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The modelling of cancer provides an enormous mathematical challenge because
of its inherent multi-scale nature. For example, in vascular tumours, nutrient is
transported by the vascular system, which operates on a tissue level. However, it
also affects processes occurring on the molecular level. Molecular and intra-cellular
events in turn affect the vascular network and therefore the nutrient dynamics.
Qur approach is to model, using partial differential equations, processes on the
tissue level, and couple these to the intra-cellular events (modelled by ordinary
differential equations) via cells modelled as automaton units. Thus far, within this
framework, we have investigated the effects on tumour cell dynamics of structural
adaptation at the vessel level, have explored certain drug protocol treatments, and
have modelled the cell cycle in order to account for the possible effects of p27 in
hypoxia-induced quiescence in cancer cells. We briefly review these findings here.

1. Introduction

Cancer is one of the biggest killers in the Western World. There has been
a huge amount of experimental and medical research into this disease and
for certain cancers cure rates have improved. Unfortunately, however, we
still do not have an understanding of how this disease progresses and how
the myriad processes involved conspire to initiate cancer and the growth
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of tumours. In comparison to experimental research in this area, there has
been relatively little theoretical work on cancer growth. It is now slowly
being recognised that mathematical modelling may help us to extract the
full potential of the vast amounts of data being generated in the laboratory
and provide a framework in which to interpret these results'. Modelling
cannot find a cure for cancer, but it may allow experimental work to be
directed in more efficient ways.

The ultimate challenge in the modelling of biological systems in general
is to integrate the huge amount of experimental information being gener-
ated at the many different scales that make up a biological system. The
traditional “top-down” approach does not capitalise on lower level data,
while the “bottom-up” approach runs the risk of being too unwieldy and
simply replacing a biological system we do not understand by a computa-
tional system we do not understand. Moreover, we must take into account
the reality that many parameters are unknown and information is only par-
tial. At the moment, it is an open question as to whether mathematics can
meet this challenge. Equally, the best way to implement such an approach
remains to be established. ’

In this paper we briefly review our recent attempt to build an integrated
model of tumour growth. In Section 2 we present a very brief overview of
tumour growth and then in Section 3 we outline our modelling approach,
which uses a hybrid cellular automaton framework. Our philosophy is to
start with a model which is comprised largely of “black boxes” or modules,
which are represented at the outset by simple imposed rules. This is very
much a macroscale level approach. We then aim to “zoom in" on particular
modules as more experimental data becomes available and develop more
realistic models. We illustrate this in Section 4 with a model for the G1/S
transition in the cell cycle and in Section 5 with a simple model for pH.

2. Brief biological background

Under normal conditions, cell division and growth are tightly regulated
by proliferation (division) and apoptotic (self-induced cell death) signals.
However, in cancer, it is thought that a series of mutations (see, for exam-
ple, Michor et al.?) within a cell leads to it escaping from these controls and
this, in turn, can lead to an uncontrolled growth of tissue. Initial growth of
a tumour has been studied in the laboratory using multi-cellular spheroids.
The growth of this tissue is diffusion-limited as its main nutrient is oxygen
and it has no active transport mechanisms. It develops a pattern typically

composed of an inner necrotic (dead) core, surrounded by a quiescient re-
gion (live cells which are not dividing), and an outer rim of proliferative
cells. The growth rate greatly diminishes when the spheroid reaches about
1 mm in diameter and at this stage, if the tumour is to continue to grow
significantly it needs a vascular system to provide it with nutrient. There
is now quite a substantial amount of literature on the mathematical mod-
elling of avascular tumour growth, ranging from very simple models which
consider the dynamics of cell populations, to more sophisticated models
ranging from those which delve into the microscopic levels of biochemical
control of nutrient uptake, to those which consider the tumour mass as a
multi-phase material modelled via the techniques of continuum mechanics.
Other approaches include individual-based-models which consider cells as
independent units and define equations or rules on how each unit grows,
divides, moves, etc. References are too numerous to mention here so we
simply refer the interested reader to the review by Roose et al.® and refer-
ences therein.

To gain access to more nutrient, the tumour cells secrete what are known
as Tumour Angiogenesis Factors (TAFs) which diffuse into the surrounding
normal tissue and, on reaching normal blood vasculature, initiate a series of
events, the net result of which is that cells lining the vessel walls break away
and begin to migrate chemotactically towards the tumour. On approaching
the tumour they join up via the process of anastomosis establishing a blood
supply for the tumour. This was first shown by the classical experiment
of Folkman?®. As with avascular tumours, there is now a quite substan-
tial amount of modelling literature on the interaction of TAFs with the
vessel lining, the formation of the angiogenic network and its chemotactic
response. We refer the reader to the review by Mantzaris et al.®.

