful prognostic information
(Cross et al., 1994). However, under the assumption of
spherical symmetry, the model remains analytically
tractable and allows us to perform analysis of the
general tissue dynamics in response to acid production.
A schematic cross-sectional view of a tumour and its
surrounding normal tissue is given in Fig. 1. Let R2

denote the tumour radius and R1 the radius of the
necrotic core. We assume that R1oRoR2 is a viable
region where the proliferating tumour cells exist in a
spatially homogeneous state at their carrying capacity
KT : We further assume RoR1 is a necrotic region,
containing no viable cells, and that the necrotic debris
continually disintegrates into simpler compounds that
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Fig. 1. Schematic cross-section of a tumour and its surrounding tissue,

showing the central necrotic core, RoR1; the layer of proliferating
tumour cells R1oRoR2; the acellular gap separating normal and

tumour cell fronts R2oRoR3; and the normal cells R3oR:
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are freely permeable through cell membranes. The cell
volume lost in this way is replaced by cells pushed
inward through adhesion or surface tension.

2.1. Acid profile

We consider first the distribution of acid generated by
the tumour. Let H denote the extracellular concentra-
tion of excess hydrogen ions. Here excess means above
the normal level of 10�7:4 M ¼ pH 7:4: It is assumed
that there is a sharp acid threshold concentration HT

above which tumour cells cannot survive. Similarly,
normal cells die when this concentration H rises above
HN : We assume HN5HT to represent the relative
resistance of tumour cells to extracellular acidity. As
such, metabolically-produced acid can act both as a
promoter or inhibitor of tumour growth. Diffusing into
the normal tissue, the acid causes normal cell death
which in turn allows the tumour to expand. Conversely,
if acid is not removed from within the tumour
sufficiently quickly, tumour cell death will occur. The
interplay between these two mechanisms forms the heart
of the model described below.
We assume that the evolution of H can be described

by a reaction-diffusion equation:

qH

qt
¼ FH þ DHr2H, (1)

where DH is the (assumed constant) acid diffusion
coefficient and FH represents the combined rate of acid
production and removal from the system.
Acid is produced by tumour cells as a result of their
increased reliance on glycolysis and we assume that this
occurs at a constant rate rT per unit volume. The
primary mode for removal of acid from the system is
through blood vessels and we assume that this occurs at
a rate rV proportional to the local acid concentration.
Note that the acid diffusion time-scale (� minutes) is
much shorter than the tumour growth time-scale
(� days). Hence, as the tumour grows, the acid quickly
redistributes and reaches equilibrium. Following pre-
vious work, we assume that H is in diffusive equilibrium
at all times and set qH=qt ¼ 0 in the acid reaction-
diffusion equation. Under these assumptions, and
noting spherical symmetry, Eq. (1) becomes

0 ¼ rT T � rV VH þ
DH

R2

d

dR
R2 dH

dR

� �
, (2)

where T denotes the viable tumour cell density and V the
vascular density.
We consider separately the acid profiles generated by

vascular and avascular tumours. In the avascular case,
we define V ¼ 0 for RoR2 and V ¼ KV elsewhere i.e.
there is no vasculature within the tumour and the
vasculature exists homogeneously at its normal level
outside the tumour. Taking tumour cell density T to be
constant (KT ) within the viable region R1oRoR2; and
further taking q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rV KV=DH

p
and H0 ¼ rT KT=rV KV ;

we may non-dimensionalize Eq. (2) with r ¼ qR and h ¼

H=H0 to obtain:

r2h00
þ 2rh0

¼

0 0oror1;

�r2 r1oror2;

r2h r2or;

8><
>: (3)

where the primes denote the derivative with respect to r.
Previous models of tumour growth have made the

assumption that the nutrients and other factors deter-
mining tumour growth are constant outside the tumour
tissue i.e. for any growth factor g, gðrÞ ¼ g1 for r4r2: In
the case of acid, however, this would be inconsistent
with the data of Martin and Jain (1994). Reporting in
vivo extracellular pH profiles for VX2 rabbit carcinoma,
they demonstrate a smooth pH gradient extending from
the tumour edge into the peritumoural normal tissue.
Instead, we assume here that limr!1 hðrÞ ¼ 0 i.e. that
there is no excess acidity a long distance from
the tumour. Assuming further that h and its derivative
are continuous at r1 and r2; and that limr!0 hðrÞ is finite,
Eq. (3) has solution

haðrÞ ¼

k1 0oror1;

k2 � k3
1

r
�
1

6
r2 r1oror2;

k4
1

r
e�r r2or;

