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Abstract

Successful adaptation to varying microenvironmental constraints plays a crucial role during carcinogenesis. We develop a hybrid

cellular automation approach to investigate the cell–microenvironmental interactions that mediate somatic evolution of cancer cells. This

allows investigation of the hypothesis that regions of premalignant lesions develop a substrate-limited environment as proliferation

carries cells away from blood vessels which remain separated by the intact basement membrane. We find that selective forces in tumoural

regions furthest from the blood supply act to favour cells whose metabolism is best suited to respond to local changes in oxygen, glucose

and pH levels. The model predicts three phases of somatic evolution. Initially, cell survival and proliferation is limited due to diminished

oxygen levels. This promotes adaptation to a second phase of growth dominated by cells with constitutively up-regulated glycolysis, less

reliant on oxygen for ATP production. Increased glycolysis induces acidification of the local environment, limiting proliferation and

inducing cell death through necrosis and apoptosis. This promotes a third phase of cellular evolution, with emergence of phenotypes

resistant to acid-induced toxicity. This emergent cellular phenotype has a significant proliferative advantage because it will consistently

acidify the local environment in a way that is toxic to its competitors but harmless to itself. The model’s results suggest this sequence is

essential in the transition from self-limited premalignant growth to invasive cancer, and, therefore, that this transition may be delayed or

prevented through novel strategies directed towards interrupting the hypoxia–glycolysis–acidosis cycle.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Increased glycolysis is characteristically observed in
invasive cancers. In part this is due to development of
intratumoural regions of hypoxia, arising from disordered
vascular development and flow. However, it is also the
result of persistent anaerobic metabolism even in the
presence of oxygen (aerobic glycolysis) (Warburg, 1930).
The inefficiency of anaerobic metabolism is compensated
e front matter r 2006 Elsevier Ltd. All rights reserved.
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by a several-fold increase in glucose flux. This phenomenon
is now routinely exploited for tumour imaging through
FDG-PET (18fluorodeoxyglucose positron emission tomo-
graphy) (Czernin and Phelps, 2002; Gambhir, 2002). PET
has confirmed that the vast majority (490%) of human
primary and metastatic tumours demonstrate increased
glucose uptake indicating abnormal metabolism. Further-
more, PET has been used to show a direct correlation
between tumour aggressiveness and the rate of glucose
consumption (Di Chiro et al., 1987).
The almost universal presence of aerobic glycolysis in the

phenotype of such a wide range of cancers arising in
multiple different sites seems inconsistent with the evolu-
tionary model of carcinogenesis. That is, invasive cancers
appear to arise through a complex multi-step process often
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described as somatic evolution because it is governed by
continuous heritable changes in the tumour populations
and environmental selection pressures that promote pro-
liferation of phenotypes best adapted to their microenvir-
onment. Due to these Darwinian dynamics, it is reasonable
to assume the common appearance of a specific phenotype
within a large number of different cancer populations is
evidence that it must confer a significant growth advantage.
However, the proliferative advantages gained from altered
glucose metabolism are far from clear. Firstly, anaerobic
respiration is more than an order of magnitude less efficient
than its aerobic counterpart, producing only 2 ATP per
glucose in comparison to approximately 36 ATP. Secondly,
the Hþ (hydrogen ions) produced as a result of glycolysis
cause a consistent acidification of the extracellular space
that is potentially toxic (Schornack and Gillies, 2003). In
particular, an acidic microenvironment results in tissue
damage due to cell death and degradation of the
extracellular matrix (Rohzin et al., 1994). Intuitively, one
would expect the Darwinian forces prevailing during
carcinogenesis to select against this inefficient and envir-
onmentally toxic phenotype, in favour of more optimal
metabolic regimes. Thus, the evolutionary dynamics that
leads to adoption of aerobic glycolysis as a typical
component of the malignant phenotype remains unknown.

Gatenby and Gillies (2004) propose that evolution of
aerobic glycolysis is the result of environmental constraints
imposed by the morphology of the ducts in which
premalignant lesions evolve. Specifically, they point out
that the epithelium in ducts remains separated from the
blood supply by the intact basement membrane. Initial
proliferation in premalignant lesions carries cells into the
lumen, away from the basement membrane, and, therefore,
away from their blood supply. This steadily increases the
distance that substrate must diffuse between the vessels and
the intraluminal tumour cells and results in regions of
hypoxia but near normal glucose concentrations. They
proposed this initiates an evolutionary sequence consisting
of adaptation to hypoxia by upregulation of glycolysis,
acidification of the environment due to anaerobic respira-
tion of glucose, and then cellular adaptation to acid-
induced cellular toxicity. They pointed out that the
phenotype that emerges from this sequence has a powerful
adaptive advantage because it creates an environment (due
to increased glycolysis) that is toxic to its competitors but
relatively harmless to itself. This adaptive advantage may
be sufficient to allow unconstrained proliferation and, thus,
be a critical component in the transition from a pre-
malignant tumour to an invasive cancer.