As the tumour mass now begins to grow out further it produces pro-
teases that can degrade the extracellular material surrounding it, giving
the tumour space to move. Cells can also break off from the main (or pri-
mary) tumour mass and enter the blood supply, leading to the process of
metastasis and the formation of often fatal secondary tumours.

There are several reviews describing the process of nutrient consumption
and diffusion inside tumours and we refer the reader to the papers®7.

3. Cellular automaton model

As mentioned in the previous section, there is a growing literature on the
mathematical modelling of various aspects of tumour growth. However,



there is little theoretical work to date on how blood is delivered to tissue,
how tissue demands are met by the structural adaptation of the blood
network, and how spatial heterogeneity affects tumour dynamics. If we
wish eventually to develop a model which allows us to explore different drug
delivery protocols for therapy, then it is important that we understand these
aspects. This was the motivation for developing the modelling framework
below (we refer the reader to the original paper® for full details).

We consider for simplicity a vascular structure which is composed of
a regular hexagonal network embedded in a two-dimensional NxN lattice
composed of normal cells, cancer cells, and space into which cells can divide.
We impose a pressure drop across the vasculature, assuming that blood
flows into the idealised “tissue” through a single inlet vessel and drains
through a single outlet vessel. To compute the flow of blood through each
vessel we use the Poiseuille approximation, and, given the initial network
configuration (that is, radii and lengths) we compute the flow rates through,
and pressure drops across, each vessel using Kirchoff’s laws. To calculate
the radii, we begin by assuming that all vessels have the same radius, but
assume that vessels undergo structural adaptation. We follow the work of
Pries et al.® by assuming that the radius R(t) of a vessel, is modified as
follows:

R(t + At) = R(t) + RAt (log (T'(r;)) + knm log (%qi i 1) = k,) (1)

where At is the time scale, Q is the flow rate, Q,-ef, k. and k4 are constants,
H is the haematocrit (red blood cell volume), 7, = RAP/L is the wall shear
stress acting on a vessel of length L. P is the transmural pressure, and 7(P)
the magnitude of the corresponding “set point” value of the wall shear stress
obtained from an empirical fit to experimental data. The second term on
the right-hand side represents the response to mechanical or haemodynamic
stimuli. The third term on the right-hand side is the metabolic stimulus and
increases with decreasing red blood cell flux. The constant k, represents the
so-called shrinking tendency, that is, without the mechanical and metabolic
stimuli, the vessel would atrophy.

Blood viscosity is a complex function of H and R and this is taken from
empirical studies, while the distribution of haematocrit at branch points
is assumed to be proportional to the flow velocity along each adjoining
vessel'0. Pries et al. found that for efficient structural adaptation a third
stimulus (the so-called conducted stimulus) was required. We omit this

from our model because it is well-known that tumour vasculature does not
adapt as well as normal vasculature.

With the above equation we can now iterate our scheme until we reach
a steady state and a vascular network with a distribution of different radii.
We now use this to conduct nutrient into the tissue. Assuming, for simplic-
ity, that the only nutrient is oxygen, we calculate the nutrient distribution
by solving the diffusion equation with the cells as sinks for uptake (we
take the adiabatic approximation) with internal boundary conditions rep-
resenting diffusion of oxygen out of the blood vessels. We impose zero flux
boundary conditions at the edge of the tissue.

To model the cell dynamics we assume that if the oxygen level is suffi-
ciently high then cells will divide if there is space (or die otherwise) while
if the oxygen level is too low then cells die. However, we assume that for
intermediate values of oxygen, cancer cells can undergo quiescence and sur-
vive for a certain amount of time, whereas normal cells cannot (see Section
4). We further assume that the threshold levels of oxygen below which cells
die is dependent on cell type and on the type of neighbouring cells. For
example, if a normal cell is surrounded by cancer cells, then we raise the
threshold level (that is, the cell is more likely to die). This is a very crude
attempt to model the effects of pH (see Section 5).

A typical solution for the resultant oxygen profile is shown in Figure
1. One sees regions of very high oxygen levels interspersed with regions of
hypoxia (low oxygen). Clearly, the system has not adapted well and this is
reminiscent qualitatively of oxygen distributions within tumours.

Figure 2 shows the spatio-temporal and temporal evolution of cancerous
cells for the case above, compared with the case where we do not assume
any structural adaptation but instead impose the condition that the oxygen
is distributed uniformly throughout the tissue. We see that spatial inho-
mogeneity has a significant effect on tumour dynamics by actually lowering
the total cancer cell population. This is because there is not an efficient
use of nutrient.

Furthermore, we see that the shape of tumour predicted has “finger-
like” protrusions similar to those observed in some spreading cancers. This
structure has arisen in this model simply because of the spatial heterogene-
ity in the nutrient distribution. Indeed, closer inspection reveals that one
or two parts of the tumour have almost “broken away”. This cannot actu-
ally happen in this model because we have not included cell motion but we
can imagine that if we did include motion towards areas of high nutrient
concentration, then this may be a mechanism for metastasis (Alarcén et al.