8>>>><
>>>>:

(4)
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Fig. 2. (From Eqs. (4) and (7).) Predicated acid profile in the vascular

case with r1 ¼ 1 and r2 ¼ 1:5; and a comparison with the correspond-
ing avascular profile.
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where the constants ki are given by

k1 ¼
2r31 þ 3r22 þ r32
6ðr2 þ 1Þ

�
r21
2
,

k2 ¼
2r31 þ 3r22 þ r32
6ðr2 þ 1Þ

,

k3 ¼
r31
3
,

k4 ¼
er2 ðr32 � r31Þ

3ðr2 þ 1Þ
. ð5Þ

Returning to Eq. (2), we also calculate the predicted
acid profile for a vascularized tumour. In this case we
define V ¼ 0 for ror1 and V ¼ KV elsewhere i.e. the
vasculature exists in a spatially homogeneous state
at its normal level throughout the tumour cell popula-
tion. For simplicity, we neglect the poor efficiency
(‘leakiness’) and heterogeneities generally found in
tumour vasculature, considering only the extreme case
where the tumour is fully vascularized. Moreover, we
assume there is no vasculature within the necrotic core.
Non-dimensionalizing as before, we find

r2h00
þ 2rh0 ¼

0 0oror1;

r2ðh � 1Þ r1oror2;

r2h r2or

8><
>: (6)

with solution

hvðrÞ ¼

k1 0oror1;

1� k2
1

r
e�r � k3

1

r
er r1oror2;

k4
1

r
e�r r2or;

8>>>><
>>>>:

(7)

where

k1 ¼ 1�
er1�r2 ðr2 þ 1Þ

r1 þ 1
,

k2 ¼
e2r1�r2 ðr1 � 1Þðr2 þ 1Þ

2ðr1 þ 1Þ
,

k3 ¼
e�r2 ðr2 þ 1Þ

2
,

k4 ¼
er2 ðr2 þ 1Þ

2
�
e2r1�r2 ðr1 � 1Þðr2 þ 1Þ

2ðr1 þ 1Þ
. ð8Þ

An example of this predicted acid profile can be seen
in Fig. 2, with r1 ¼ 1 and r2 ¼ 1:5; and a comparison
with the predicted avascular profile. Given experimen-
tally determined parameter estimates of q ¼ 0:47mm�1

and H0 ¼ 1:0� 10�5M � pH 5:0 (Gatenby and Gaw-
linski, 1996; Martin and Jain, 1994), this corresponds to
a tumour of radius R2 
 3mm; with necrotic core radius
R1 
 2mm:Notice that the model predicts acidity for an
avascular tumour to be higher than that for a vascular
tumour, when both tumours produce acid at the same
rate. This is to be expected given that there is no acid
removal within the tumour in the avascular case. Note,
however, that due to an increased reliance on glycolysis,
vascular tumours are often found to be more acidic than
their avascular counterparts. In the model, this is
represented by a higher value of H0:
2.2. Necrotic core development

Previous models of tumour growth have assumed
tumour necrosis occurs as a result of insufficient nutrient
supply. In this paper, we focus on the effect of acid-
mediated tumour necrosis on the system. Assuming that
high acidity is the sole cause of necrosis in the tumour
allows us to calculate the radius of the necrotic core r1 in
terms of the tumour outer radius r2:
In the avascular case and in the absence of a necrotic

core (i.e. when r1 ¼ 0), from Eq. (4) we have:

hað0Þ ¼
r22ðr2 þ 3Þ

6ðr2 þ 1Þ
�!1 as r2 ! 1. (9)

Thus at some critical value of r2; hað0Þ4hT and the cells
at the centre of the tumour will become necrotic. The
critical radius r̂2 at which the necrotic core develops can
be found by solving hað0Þ ¼ hT ; with r1 ¼ 0:

caðr̂2Þ ¼ r̂32 þ 3r̂22 � 6hT r̂2 � 6hT ¼ 0. (10)