This model is supported by experimental observations of
upregulation of cellular responses to hypoxia in regions of
premalignant DCIS (ductal carcinoma in situ) and PIN
(intraepithelial neoplasia) most distant from the basement
membrane. This includes upregulation of HIF (hypoxia-
inducible factor) and related proteins such as carbonic
anhydrase IX and GLUT-1 (glucose transporter 1)
(Kunkel et al., 2003; Wykoff et al., 2001). However, it is
clear that in vivo experimental verification of the hypoth-
esis that the final stages of carcinogenesis are driven by
cellular adaptation to hypoxia and acidosis will be difficult.
Experience in the physical sciences has demonstrated

that the dynamics that govern complex, multi-scale systems
such as carcinogenesis cannot be fully captured by linear,
intuitive word models and, instead, require detailed
mathematical modelling (Gatenby et al., 2002; Gatenby
and Maini, 2003; Komarova, 2005). To test the feasibility
of the theoretical model of Gatenby and Gillies (2004), we
frame the hypothesis using mathematical methods that
examine somatic evolution of premalignant cells within the
constraints of ductal anatomy. This allows us to test the
proposed sequence of environmental changes and cellular
adaptations in silico. We accomplish this using evolu-
tionary models of carcinogenesis that explicitly include
spatial parameters to accommodate the geometry of early
tumour development. This requires application of a hybrid
cellular automaton approach (Anderson, 2005; Patel et al.,
2001). The key advantage of this technique is that it allows
cells to be treated as discrete individuals, enabling cellular
processes such as proliferation, death, adaptation and
metabolite consumption/production to be modelled at the
individual cell level. However, the automaton is described
as hybrid because the metabolite distributions, specifically
the oxygen, glucose and Hþ concentrations, are allowed to
form a continuous field across the cells.
Analysis of the model gives us useful insight into the role

of the microenvironment in mediating the somatic evolu-
tion of cancer cells. In turn, novel therapeutic strategies are
suggested for inhibiting the emergence of the glycolytic
phenotype and hence slowing the progression of early
lesions.

2. Materials and methods

A hybrid cellular automaton model is used to simulate
carcinogenesis. This two-dimensional model is composed
of an M �N array of automaton elements ði; jÞ with a
specific rule-set governing their evolution, as well as
oxygen, glucose and Hþ fields, each satisfying reaction–
diffusion equations. Each automaton element corresponds
to either a tumour cell or a vacant space. Tumour cell
diameter can be highly variable, ranging from 10 to 100mm
(Melicow, 1982), depending on the specific tumour type
under consideration. Here we assume each automaton
element, and hence each tumour cell, has constant physical
size D� D, where D ¼ 25mm.
The phenotypic traits of malignant cancers arise as a

result of environmental selection pressures during carcino-
genesis (Bernards and Weinberg, 2002). Hence it is
important to understand the physical environment of early
pre-malignant lesions. Carcinomas in situ are often
characterized as highly vascularized. This is misleading,
however, as whilst they may have a vascular stroma
(external connective tissue), the tumour cells are actually
physically separated from their blood supply by a thin
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Fig. 1. Model for cell–environment interactions during carcinogenesis, giving the stages of tumour growth and their associated physiological states.

Shown are normal epithelial (grey), hyperplastic (pink), hypoxic (blue), glycolytic (green) and motile (yellow) cells. Reproduced with permission from

Nature Reviews Cancer (Gatenby and Gillies, 2004) r2004 Macmillan Magazines Ltd.

K. Smallbone et al. / Journal of Theoretical Biology 244 (2007) 703–713 705
basement membrane, until this membrane is breached by
an invasive cell. Therefore, carcinogenesis and the devel-
opment of the malignant phenotype actually occur in an
avascular environment, whereby substrates must diffuse
across the basement membrane and through layers of
tumour cells to be metabolized. This anatomy places
consistent and significant boundary conditions on the
biology of carcinogenesis. In the model we reflect this
geometry by assuming that the bottom edge of the array
i ¼ 0 represents the basement membrane. Beyond the
membrane we assume the stroma is sufficiently well-
vascularized that the metabolites remain at their normal
extracellular concentrations.