Figure 1. First 3 normalised frequencies versus release location for clamped simply
supported beam with internal slide release.

in prep.).

4. Effects of hypoxia on cell cycle dynamics

In the above model we assumed that in hypoxic conditions, cancer cells
can undergo quiescience whereas normal cells cannot (in fact, they undergo
hypoxia-induced arrest leading to apoptosis). Whereas in the above we
simply included this as a rule, here we aim to understand what is the
mechanistic underpinning of this phenomenon.

The cell cycle is composed of 4 stages, G1, S, G2, M, with occasionally
a GO phase (see, for example, Alberts et al.!!). There have been a number
of models proposed to account for the G1/S and for the G2/M transitions.
The G1/8S transition is particularly important because once a cell has passed
through this checkpoint it is almost certain to divide. We chose to focus on
this transition because some experimentalists felt that cells under hypoxic
conditions may be inhibited from making this transition!2.

The cell cycle is controlled by a complex series of coordinated molecular
events, with the central components of this interacting network being the
two families of proteins, the cyclin-dependent kinases (CDKs) and the cy-
clins. During G1, the cye-CDK complexes have low activity, which becomes
high after transition. Coupled to this is the activity of the anaphase protein
complex (APC) and the protein Cdhl which both begin at high levels in

Figure 2. Series of images showing the evolution of the spatial distribution of cells
for growth in inhomogeneous (panels a and b), and homogeneous environments (panels
d and e). In panels (a), (b), (d), and (f) white spaces are occupied by cancer cells,
whereas black spaces are either empty or occupied by vessels. Panels (c) and (f) show
the time evolution of the number of (cancer) cells for the heterogeneous and homogeneous
cases, respectively. Squares represent the total number of cancer cells (proliferating +
quiescent). Diamonds correspond to the quiescent population.

G1 but fall to low levels of activity after the G1/S transition. There are a
number of models of this process spanning a large range of detail (from 2
equations to over 60) but for our purposes we consider the model of Tyson
and Novak!3, which captures the essence of the problem. The model takes
the form

dz _ (k3 +k5A)(1—z) kamyzx

2
dt J3+1—zx J4—|-$, ()
d_ ky — (k5 + k3z)y (3)
dt 1 2 2 1
dm m
E”m(“m_)’ @)

where = = [Cdhl] is the concentration of active Cdhl/APC complexes,
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y = [Cyc], is the concentration of cyclin-CDK complexes®, and m is the
mass of the cell. The parameters k; (i = 1,2,3,4) and J; (i = 3,4) are
positive constants. A represents a generic activator. In Eq. (4), p is the
cell growth rate and m, is the mass of an adult cell. We refer the reader to
Tyson and Novak!? for full details.

The above model can exhibit mono- and bi-stability, with the cell mass
m as a bifurcation parameter. For low values of m there is a single stable
steady state with a high value of z and a low value of y - this would
correspond to G1. As m increases, we enter the bistable regime, with a
new stable steady state arising at a high value of y and a low value of z.
For a critical value of m the latter becomes the only stable steady state
and the system switches to this state, corresponding to the S phase. After
the cell divides, m decreases, and the system is set back to the “G1 phase
steady state”.

We take this as our base model and, together with the experimental
results in Gardner et al.'? and the hypothesis that under hypoxic condi-
tions the expression of the regulator p27 increases (in fact due to decreased
degradation), which in turn inhibits Cdhl activity, we derive the (non-
dimensionalised) model (see Alarcon et al.'* for full details):

dz _ (1+bgu)(l—x) bymay 5)
dr ~ Jas+l—z J4+.'12’

o ag — (a1 + agx + azz)y, (6)
dr

dm m

ol - 7
o (1 m*) , (7)
dz P

— — . S 8
dr x(m) 28 - ol ®)
du

— =d; —(d d 9
5 dy — (d2 + d1y)u, 9)

where P is the oxygen tension, z is the p27 concentration and u is the
concentration of phosphorylated retinoblastoma (RB).

We make the following assumptions: for normal cells, p27 activity is reg-
ulated by cell size, that is, x(m) = ¢1(1— ), but for cancerous cells, this
size-regulation is lost, that is x(m) = ¢;. We make the further assumption

aln Tyson and Novak!®, [Cyc] corresponds to the concentration of the specific complex
cyclinB-CDK. Here we simply consider a generic cyclin-CDK complex in order to keep
our model as simple as possible.

that ¢; (maximum rate of synthesis of p27) is larger in normal cells than
in cancer cells — this we do to account for the observation of low p27 levels
in cancer cells compared to normal cells (see, for example, Philipp-Staheli
et al.'®). Using other parameter values from Tyson and Novak!? we find
that assuming these two phenomena characterise the differences between
the regulation of p27 in cancer and in normal cells is sufficient to account
for hypoxia-induced quiescience in the former, and hypoxia-induced arrest
in the latter. Our numerical simulation results are supported by an ana-
lytic study of the bifurcation structure of the model (see Alarcon et al.'4
for details).