By Descartes’ rule of signs, this cubic has exactly one
positive real root, and this is given by

r̂2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hT þ 1

p
cos½13 arccos ð�ð2hT þ 1Þ�

3
2Þ� � 1, (11)

where we choose arccos : ½�1; 1� ! ½0; p�: Taking the
threshold for tumour death due to acidity to be hT ¼

0:1; corresponding to HT � pH 6 (Dairkee et al., 1995),
we find that necrosis due to acidity first occurs at r̂2 ¼

0:51 (R̂2 
 1mm).
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If r24r̂2; then a necrotic core exists, and its radius r1
can be found by noting that the acid concentration at
the boundary of the necrotic core will be haðr1Þ ¼ hT :

2r31 � 3ðr2 þ 1Þr
2
1 þ caðr2Þ ¼ 0. (12)

In this case we have exactly two positive real roots.
Choosing the root of this cubic satisfying 0or1or2; we
find

r1 ¼
r2 þ 1

2
1þ 2 cos

1

3
pþ arccos

2caðr2Þ

ðr2 þ 1Þ
3
� 1

� �� �	 
	 

,

(13)

where again arccos : ½�1; 1� ! ½0;p�:
From Eq. (12):

lim
r2!1

ðr2 � r1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hT þ 1

p
� 1 (14)

and hence

r1

r2
�!1; Volðr1; r2Þ ¼

4p
3

ðr32 � r31Þ�!1 as r2 ! 1.

(15)

This means that a large tumour will be mostly
comprised of the necrotic core, with the layer of viable
cells limited to a thin region at the tumour edge.
Nonetheless, the total number of viable cells will
continue to increase as the tumour grows.
Turning now to the vascular case, in the absence of a

necrotic core we have, from Eq. (7):

hvð0Þ ¼ 1� e�r2ðr2 þ 1Þ�!1 as r2 ! 1 (16)

and hence we see two distinct patterns of growth,
depending on the sign of hT � 1: If hTX1; hvð0ÞohT for
any value of r2; the tumour vasculature removes the
excess acid sufficiently quickly to avoid tumour cell
death and no necrotic core will develop. If, however,
hTo1; at some value of r2; hvð0ÞXhT and a necrotic core
will develop. This critical radius r̂2 can be found by
solving hvð0Þ ¼ hT ; with r1 ¼ 0; leading to the equation

cvðr̂2Þ ¼ e�r̂2 ðr̂2 þ 1Þ þ ðhT � 1Þ ¼ 0 (17)

with solutions

r̂2 ¼ �1� W
hT � 1

e

� �
: ð18Þ

Here W denotes the multivalued Lambert W (or product
log) function—the inverse function of f ðW Þ ¼ WeW :
Note that for �1=epxo0; there are two possible
real values of W ðxÞ; W 0ðxÞX� 1 and W�1ðxÞp� 1
(Corless et al., 1996). As r̂2X0; for hTo1 we can define

r̂2 ¼ �1� W�1
hT � 1

e

� �
. (19)

Further, for hTo1 and r2 greater than this critical
radius, we find r1 by solving hvðr1Þ ¼ hT :

er1�r2 ðr2 þ 1Þ þ ðhT � 1Þðr1 þ 1Þ ¼ 0 (20)
with solution

r1 ¼ �1� W�1
e�ðr2þ1Þðr2 þ 1Þ

hT � 1

� �
. (21)

From Eq. (20), we find

lim
r2!1

ðr2 � r1Þ ¼ � logð1� hT Þ (22)

and hence as in the avascular case, Eq. (15) holds.