A model for the key cell–environment interactions we
propose to occur during carcinogenesis is shown in Fig. 1.
Initially, normal epithelial cells grow along the basement
membrane, with the epithelial layer at most a few cells thick.
Homeostasis mechanisms do not normally allow growth of
these cells away from the basement membrane. However,
following initial genetic events in the carcinogenesis pathways
such as those depicted by the Fearon–Vogelstein model
(Fearon and Vogelstein, 1990), the cells become hyperplastic,
leading to a thickening of the epithelial layer, pushing cells
into the lumen and away from the basement membrane. Since
the blood vessels remain outside the basement membrane,
nutrients and waste must diffuse over longer and longer
distances. As a result, it is likely that hyperplastic cells beyond
the Thomlinson–Gray limit of 100–150 mm (Thomlinson and
Gray, 1955) from the basement membrane will experience
profound hypoxia, which will initiate a sequence of critical
cellular adaptations and environmental changes. Specifically,
it is proposed that hypoxia leads to constitutive upregulation
of glycolysis which, in turn, results in increased Hþ

production and acidification of the microenvironment. This
decreased extracellular pH (pHe) is toxic to the local
populations because it induces p53-dependent apoptosis due
to increased caspase activity. This selects for cells that are
resistant to acid-induced toxicity resulting in further evolution
of new phenotypic properties that, for example, increase the
number and activity of Naþ=Hþ antiporters on the cell
surface or possess mutations in p53, caspase or other
components of the acid-induced apoptosis pathways. The
acidosis also selects for motile cells that eventually breach the
basement membrane, gaining access to existing and newly
formed blood and lymphatic routes for metastasis.
To investigate this hypothesis, we consider the selective

pressures placed on a number of different possible tumour
phenotypes. Initially, the automaton consists of a layer of a
normal epithelial tissue. We assume it to be a simple
epithelium i.e. the cells grow in a monolayer along the
basement membrane. Then the initial array consists of
normal cells at ð1; jÞ and is vacant elsewhere. As well as
proliferation and death, we assume that these cells may
randomly undergo three possible heritable changes, either
through mutations or epigenetic changes such as altera-
tions in the methylation patterns of promoters. The cells
may become:
�
 hyperplastic, allowing growth away from the basement
membrane;
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�
 glycolytic, increasing their rate of glucose uptake and
utilization;

�
 acid-resistant, requiring a lower extracellular pH to

induce toxicity.

These three changes give rise to eight different phenotype
combinations, and thus eight competing cellular popula-
tions. The time-scales for induction of the three heritable
changes during carcinogenesis will give insight as to their
relative importance.

2.1. Cellular metabolism

We first define a simple model of cellular glucose
metabolism. Under normal physiological conditions, hu-
man cells rely on aerobic respiration to produce their
energy. Each glucose molecule reacts with six oxygen
molecules to produce carbon dioxide and ATP. This
reaction may be caricatured by

glucoseþ 6O2�!6CO2 þ nAATP, (1)

where nA denotes the number of ATP molecules produced
during complete oxidation of glucose. In this paper we
assume nA ¼ 36, though this value may vary slightly
depending on the specific cell type under consideration.

During periods of hypoxia, cells revert to the less
efficient anaerobic metabolism, producing two molecules
of lactic acid per glucose,

glucose�!2lactic acidþ 2ATP. (2)

The details of the mathematical models capturing cellular
dynamics are included in the Appendix. During the first
stage of carcinogenesis, the dominant growth constraints
involve cellular interactions with the extracellular matrix
and other cells. During this phase, substrate supplies are
assumed adequate and, therefore, cellular metabolism
neither promotes nor constrains growth. Once these social
constraints have been overcome and tumour cells prolifer-
ate into the lumen and away from the basement membrane,
the dominant growth constraint becomes limited substrate
availability, and thus increased ATP production confers a
competitive advantage.

The dynamics of aerobic and anaerobic metabolism of
glucose are summarized in Eqs. (9)–(12) in the Appendix.
Cells using inefficient glycolytic metabolism maintain ade-
quate ATP concentrations by increasing glucose flux.
Normal cells are assumed to adopt glycolytic metabolism
only when environmental conditions are hypoxic (the
Pasteur effect, Racker, 1974). Transformed cells exhibit a
similar response to hypoxia but also maintain glycolytic
metabolism even in the presence of oxygen (the Warburg
effect, Warburg, 1930). Differences between the two cell
types are also seen in Hþ production. Normal cells produce
increased acid (i.e. above the basal rate) only when oxygen
supply is low. However, glycolytic cells produce increased
amounts of Hþ even in normoxic conditions and thus acidify
the extracellular space, irrespective of the oxygen levels.
2.2. Metabolite profiles

Having defined a model of cellular respiration, we are
now in a position to determine the metabolite distributions
around the cells. The details of the mathematical modelling
are included in the Appendix. After each automaton
generation, the known rates of metabolite consumption
and production for each cell are used to calculate the
corresponding metabolite profiles. This allows us to
generate a continuously varying regional map of oxygen,
glucose, and acid concentrations.

