SI Text

Solution of the Age-Structured Model with Uniform Age Distribution. In the agestructured model, if the initial distribution of ages is uniform, given by $n_{i}(a)=\hat{n}_{i} / t_{i}$, then the stem cell population is given by

$$
\begin{equation*}
N_{0}(t, a)=\frac{\hat{n}_{0}}{t_{0}}\left(2 a_{3}\right)^{n} \quad \text { for }(n-1) t_{0}<t-a \leq n t_{0} . \tag{34}
\end{equation*}
$$

If the cell cycle times satisfy $t_{1} / t_{0}=p / q$, where p and q are integers, the general solution for the semidifferentiated cells, at the points where $t-a=q n t_{1}$, is given by

$$
\begin{align*}
& N_{1}\left(a+q n t_{1}, a\right)=\frac{\hat{n}_{1}}{t_{1}}\left(2 b_{3}\right)^{q n} \\
& \quad+\frac{2 a_{2} \hat{n}_{0} / t_{0}}{\left(2 a_{3}\right)^{p}-\left(2 b_{3}\right)^{q}}\left(\left(2 a_{3}\right)^{p-1}+\sum_{k=1}^{q-1}\left(2 b_{3}\right)^{q-k}\left(2 a_{3}\right)^{\lfloor k p / q\rfloor}\right)\left[\left(2 a_{3}\right)^{p n}-\left(2 b_{3}\right)^{q n}\right], \tag{35}
\end{align*}
$$

where $\lfloor\cdot\rfloor$ denotes integer part.

Relating the Age-Structured and Continuous Models. We relate the age-structured and continuous models for the case in which all cells start with age zero, and the age-structured solution is given by $6-\mathbf{8}$. To find the total stem, semidifferentiated and fully differentiated cell populations at a given time in the age-structured model we integrate the age distribution function over all possible ages. For the stem cell population, integrating $\mathbf{6}$ gives

$$
\begin{align*}
\hat{N}_{0}(t) & =\hat{n}_{0} \int_{0}^{t_{0}} \sum_{n=0}^{\infty} \delta\left(t-n t_{0}-a\right)\left(2 a_{3}\right)^{n} \mathrm{~d} a \\
& =\hat{n}_{0} \sum_{n=0}^{\infty}\left(2 a_{3}\right)^{n}\left[\int_{0}^{t_{0}} \delta\left(t-n t_{0}-a\right) \mathrm{d} a\right] \\
& =\hat{n}_{0}\left(2 a_{3}\right)^{\left\lfloor t / t_{0}\right\rfloor} . \tag{36}
\end{align*}
$$

The last equality follows since the only δ-function which gives a non-zero integral is that satisfying $n t_{0}<t<(n+1) t_{0}$, which picks out the single value $n=\left\lfloor t / t_{0}\right\rfloor$ from the sum. If t is much greater than t_{0}, so that $\left\lfloor t / t_{0}\right\rfloor \approx t / t_{0}$, we have

$$
\begin{equation*}
\hat{N}_{0}(t) \approx \hat{n}_{0}\left(2 a_{3}\right)^{t / t_{0}} . \tag{37}
\end{equation*}
$$

For the semidifferentiated cell population, integrating $\mathbf{7}$ gives

$$
\begin{align*}
\hat{N}_{1}(t)=\hat{n}_{1} \sum_{m=0}^{\infty}\left(2 b_{3}\right)^{m} & {\left[\int_{0}^{t_{1}} \delta\left(t-a-m t_{1}\right) \mathrm{d} a\right] } \\
& +2 a_{2} \hat{n}_{0} \sum_{n=1}^{\infty} \sum_{m=0}^{\infty}\left(2 a_{3}\right)^{n-1}\left(2 b_{3}\right)^{m}\left[\int_{0}^{t_{1}} \delta\left(t-a-n t_{0}-m t_{1}\right) \mathrm{d} a\right] . \tag{38}
\end{align*}
$$

The integral of the first δ-function picks out the value $m=\left\lfloor t / t_{1}\right\rfloor$, while that of the second picks out the value $m=\left\lfloor t / t_{1}-n t_{0} / t_{1}\right\rfloor$, giving

$$
\begin{equation*}
\hat{N}_{1}(t)=\hat{n}_{1}\left(2 b_{3}\right)^{\left\lfloor t / t_{1}\right\rfloor}+2 a_{2} \hat{n}_{0} \sum_{n=1}^{\left\lfloor t / t_{0}\right\rfloor}\left(2 a_{3}\right)^{n-1}\left(2 b_{3}\right)^{\left\lfloor t / t_{1}-n t_{0} / t_{1}\right\rfloor} \tag{39}
\end{equation*}
$$