2.3. Tumour growth

We consider now the growth dynamics of the tumour
in the absence of normal cells. As such, we analyse the
inhibitory effects of acidity on tumour growth, whilst
neglecting the invasive dynamics arising through the
destruction of normal tissue. The rate at which a tumour
grows may be dependent on a large number of factors,
such as nutrient supply, cellular density or internal
pressure gradients. Here we make the simplifying
assumption that the rate of change of tumour volume
is entirely dependent on the tumour radius and the
radius of the necrotic core:

d

dt
ðVolÞ ¼ F ðR1;R2Þ (23)

for some mitosis function F.
Greenspan (1972) makes the assumption that the

necrotic cellular debris continually disintegrates into
simpler chemical compounds at a rate proportional to
the core volume. These compounds flow into the
surrounding tissue and the cell volume lost in this way
is replaced by cells pushed inward through surface
tension forces. Moreover, the assumption is made that
the rate of cellular proliferation is constant per unit
volume in the viable region. Under these assumptions,
Eq. (23) becomes

dR3
2

dt
¼ SðR3

2 � R3
1Þ � LR3

1. (24)

Taking t ¼ St=3 and r ¼ qR; we may non-dimensio-
nalize the system to obtain

r22
dr2

dt
¼ r32 � g3r31, (25)

where g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=S þ 13

p
:

Note that while there is no necrotic core (when
r1 ¼ 0), the tumour radius will grow exponentially with

r2ðtÞ ¼ r2ð0Þe
t. (26)

This corresponds to well-known experimental evidence
that the early stages of solid tumour development follow
a simple exponential growth pattern (Laird, 1964). In
particular, in the case of a vascular tumour with hTX1;
the model predicts that a necrotic core will never
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Fig. 3. (From Eqs. (13), (21) and (25).) Predicated (a) avascular and

(b) vascular tumour growth with parameters g ¼ 3=2; hT ¼ 0:1 and
r2ð0Þ ¼ 0:1: (c) Vascular growth with hT ¼ 1:5 and r2ð0Þ ¼ 0:1:
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develop and thus the tumour will continue to grow
exponentially into the surrounding tissue. For an
avascular tumour or a vascular tumour with hTo1;
however, a different growth pattern is observed. From
Eq. (15), we know that r1=r2 ! 1 as r2 ! 1: Assuming
that, at time 0, the tumour is small enough that there is
no necrotic core (i.e. r2ð0Þpr̂2), at some value of r2 we
will find r1 ¼ r2=gor2: Then from Eq. (25), dr2=dt ¼ 0;
and a benign steady state is reached. In other words, we
find that an avascular tumour will always have a benign
growth pattern. A vascular tumour will either have a
benign or invasive growth pattern dependent on the
value of the critical parameter hT :
The system is completely defined by Eq. (25) and

Eq. (13) or Eq. (21), and relies only on the parameters g;
hT and the initial condition r2ð0Þ: Examples of the
growth patterns observed are given in Fig. 3. In the
avascular case (a), a two-phase growth pattern is
observed. Initially, the tumour grows exponentially,
without a necrotic core. At the critical time t̂; a necrotic
core begins to develop and the second phase of tumour
growth begins. During this phase, we see very little
change in tumour size. However, the necrotic core grows
rapidly towards its equilibrium value. Note that g
represents the equilibrium r2 : r1 ratio. The correspond-
ing vascular growth is very similar when hTo1 (b) and
may be contrasted to the invasive growth seen when
hTX1 (c). In this final case, as r2 becomes large,
other limiting factors such as nutrient supply and
immune response will have more impact on the tumour
growth.
The time t̂ at which we see the onset of necrosis can be

found from Eq. (26), taking r2 ¼ r̂2:

t̂ ¼ log r̂2 � log r2ð0Þ. (27)

Using parameters hT ¼ 0:1 and r2ð0Þ ¼ 0:1 (R2ð0Þ 

0:2mm), we find necrosis occurs at t̂ ¼ 1:63 and t̂ ¼
1:67 in the avascular and vascular cases, respectively.
The equilibrium size r̄2 may be found by noting
that r̄2 ¼ gr̄1: In the avascular case, using Eq. (12) we
find

r̄2 ¼
g

ðg� 1Þðgþ 2Þ
�ðgþ 1Þ þ 2c1 cos

1

3
arccos �

c2

c31

� �	 
	 

,

(28)

where

c1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgþ 1Þ2 þ 2hTgðgþ 2Þ

q
,

c2 ¼ ðgþ 1Þ3 þ 6hT ðgþ 2Þ. ð29Þ

For the parameter set used in Fig. 3, we find r̄2 ¼ 0:75;
corresponding to a final radius of R̄2 
 1:6mm: For the
vascular case, we use Eq. (20), again setting r̄2 ¼ gr̄1:
Solving this numerically, we find r̄2 ¼ 0:80 correspond-
ing to R̄2 
 1:7 cm: These numbers demonstrate further
the similarity between avascular and vascular growth
when hT is small.
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2.4. Normal tissue invasion