2.3. Cell dynamics

We now proceed to investigate how the carcinoma
evolves in response to the associated distribution of
glucose, oxygen and Hþ within the tissue. Initially, the
automaton is composed of normal cells forming a
monolayer along the basement membrane. After each
generation, the resultant glucose, oxygen and Hþ fields are
calculated using the methods outlined above. Each cell in
the automaton is then updated (in a random order)
according to the local metabolite levels. Cells may
proliferate, adapt or die, and cells with different pheno-
typic patterns respond to the microenvironmental pressures
in different ways. As such, competition is incorporated into
the model: for a new population to progress and grow, it
must successfully compete for space and resources with
existing populations.
The rules governing the evolution of the automaton

elements are as follows:
(1)
 An element that is empty does not evolve directly. It
may evolve indirectly when cell division takes place in a
neighbouring cell.
(2)
 If the amount of ATP produced by a cell fa falls below
a critical threshold value, a0, it dies, and the element
becomes empty. As such, a0 represents the level of ATP
required for normal cellular maintenance. We do not
allow hypoxia to directly induce cellular death within
our model. Rather, hypoxia indirectly causes cell death
through a reduction in ATP production. As mentioned
previously, cells displaying the glycolytic phenotype
produce significantly more ATP than their normal
counterparts during periods of hypoxia, thus they are
less susceptible to cell death via this mechanism. We
assume a0 ¼ 0:1, corresponding to normal cell death
occurring when oxygen levels drop below c ¼ 0:05
(Anderson, 2005).
(3)
 The local Hþ level, h may also induce cellular death,
with probability pdea. We define this probability by

pdea ¼

h=hN in a normal cell; if hohN ;

h=hT in an acid�resistant cell; if hohT ;

1 otherwise;

8><
>:

(3)



ARTICLE IN PRESS
K. Smallbone et al. / Journal of Theoretical Biology 244 (2007) 703–713 707
where hNohT . Thus the probability of cell death
increases with acidity, and the cell will always die if
the Hþ level is greater than hN or hT , dependent on the
cell type under consideration. These values are taken to
be hN ¼ 9:3� 102 and hT ¼ 8:6� 103 for normal and
acid-resistant cells, respectively, corresponding to
threshold values of pH 6.8 and 6 (Patel et al., 2001).
(4)
 If the cell is not attached to the basement membrane,
and is not hyperplastic, it dies.
(5)
 If the cell does not die through any of the mechanisms
above, it either attempts to divide, with probability pdiv,
or becomes quiescent. The probability of division is a
function of the cellular ATP production

pdiv ¼
ðfa � a0Þ=ð1� a0Þ; a0ofao1;

1; faX1:

(
(4)

Hence, we assume that the probability of division is
proportional to the ATP generated that is not needed
for maintenance, and that the cell will always attempt
to divide if the production rate is more than its normal
level of one. If the cell attempts to divide, we determine
whether cell division occurs by sampling its neighbour-
ing elements. If there is one empty space, then the cell
divides, and the new cell occupies this empty space. If
there is more than one empty space, the new cell goes to
the element with the largest oxygen concentration
(following Alarcón et al., 2003).
(6)
 If a cell divides, each of the two daughter cells has
probability pa of randomly acquiring one of the three
heritable characteristics (hyperplasia, glycolysis and
acid resistance). In order to avoid bias in the model, we
assume these changes are reversible. For example, a cell
displaying constitutive up-regulation of glycolysis may
revert to normal glucose metabolism; if this metabolism
is most appropriate for the current microenvironmental
conditions, the cell will successfully compete for
resources with its neighbours. We choose pa ¼ 10�3 as
a base value, to reflect the fact that heritable change is a
relatively rare occurrence.
It remains to define the dimensions of the automaton M

and N. We take N ¼ 50, corresponding to a typical ductal
carcinoma of radius 200mm. However, we leave M

undefined, allowing it to dynamically increase as the
carcinoma grows. Essentially the final value taken by M

will represent the maximum distance from the basement
membrane the cells may survive, given the limited nutrient
supply and acid removal.

Throughout this model derivation, we have assumed that
various processes follow simple, linear dynamics (Eqs. (3),
(4), (7) and (8)). It can be argued that these assumptions are
too unrealistic to represent complex biological phenomena
such as these. However, these processes are poorly under-
stood and, as a first approximation, an assumption of
linearity is sufficient to capture qualitatively similar
monotonic behavior. We would not expect these assump-
tions to have a marked effect on the model’s conclusions.
Moreover, the relative simplicity of the model means that
the parameter space is kept to a manageable size.

3. Results

We now apply the procedures outlined in the previous
section. The simulations involved systematically varying
the glycolytic rate k, tumour cell acidity threshold hT and
adaptation rate pa whilst keeping other parameters
constant. Multiple repetitions of the evolution of the
system for each ðk; hT ; paÞ triple were performed to obtain
adequate statistics.
Fig. 2 shows the temporal evolution of a typical cellular