The sum can be evaluated exactly at the times $t=r t_{0} t_{1}$, where r, t_{0}, and t_{1} are integers, giving the approximation

$$
\begin{equation*}
\hat{N}_{1}(t) \approx \hat{A}\left(2 a_{3}\right)^{t / t_{0}}+\left(\hat{n}_{1}-\hat{A}\right)\left(2 b_{3}\right)^{t / t_{1}} \tag{40}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{A}=\frac{2 a_{2} \hat{n}_{0} f_{1}}{\left(2 a_{3}\right)^{t_{1}}-\left(2 b_{3}\right)^{t_{0}}}, \quad \text { and } \quad f_{1}=\sum_{n=1}^{t_{1}}\left(2 a_{3}\right)^{t_{1}-n}\left(2 b_{3}\right)^{\left\lfloor(n-1) t_{0} / t_{1}\right\rfloor} \tag{41}
\end{equation*}
$$

For the fully differentiated cell population, integrating $\mathbf{8}$ gives

$$
\begin{align*}
& \hat{N}_{2}(t)=\hat{n}_{2} \sum_{p=0}^{\infty}(1-c)^{p}\left[\int_{0}^{t_{2}} \delta\left(t-a-p t_{2}\right) \mathrm{d} a\right] \\
& +2 b_{2} \hat{n}_{1} \sum_{m=1}^{\infty} \sum_{p=0}^{\infty}\left(2 b_{3}\right)^{m-1}(1-c)^{p}\left[\int_{0}^{t_{2}} \delta\left(t-a-m t_{1}-p t_{2}\right) \mathrm{d} a\right] \\
& +2 a_{2} \hat{n}_{0}\left(2 b_{2}\right) \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sum_{p=0}^{\infty}\left(2 a_{3}\right)^{n-1}\left(2 b_{3}\right)^{m-1}(1-c)^{p}\left[\int_{0}^{t_{2}} \delta\left(t-a-n t_{0}-m t_{1}-p t_{2}\right) \mathrm{d} a\right] \tag{42}
\end{align*}
$$

The first δ-function picks out the value $p=\left\lfloor t / t_{2}\right\rfloor$, the second picks out the value $p=$ $\left\lfloor t / t_{2}-m t_{1} / t_{2}\right\rfloor$, and the third picks out the value $p=\left\lfloor t / t_{2}-n t_{0} / t_{2}-m t_{1} / t_{2}\right\rfloor$, giving

$$
\begin{align*}
\hat{N}_{2}(t)= & \hat{n}_{2}(1-c)^{\left\lfloor t / t_{2}\right\rfloor}+2 b_{2} \hat{n}_{1} \sum_{m=1}^{\left\lfloor t / t_{1}\right\rfloor}\left(2 b_{3}\right)^{m-1}(1-c)^{\left\lfloor t / t_{2}-m t_{1} / t_{2}\right\rfloor} \\
& +2 a_{2} \hat{n}_{0}\left(2 b_{2}\right) \sum_{n=1}^{\left\lfloor t / t_{0}-t_{1} / t_{0}\right\rfloor} \sum_{m=1}^{\left\lfloor t / t_{1}-n t_{0} / t_{1}\right\rfloor}\left(2 a_{3}\right)^{n-1}\left(2 b_{3}\right)^{m-1}(1-c)^{\left\lfloor t / t_{2}-n t_{0} / t_{2}-m t_{1} / t_{2}\right\rfloor} . \tag{43}
\end{align*}
$$

Estimating $t / t_{0}-t_{1} / t_{0} \approx t / t_{0}$ for large times in 43, and choosing $t_{2}=t_{1}$, the resulting sums can again be evaluated exactly at times $t=r t_{0} t_{1}$, where r, t_{0}, and t_{1} are integers, giving the approximation

$$
\begin{equation*}
\hat{N}_{2}(t) \approx \hat{B}\left(2 a_{3}\right)^{t / t_{0}}+\hat{C}\left(2 b_{3}\right)^{t / t_{1}}+\left(\hat{n}_{2}-\hat{B}-\hat{C}\right)(1-c)^{t / t_{2}} \tag{44}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{B}=\frac{2 a_{2} \hat{n}_{0}\left(2 b_{2}\right)}{2 b_{3}-(1-c)}\left(\frac{f_{1}}{\left(2 a_{3}\right)^{t_{1}}-\left(2 b_{3}\right)^{t_{0}}}-\frac{f_{2}}{\left(2 a_{3}\right)^{t_{1}}-(1-c)^{t_{0}}}\right), \quad \hat{C}=\frac{2 b_{2}\left(\hat{n}_{1}-\hat{A}\right)}{2 b_{3}-(1-c)} \tag{45}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{2}=\sum_{n=1}^{t_{1}}\left(2 a_{3}\right)^{t_{1}-n}(1-c)^{\left\lfloor(n-1) t_{0} / t_{1}\right\rfloor} . \tag{46}
\end{equation*}
$$