5. The role of acidity

In the cellular automaton model of Section 2 we imposed a rule in which the
fate of cells depended on their neighbours. This was motivated by the work
of Gatenby and Gawlinski!®17. They proposed a reaction-diffusion model
for interaction between tumour cells and normal cells and hypothesised
that when tumour cells undergo anaerobic metabolism (which they do even
under normoxic conditions) the by-product of lactic acid lowers the pH
into a regime where the tumour cells can “over-power” the neighbouring
normal cells and invade the tissue simply because of their ability to tolerate
more acidic conditions. Their model predicted that there should be a gap
between the advancing tumour front and the regressing normal tissue and,
indeed, they later observed this phenomenon experimentally.

A drawback in their model was that it predicted either a travelling
wave of tumour invasion, or total clearance of tumour cells. It could not
predict the formation of a benign tumour. This problem can be overcome
if one considers a very simple model in which tumour cells produce acid
and the tumour grows but also loses cells via necrosis if the acid level is too
high. The resultant coupled system of ordinary differential equations yields
three different types of behaviour: saturated (benign) growth of avascular
tumours; benign growth of vascular tumours which can become invasive
(malignant) as a key dimensionless parameter passes through a critical value
(see Smallbone et al.'® for full details).

6. Discussion

We have presented results from our recent research into the growth of vas-
cular tumours. Our approach to incorporating processes occurring on very
different length scales is to use a hybrid cellular automaton framework!9:20,
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Our very preliminary work in this area has already revealed some experi-
mentally testable predictions. Our model shows that nutrient heterogene-
ity can have a significant effect on the spatio-temporal dynamics of tumour
growth. In particular, it shows that it may be the cancerous cells’ exploita-
tion of high nutrient sources that causes an initial homogeneously growing
tumour to begin to break up. We are in the process of incorporating cell
movement into our model to see if this can lead to metastasis. We have
recently shown that in some cases anti-angiogenesis treatment could actu-
ally enhance tumour growth due to the modified vasculature being more
efficient at delivering nutrient?!.

Our modelling framework allows for detailed sub-models to be included
for processes occurring on a specific scale. Thus, for example, our simple
rule for the signal for cell division can be expanded to incorporate a model
of this process. In doing so, we have generated a hypothesis as to how
cancerous cells can undergo hypoxia-induced quiescience while normal cells
undergo hypoxia-induced arrest. We propose that p27 plays a key role in
this but we must be aware that this is still controversial??, An important
point here is that if we were to include a full model for the cell cycle into
the cellular automaton model, the resultant model would require a huge
amount of computational power to solve and would be so complicated that
it would be difficult to gain insight into the phenomena observed from the
model. Therefore we must reduce the model and indeed one can do this by
taking a caricature model of only a few equations which aims to capture
the essence of the full cell cycle model. In this case, however, the question
of whether our results are artifacts because of the simplifications we made
arises and this is a crucial problem facing all theoreticians working in the
Life Sciences, namely, how robust are the models that we generate?

The simple model presented in Section 3 proves inadequate if we want
to use it to explore the effects of drug treatment where a drug acts on cells
in a certain part of the cell cycle. In this case, we need to incorporate cell
cycle models of the form proposed in Section 4, or we can use a probabilis-
tic approach based on empirical data to determine the probability that a
certain cell is in a certain phase of its cell cycle at a particular time. The
latter approach was used to examine the effects of Doxorubicin treatment
on non-Hodgkin’s lymphoma to determine the optimal dosage protocol?3,

In Section 5 we explored in more detail the effects of acidity. This
simple model isolates a single nondimensional bifurcation parameter which
determines whether or not a tumour will grow in an uncontrolled fashion.
This raises a number of possible control mechanisms, including the counter-
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intuitive prediction that increasing the acidity may eliminate the tumour.
This model prediction remains to be tested.

Future work in this area must address the underlying biochemistry of
many of the processes we mentioned above and incorporate the mechanical
aspects involved in tumour growth. We have recently incorporated rules
for production of the growth factor VEGF in response to hypoxic con-
ditions, computed its spatio-temporal distribution by solving a reaction-
diffusion model, and modified the vessel structural adaptation equation
accordingly?®. While this allows us to capture the initial vessel dilation in
response to VEGF, it only in a very crude way accounts for the angiogenic
response. We are presently incorporating growth of new vasculature into
the model.

A crucial aspect of all this work will be model reduction so that the
resultant model is computationally tractable and understandable. Only
then can mathematical modelling gain useful insights to help direct medical
research.
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