automaton (k ¼ 10, hT ¼ 8:6� 103, pa ¼ 10�3), and may
be compared to the model described in Fig. 1. Initially,
normal epithelial cells (grey) line the basement membrane
(Fig. 2(a)). Acquisition of the hyperplastic phenotype
(pink) allows growth away from the membrane towards
the oxygen diffusion limit (Fig. 2(b)). Beyond this point,
cells cannot exist as the oxygen levels are insufficient to
meet cellular ATP demands. This drives adaptation to a
glycolytic phenotype (green), less reliant on oxygen for
ATP production (Fig. 2(c)). The increased ATP levels
within glycolytic cells give a competitive advantage over
the existing population, thus glycolytic cells dominate the
system. Note, however, that the total number of cells
within the system has decreased; the increased reliance on
glycolysis has resulted in higher levels of acidity, in turn
inducing cell death. Further adaptation occurs to an acid-
resistant phenotype (Fig. 2(d)). Increased use of glycolysis
allows growth well beyond the oxygen diffusion limit,
whilst the cells are more resistant to the resulting acidosis.
Fig. 3 shows how metabolite levels vary across the lesion

at this final stage of development. Here we see growth
approximately 30 cells deep from the basement membrane.
Oxygen levels drop to c ¼ 0:02, in comparison to their
normal level of one. In contrast, glucose levels fall to
g ¼ 0:9; despite the ten-fold increase in consumption rate,
the extracellular glucose levels are only slightly reduced.
This is an important point — over the length scale of
carcinogenesis, glucose supply is not a limiting factor.
Rather, the cells furthest from the basement membrane are
kept at equilibrium through a modest reduction in ATP
production (fa ¼ 0:5) accompanying cellular death
through a large increase in Hþ levels (h ¼ 2� 103). In
contrast to the theoretical model presented in Fig. 1, we
find that the most likely mechanism for necrosis of cells
furthest from the basement membrane is acid-induced
toxicity, rather than glucose deprivation. In turn, this
enhances the argument that acid-induced cellular toxicity is
a major evolutionary force in the hypoxic regions of
premalignant tumours. The inhibitory effect conferred by
acidosis increases with distance from the basement
membrane, inducing heterogeneities that may be seen in
Fig. 2(b)–(d).
In Fig. 4 the proportion of cells displaying each heritable

change is shown for the automaton displayed in Fig. 2.
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Fig. 2. The temporal evolution of a typical cellular automaton (k ¼ 10, hT ¼ 8:6� 103, pa ¼ 10�3) after (a) t ¼ 0, (b) t ¼ 100, (c) t ¼ 250 and (d) t ¼ 300

generations. Shown are normal epithelial (grey), hyperplastic (pink), hyperplastic–glycolytic (green) and hyperplastic–glycolytic–acid-resistant (yellow)

cells. Cells with other phenotypic patterns are shown as black.
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The three stages of growth from normal cells acquiring, in
turn, hyperplastic, glycolytic and acid-resistant phenotypes
can be clearly seen. The steepness of the hyperplastic and
acid-resistant curves suggests that these changes are
extremely beneficial to the underlying population. The
glycolytic curve is shallower as the benefits of increased
ATP production are counteracted by acidosis. The order in
which changes are accumulated is random; however, for a
new phenotype to successfully compete with an existing
population for resources it must be better suited to respond
to existing micro-environmental factors. It is interesting to
note that throughout the simulations performed here, the
heritable changes within the dominant population are
accumulated in this same order. Within our model, the
underlying environmental selection parameters drive the
cells to always follow this adaptive pathway — escaping in
turn from the constraints of limited proliferation (hyper-
plasia), substrate availability (glycolysis) and waste re-
moval (acid resistance). The same order of progression
occurs despite allowing phenotypic reversibility within
our model. This is an important conceptual advance as
it means mutations are not a necessary mechanism
for phenotypic variation within tumour tissue; rather
the model demonstrates that heritable, but potentially
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reversible, epigenetic changes may account for some of the
phenotypic changes observed in cancer cells.

In order to examine the effects of parameter changes on
system dynamics, we define a measure of the ‘fitness’ of a
specific parameter set. Let ‘invasive’ be used to describe
cells displaying all three heritable changes and, for a
particular automaton, let T denote the number of
generations after which 95% of the cells in the system
display the invasive phenotype. Thus T is representative of
the amount of time taken for full carcinogenesis to occur.
Now let the development rate R ¼ T�1, where we take R ¼

0 if TX5000 (equivalent to approximately 20 years).
Automata with a higher value of R proceed more quickly
through the carcinogenesis pathway.

In Fig. 5 we see how the development rate R varies with
changes in (a) glycolytic rate k, (b) acid resistance hT and
(c) adaptation rate pa. Using default parameters of k ¼ 10,
hT ¼ 8:6� 103 and pa ¼ 10�3, the three graphs show the
effects of changing one of these parameters whilst keeping
the other two fixed at their default value. Each data point is
the mean value of R calculated over fifty simulations,
whilst the accompanying error bars show the standard
errors of these means.