We now move on to consider the effects of normal
tissue on the system. Let r3 denote the non-dimensio-
nalized distance from the tumour centre to the normal
tissue. Assume that initially the system has r1 ¼ 0 and
r3 ¼ r2 i.e. the tumour is small enough that there is no
necrotic core. Normal cells die if h increases above a
critical value hN ¼ HN=H0; where hN5hT :
In the vascular case, from Eq. (7):

hvðr2Þ ¼ ðr2 cosh r2 � sinh r2Þ
e�r2

r2
ðas r1 ¼ 0Þ. (30)

The normal tissue will recede and the tumour advance if
and only if hðr2Þ4hN : Note that h is an increasing
function of r2; and hence if hðr2ð0ÞÞ4hN ; then the
tumour will grow unimpeded as was seen when normal
tissue was neglected in the system.
In the avascular case, from Eq. (4):

haðr2Þ ¼
r22

3ð1þ r2Þ
ðas r1 ¼ 0Þ. (31)

Again the normal tissue will recede if and only if
hðr2Þ4hN : Taking hN ¼ 0:01; corresponding to HN �

pH 6:8 (Dairkee, 1995), we find that in both the vascular
and avascular cases, invasion will occur only if r2X0:19;
equivalent to R2 
 0:4mm:
If hðr2Þ4hN ; then we can calculate r3 through solution

of the equation hðr3Þ ¼ hN ; i.e. k4e
�r3=r3 ¼ hN :

r3 ¼ W 0
k4

hN

� �
, (32)

where here we choose the principal value of the Lambert
W-function as k440 and h40:
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Fig. 4. (From Eq. (32).) Recession of normal tissue accompanying

vascular tumour growth. Parameter values used are hN ¼ 0:01; g ¼
3=2; hT ¼ 0:1 and g2ð0Þ ¼ 0:2:
Fig. 4 shows normal tissue receding as the tumour
grows. Notice the development of an acellular gap
between the advancing tumour front and receding
normal tissue, consistent with experimental observations
(Gatenby and Gawlinski, 1996).
3. Discussion

In this paper, we have presented a mathematical study
of both vascular and avascular tumour growth, where
the invasion mechanism is the acidification of the
microenvironment surrounding the tumour due to
increased reliance on glycolysis. Utilising the vast
difference between the time-scales of tumour growth
and acid movement allows us to treat the tumour radius
as a parameter in terms of which other variables are
expressed. In particular, we determine the equilibrium
acid profile and necrotic core radius as a function of the
tumour radius.
The analysis predicts three regimes of tumour growth.

If the rate of acid removal from the tumour is
insufficient, we see exponential growth followed by
auto-toxicity, resulting in a benign tumour. This is
found always to occur in an avascular tumour, and it
may also occur in a vascular tumour if the critical
parameter hTo1: Conversely, if hTX1; a vascular
tumour displays sustained growth, and invades the
whole of the normal tissue space. In both of these cases,
the advancing tumour front is separated from the
receding normal tissue by an acellular gap. Finally, if
the tumour is sufficiently small, we see no growth as the
microenvironmental acid perturbations are insufficient
to induce normal cell death. Note, however, that for
tumours of this size, inhomogeneities have more effect
on the system and thus stochastic or cellular automaton
(Patel et al., 2001) approaches may be more applicable
than the mean-field type approach used here.
Within the model, three dominant factors determine