Fig. 5(a) shows a sharp transition from slow develop-
ment to rapid development as the glycolytic rate k is
increased through a critical threshold value of k � 3. This
transition occurs when the increase in ATP production and
extracellular acidity due to upregulation of glycolysis is
sufficient to give the invasive cell population a significant
advantage over their untransformed counterparts. A
similar bifurcation has been seen in other models looking
at the role of acidity in tumour growth, whereby a
transition from benign to malignant growth is seen when
the cellular acid production rate increases through a critical
point (Patel et al., 2001; Gatenby and Gawlinski, 1996,
2003; Smallbone et al., 2005). Increasing k beyond 20
results in a slow monotonic decrease in the development
rate. For such large values of k, acid accumulates to a
degree unfavourable even to the resistant invasive cells,
inducing auto-toxicity.

In Fig. 5(b) we see that initially the development rate
increases sharply with increasing acid resistance, reaching a
plateau at hT � 2� 103. For large hT , we find the benefits
of increasing acid resistance are counteracted by clumps of
acid-resistant non-glycolytic cells developing near the
basement membrane, withstanding the progression of the
invasive phenotype. In the microenvironment near the
membrane, the non-glycolytic cells produce sufficient ATP
and are extremely resistant to extracellular acidity; thus
their invasive, glycolytic counterparts have only a small
competitive advantage.

Finally, Fig. 5(c) shows that, as with the glycolytic rate k,
there is a value of adaptation rate pa at which the
development rate is optimal. Increasing the adaptation
rate increases the diversity of the system. This leads to an
increased chance of acquiring the invasive phenotype,
whilst reducing the dominance of the main population in
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the system. This balance resolves itself with the maximum
development rate occurring at pa � 10�2. The model’s
results here are consistent with the Eigen–Schuster
quasispecies theory (Eigen, 1971; Schuster, 1994), namely
that a critical mutation rate known as the ‘error
catastrophe’ exists beyond which the genomic information
is lost i.e. no Darwinian selection operates. Returning to
Fig. 5(c), we see that this error catastrophe threshold falls
at pa � 10�1.

4. Discussion

In this article, we address the evolutionary dynamics in
carcinogenesis that promote aerobic glycolysis in the
malignant phenotype and examine the potential role of
abnormal glucose metabolism in formation of invasive
cancers.

Carcinogenesis is a complex multi-step process governed
by the interactions of heritable phenotypic variations with
continuously changing environmental selection forces. The
dynamics of carcinogenesis are often summarized as
somatic evolution because they appear to be formally
analogous to Darwinian selection in nature. Thus defined,
the common appearance of a specific phenotype within
different cancer populations must be the result of environ-
mental selection and, therefore, must confer a significant
growth advantage.

Since the pioneering work of Warburg (1930) nearly a
century ago, experimental observations have consistently
demonstrated that cancer cells, unlike their normal
counterparts, utilize anaerobic pathways to metabolize
glucose even in the presence of oxygen. The clinical
importance of this phenotypic trait is suggested by FDG-
PET imaging, which demonstrates a several-fold increased
glucose uptake in the vast majority of human primary and
metastatic cancers. However, in the context of the
evolutionary model of carcinogenesis, the competitive
advantage of altered glucose metabolism is not immedi-
ately clear since it represents a highly inefficient means of
energy production and results in significant acidosis of the
tumour micro-environment.

The work presented here uses a hybrid cellular auto-
maton approach to examine the role of the microenviron-
ment in mediating the somatic evolution of cancer cells.
Utilizing the fact that epithelial tumours evolve on mucosal
surfaces separated from their blood supply by the intact
basement membrane, we extend previous evolutionary
modelling of carcinogenesis to explicitly include spatial
parameters that accommodate these boundary conditions.
This new modelling approach allows quantification of
regional variations in the microenvironment in premalig-
nant lesions.

We examine the hypothesis that upregulation of
glycolysis represents an adaptation to hypoxia in prema-
lignant lesions that develops as tumour cells grow into the
lumen of the duct and away from their blood supply. This
new phenotype, in turn, produces environmental acidosis
which promotes additional adaptation to prevent acid-
induced cell death. The phenotype that emerges from this
sequence has a substantial, general proliferative advantage
because it creates an environment that is toxic to its
competitor but not to itself. This competitive advantage
allows an invasive phenotype that permits penetration
through the basement membrane and formation of a
primary carcinoma.
Our results confirm the hypothesis that hypoxia and

anoxia will be common in premalignant lesions such as
DCIS or advanced colon polyps. In fact, we demonstrate
that even early hyperplastic lesions will contain areas of
hypoxia once tumour growth carries cells to more than a
few cell layers beyond the basement membrane. Similarly,
our results confirm that regional development of hypoxia
will promote upregulation of anaerobic metabolism of
glucose and subsequent development of extracellular
acidosis. Finally, we find the acidic pHe that develops
from this sequence will, in some regions, result in cellular
toxicity and, therefore, become a significant environmental
selection factor that promotes resistant phenotypes.
Clearly, confirmation of the modelling results by direct

measurement of regional variations in oxygen, glucose and
Hþ concentrations in premalignant lesions will be difficult.
However, our results are likely to be quite realistic since the
work is based on well-established biological application of
reaction diffusion models where the values of critical
parameters are known. In fact, the potential for develop-
ment of hypoxia within tissue was demonstrated mathe-
matically by Krogh nearly 100 years ago (Krogh, 1919).
The presence of hypoxia in tumour cells more than
100–150mm from a blood vessel has been demonstrated
experimentally by many investigators since the pioneering
work by Thomlinson and Gray (Dewhirst et al., 1994;
Thomlinson and Gray, 1955). Finally, experimental
measurement of perivascular oxygen and pHe gradients
that both qualitatively and quantitatively resemble our
modelling results have been reported by Helmlinger et al.
(1997).
Our results also demonstrate possible pathways in

somatic evolution that may result as cellular populations
acquire new, fitter phenotypes in response to local
proliferative constraints caused by variations in micro-
environmental properties. This allows explicit predictions
regarding regional variations in phenotype in both
premalignant lesions such as DCIS and early invasive
cancers. This predicted phenotypic variability should be
experimentally testable and we are encouraged that
published studies have shown evidence of adaptation to
hypoxia through increased expression of carbonic anhy-
drase IX in DCIS cells that are nearest the lumen (i.e. most
distant from the basement membrane) (Wykoff et al.,
2001).
Finally, our results suggest that tumour prevention

strategies aimed at interrupting the hypoxia–glycolysis–a-
cidosis cycle and the resulting cellular adaptations will
delay or prevent transition from in situ to invasive cancer.
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For example, our results suggest that drugs that block the
function of the Naþ=Hþ antiport (such as amiloride)
would likely inhibit the adoption of constitutive upregula-
tion of aerobic glycolysis.

In summary, our study supports the hypothesis that
regional variations in oxygen, glucose and Hþ levels drive
the final stages of somatic evolution during carcinogenesis.
We propose that the phenotypic adaptations to the
sequence of hypoxia–glycolysis–acidosis are necessary to
form an invasive cancer. For this reason, interruption will
likely delay or prevent transition from in situ to invasive
cancer.
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Appendix A

A.1. Model of cellular metabolism

Suppose the cell consumes glucose and oxygen at rates
FG and FC , respectively, and that all of the consumed
glucose and oxygen is used to generate ATP under the two
processes outlined above. Then, from Eq. (1), we are
assuming FGXFC=6. If this condition is satisfied, we may
calculate the rates of ATP production FA and lactic acid
production FL from Eqs. (1) and (2),

FA ¼
nAFC

6
þ 2 FG �

FC

6

� �
, ð5Þ

FL ¼ 2 FG �
FC

6

� �
. ð6Þ

The lactic acid produced by the cell partially disassociates
into Hþ and lactate. These Hþ ions lower the pH of the
extracellular space, inducing cellular toxicity. The rate of
cellular Hþ production FH is taken to be proportional to
the rate of lactic acid production, FH ¼ kHFL, for some
kHo1. Note that the aerobic pathway also contributes to
cellular acid production through hydration of CO2.
However, this contribution is small — for each mole of
ATP synthesized, anaerobic metabolism produces one
mole of lactic acid, whilst aerobic metabolism produces
only 1

6
mole of CO2. As such we ignore this term,

considering only the acid production in excess of the
normal rate.

It remains to define the rates of cellular glucose and
oxygen consumption FG and FC . Whilst complex empirical
functional forms for these rates are available (Casciari
et al., 1992), here we assume that the rates follow simpler
first-order dynamics,

FG ¼
kNG in a normal cell;

kT G in a glycolytic cell;

(
ð7Þ

FC ¼ kCC, ð8Þ

where G and C denote the extracellular concentrations of
glucose and oxygen, respectively, and kT4kN . Note that
we assume that tumour cells do not significantly alter their
rate of oxygen consumption during carcinogenesis, con-
sistent with experimental observations (Ramanathan et al.,
2005).
We non-dimensionalize Eqs. (5)–(8), to reduce the size of

the parameter space. Let GX and CX denote the normal
extracellular concentrations of glucose and oxygen, and
suppose that under normal conditions, normal cells rely on
aerobic respiration alone to produce energy. Then kCCX ¼

6kNGX and

fg ¼
g in a normal cell;

kg in a glycolytic cell;

(
ð9Þ

fc ¼ c, ð10Þ

fa ¼ cþ nðfg � cÞ, ð11Þ

fh ¼ fg � c, ð12Þ

subject to the condition fgXc, where

g ¼
G

GX

; c ¼
C

CX

; fg ¼
FG

kNGX

; fc ¼
FC

kCCX

,

fa ¼
FA

nAkNGX

; fh ¼
FH

2kHkNGX

; n ¼
2

nA

,

k ¼
kT

kN

. ð13Þ

The non-dimensionalized model of cellular respiration
relies on two parameters: n ¼ 1

18
and k. Given ranges

10�6 s�1okNo5� 10�4 s�1 and 10�5 s�1okTo10�3 s�1

(Kallinowski et al., 1988) for the rates of glucose
consumption by normal and tumour cells, respectively,
we assume 1oko103, i.e. that glycolytic cells may increase
their glucose consumption by up to three orders of
magnitude.