tumour growth: acid production, acid removal due to
tumoural and peritumoural vascularity, and cellular
sensitivity to acid. In general, tumour growth is
enhanced through increasing acid production to
induce maximal toxicity in the adjacent normal tissue.
However, in order to display sustained growth, the
tumour must limit excess acid accumulation to avoid
auto-toxicity. This balance may resolve itself in several
ways. Tumour growth could be limited by cellular
sensitivity: that is, the dominant populations within the
tumour may retain significant sensitivity to acid-induced
apoptosis. As such, tumour expansion is halted when
the intratumoural pHe is only modestly reduced.
Tumour growth could also be limited if the vascularity
is limited: the intratumoural hydrogen ions will accu-
mulate sufficiently to create an acidic pHe that halts
proliferation. In these settings, tumour growth could be
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rapidly increased through adoption of the angiogenic
phenotype or emergence of new populations with
additional mutations that render them more resistant
to acid-induced apoptosis. Finally, tumour growth
could be limited by acid production: the tumour does
not produce enough acid to create a peritumoural
hydrogen ion gradient sufficient to kill the normal cells.
In this case, emergence of phenotypes with higher
glycolytic metabolism will result in invasive growth,
consistent with findings that rate of glucose uptake
correlates with more malignant behaviour (Kunkel et
al., 2003).
The converse of each of the above scenarios suggests

possible cancer treatment strategies. In general, the
results favour tumour antiangiogenesis strategies, be-
cause decreased vascular density will reduce acid
removal as well as nutrient supply. If the resulting
decrease in pHe exceeds the tolerance of tumour cells to
local acidosis, the resulting apoptosis would halt tumour
growth. Mathematically this is achieved through redu-
cing hT ¼ HT rV KV=rT KT below the critical value of 1.
This parameter may also be reduced through the novel
strategy of manipulating systemic pH. A recent study
demonstrated that patients with metastatic renal cancer
benefit from cytoreductive nephrectomy (Gatenby et al.,
2002). The authors propose that removal of functioning
nephrons produces mild renal failure that is associated
with systemic acidosis. This decrease in the serum pH
will reduce acid removal, since diffusion of hydrogen
ions from the tumour interstitium into blood vessels will
be dependent on the concentration gradient across the
vessel wall. The resulting decrease in intratumoural pHe

may again induce tumour auto-toxicity. However, both
approaches above come with a cautionary note.
Reduced acid removal will result in an increased
peritumoural pH gradient, thus increasing degradation
of normal tissue and thus potentially promoting tumour
growth. As such, perhaps the most effective treatment
suggested by the model is to poison the membrane
pumps that transport hydrogen ions from the tumour
intracellular to extracellular space (through drugs such
as amiloride, for example). This would increase the
tumour cell sensitivity to pHe; and furthermore decrease
the peritumoural acid gradient.
The model’s predictions may be compared to experi-

mental results and clinical observations. The prediction
of the presence and range of a pH gradient extending
into the peritumoural normal tissue is consistent with
the data of Martin and Jain (1994). We also demonstrate
that whilst acidity correlates with increased tumour
invasion (Martinez-Zaguilan et al., 1996), brief systemic
acidosis may induce widespread tumour apoptosis and
regression (Kelley et al., 2002). The most verifiable
prediction is the development of an appreciable acellular
gap separating the advancing tumour and receding
normal tissue edges. Our analysis shows that the
existence of such a gap is dependent only on tumour
size and acid production rates and thus should be
apparent in a wide range of cancer types. In a study
performed on human head and neck carcinoma, this
acellular gap was observed in 67% of cases (Gatenby
and Gawlinski, 1996). It should be noted, however, that
tumours use a variety of mechanisms to invade normal
tissue. As such, they may create insufficient acid
perturbations to induce an acellular gap, but nonetheless
continue to grow. In these cases, additional mechanisms
to tissue acidification must be considered.
It is clear that tumour growth is dependent on the

complex interactive dynamics of many different factors,
including the supply of nutrients and growth factors and
the specific mutations displayed by the tumour popula-
tion. This growth is further complicated by any
inhomogeneities found within the tumour. Using
simplifying assumptions, we have shown here that
increased tumour acid production alone, almost uni-
versally observed in clinical cancers, is sufficient to
explain both benign and invasive growth. As such,
acidity may play a dominant role in tumour progression.
Critical parameters in the transition from premalignant
to malignant morphology include acquisition of angio-
genesis, increased glucose utilization and loss of critical
pH-sensitive genes, all observed in human tumours.
Various therapeutic strategies are suggested to inhibit
tumour growth. In particular, the model suggests the
counter-intuitive approach of increasing further tumour
acidity, in order to induce auto-toxicity. Experimental
results further verifying this observation would be of
considerable interest.
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