A.2. Metabolite models

Consider first the extracellular concentration of glucose,
G. Note that the glucose diffusion time-scale (�minutes) is
much shorter than the cellular proliferation time-scale
(�days), and thus we may assume that G is in diffusive
equilibrium at all times. Then we have

DGr
2G � FG ¼ 0, (14)

where DG is the (assumed constant) glucose diffusion
coefficient. We non-dimensionalize Eq. (14), taking cell
diameter as our length scale. Using (13),

d2
gr

2
xg� fg ¼ 0, (15)
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where x ¼ x=D and dg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DG=kND2

q
. Given DG ¼ 5�

10�6 cm2 s�1 (Groebe et al., 1994) and taking kN ¼

5� 10�5 s�1, we find dg ¼ 1:3� 102. In a spatially homo-
geneous system of normal cells, dg log 2 � 90 represents the
number of cells away from the basement membrane at
which the glucose concentration drops to half its normal
level. In a system of glycolytic cells, where glucose is consu-
med at a higher rate, this distance falls to dg log 2=

ffiffiffi
k
p

.
Eq. (15) is solved using a finite-difference approximation

giþ1;j þ gi�1;j þ gi;jþ1 þ gi;j�1 � ð4þ di;jÞgi;j ¼ 0, (16)

where gi;j refers to the glucose level of the i–jth automaton
element and di;j depends on the element’s occupancy

di;j ¼

0 in a vacant cell;

1=d2
g in a normal cell;

k=d2
g in a glycolytic cell:

8>><
>>: (17)

As boundary conditions, we assume that the glucose levels
are fixed at their normal levels at the basement membrane
(as the stroma is well-vascularized), zero flux at the edge
furthest from the membrane (as there are no sources or
sinks of glucose beyond this point), and periodic boundary
conditions at the other two edges. Using the notation of
Eq. (16), this may be written as

g0;j ¼ 1; gMþ1;j ¼ gM;j 8j ¼ 1; . . . ;N,

gi;0 ¼ gi;N ; gi;Nþ1 ¼ gi;1 8i ¼ 1; . . . ;M. ð18Þ

Eq. (16) holds 8i ¼ 1; . . . ;M and 8j ¼ 1; . . . ;N and is thus
representative of a system of M �N linear algebraic
equations in the unknown gi;j. The equilibrium glucose
field g ¼ ðgi;jÞ may then be found through simple matrix
inversion.

The oxygen distribution around the tumour is found
using the same method. In non-dimensional form we have

d2
cr

2
xc� fc ¼ 0, (19)

where dc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DC=kCD2

q
and DC is the oxygen diffusion

coefficient. Given kC ¼ 9:41� 10�2 s�1 (Casciari et al.,

1992) and DC ¼ 1:46� 10�5 cm2 s�1 (Nichols and Foster,
1994), we find dc ¼ 55dg. In stark contrast to glucose,

oxygen supply is very limited due to its small relative
diffusion rate, with areas of hypoxia developing within a
few cells of the basement membrane. Note that, in order
for the model to be well-defined, we require fgXc at each

cell, for which it is sufficient that gXc everywhere. This

holds if kpd2
g=d2

c � 700 and as such we restrict our

attention here to the parameter range 1okp500.
The equilibrium oxygen field c is found from Eq. (19)

using the same technique as for glucose. Having deter-
mined the glucose and oxygen fields, we know their rates of
consumption, fg and fc, for each individual cell. Then,
from Eq. (12), we may calculate the rate of cellular Hþ

production, fh. Unlike glucose and oxygen, Hþ ions do not
follow simple (Fickian) diffusion, as this would lead to
charge separation. Rather, they diffuse in association with
mobile buffering species such as bicarbonate, phosphate, or
amino acids (Schornack and Gillies, 2003). However, their
movement may be approximated by simple diffusion, with
appropriate modification of the diffusion coefficient. Thus
the Hþ distribution, h, is defined by

r2
xhþ fh ¼ 0, (20)

where h ¼ ðH �HX Þ=H0 and H0 ¼ 2kHkNGXD2=DH .
Here H is the extracellular concentration of Hþ, HX �

pH7:25 its normal level and DH its effective diffusion
coefficient. This specific form for the scaling factor H0 is
chosen to remove the diffusion coefficient from Eq. (20).
Given parameter values DH ¼ 1:08� 10�5 cm2 s�1 and a
maximum tumour acid production rate of 10�4 mMs�1

(Patel et al., 2001), and assuming this is equivalent to our
maximum non-dimensionalized rate of fh ¼ 500, we may
estimate H0 ¼ 1:1� 10�7 mM.
Eq. (20) is solved as before using a finite-difference

approximation, with the difference in this case that h ¼ 0 is
the normal level at the basement membrane.
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