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Abstract

Morphogen gradients are well known to play several important roles in development; however the mech-
anisms underlying the formation and maintenance of these gradients are often not well understood. In this
work, we investigate whether the presence of a secondary morphogen can increase the robustness of the
primary morphogen gradient to perturbation, thereby providing a more stable mechanism for development.
We base our model around the interactions of Fibroblast Growth Factor 8 and retinoic acid, which have
been shown to act as morphogens in many developmental systems. In particular, we investigate the forma-
tion of opposing gradients of these morphogens along the antero-posterior axis of vertebrate embryos,
thereby controlling temporal and spatial aspects of axis segmentation and neuronal differentiation.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Morphogens are secreted signalling molecules that provide spatial information during embry-
onic development, typically via concentration gradients. Their role is to organise fields of cells;
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determining cell arrangement and/or fate via differing responses to threshold levels of morphogen
concentration [1,2]. As such, this type of patterning provides a highly efficient mechanism for cre-
ating complex patterns in the embryo and there are numerous examples of the roles of morpho-
gens in developmental systems. For example: neuronal subtype specification in the developing
central nervous system (CNS) is controlled by a gradient of Sonic Hedgehog (Shh) [3]; formation
of the dorsal pattern in Drosophila is controlled by gradients of Screw (Scw) and Decapentaplegic
(Dpp) [4]; antero-posterior (AP) patterning in the chick limb is controlled by a gradient of Shh
arising from a polarising region at the posterior edge of the limb bud [5].

Typical morphogen gradient models assume that a morphogen produced at a localised source
diffuses across a target field to set up an extracellular gradient. Cells then determine their position
within the field by interpretation of the morphogen gradient, activating specific programs of dif-
ferentiation at discrete morphogen thresholds [5]. A lesser cited way in which morphogens provide
information for differentiation is via the action of a gradient which travels across the target field
over time [6,7]. In these models, there is ordinarily a single morphogen threshold and progression
of the threshold across the field acts to control the time of onset of differentiation rather than to
select the program of differentiation: it is generally assumed that the program itself is already
decided. In addition the picture has been complicated by the discovery that in some settings dif-
ferent morphogens act in combination with one another to set thresholds for development: for
example, recent studies have shown that some developmental systems require two morphogens
which mutually inhibit each other [8].

To understand the mechanisms underlying the formation and maintenance of any gradient we
should ideally know the exact identity of the morphogens involved, rates of morphogen release,
diffusion and decay, etc. For most morphogens, these aspects are not very well understood and
this is where mathematical modelling can play an important role. It may be used to investigate
the feedback mechanisms underlying gradient formation, for example, how the activity of a pri-
mary morphogen may be partly controlled by the action of secondary morphogens, or the range
of influence of a gradient. In addition, mathematical modelling can be used to make predictions
and experimentally testable hypotheses which further understanding in the area.

However, as important as the study of the above mechanisms, is the study of gradient robust-
ness: biological systems are subject to stochastic effects from a variety of sources. There are many
ways to define ‘robustness’ but one which encompasses a wide range of meanings is ‘a measure of
how sensitive the output of a system is to perturbation’. In the context of a mathematical model,
perturbation generally means variation in model parameters or initial conditions. We note that
parameters may be changed in a ‘step-wise manner’, that is, a parameter value may be changed
from one value to another between different simulations, or in a ‘noisy’ manner, that is, a param-
eter may make small, random departures from its chosen value at each time step of a particular
simulation. The former may be valid when considering, for example, the effect of temperature
change on a system [9] – this may affect production and decay rates. On the other hand, if only
one or two gene copies are responsible for mRNA transcription in a system, there is bound to be
variability in this rate from one time interval to another – this is where the latter line of investi-
gation becomes important.

There has been much theoretical and experimental investigation of morphogen gradients (see,
for theoretical models, [10,11]), including the mechanisms via which a robust gradient may be
achieved [9,12,13]. In each case static morphogen gradients are studied, and robustness is defined
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as the ability of the system to adjust to changes in parameter values, such that the position of a
threshold in morphogen concentration remains virtually unaltered. Bollenbach and co-workers
show that robustness of a single morphogen gradient may arise as a result morphogen transport
via a series of transcytotic events [12], whilst Houchmandzadeh and co-workers and Aegerter-
Wilmsen and co-workers consider the addition of a secondary morphogen in order to generate
a robust response to domain scaling [9,13]. One other study investigates stationary gradients of
Bicoid in the Drosophila embryo; postulating the existence of a secondary morphogen to ensure
robust activation of downstream genes such as hunchback [14].

Development is a precise process, yet all biochemical processes are prone to variation: our
hypothesis is that the addition of secondary morphogens could provide a more stable mechanism
for the formation of travelling morphogen gradients. Theoretical investigation of a system consist-
ing of two negatively regulating morphogens permits us to address this hypothesis and investigate
whether this process leads to more robustly controlled travelling gradients.

1.1. Aims and outline

In this article we will be interested in a scenario in which the interactions of two negatively reg-
ulating morphogens lead to gradients which travel across a developmental field, activating, as they
travel, a program of further differentiation. We will base our study on the interactions of Fibro-
blast Growth Factor 8 (FGF8) and retinoic acid (RA) seen to occur along the antero-posterior
(AP) axis of vertebrate embryos: the expression gradients formed have been shown to be impor-
tant in segmentation of the vertebrate axis and also in neuronal differentiation [8,15]. We begin by
outlining our context for investigation in more detail: highlighting the salient factors leading to
the formation of gradients in FGF8 and RA along the AP axis and their role in development.
We then construct a general model which can be used to investigate the system, presenting both
analytical results and numerical simulations. Before carrying out extensive analysis of this system,
we consider the case in which the secondary morphogen is removed: this case is much easier to
investigate and provides important insight into the general model. Finally we discuss our results,
avenues for future exploration and the implications for such mechanisms in development.
2. The developmental context

In this article, the specific developmental scenario which we will model is the interplay of two
opposing morphogens, FGF8 and RA, involved in the progressive maturation of the vertebrate em-
bryo along its AP axis [8,15]. Although RA and FGF8 have long since been shown to act as morpho-
gens in many different developmental contexts [16–23] it is only recent studies that have shown that
opposing gradients of RA and FGF8 travelling down the embryonic AP axis are essential for seg-
mentation of the vertebrate AP axis into somites and for coordinated neuronal differentiation and
ventral patterning [6,24–26]. It is this phenomenon in which we will be interested in this article.

Somites, the precursors of the vertebrae, ribs and associated muscles of the trunk, are derived
from two parallel bands of tissue known as the pre-somitic mesoderm (PSM) that lie on either side
of the midline of the embryo. At regular time intervals (every 90 min in the chick [27]), a group of
cells at the anterior end of the PSM undergo changes in their adhesive and migratory properties
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and coalesce to form an epithelial block of cells known as a somite [28]. Somites form in strict AP
sequence [29–31] and this budding of cells from the anterior part of the PSM compensates for the
addition of cells at the posterior end of the PSM as the body axis lengthens. In this way, the PSM
travels down the AP axis, remaining approximately constant in length throughout the process of
segmentation, and a wave of cell determination appears to sweep along the AP axis behind the
PSM leaving somites in its wake [32,33].

The most commonly accepted mechanism for somitogenesis is the ‘Clock and Wavefront’ mod-
el, first postulated by Cooke and Zeeman [34]. Recent experimental observations have shown that
FGF8 provides a likely candidate for the wavefront [6], and there is wide evidence for the segmen-
tation clock [35]. With the discovery of these factors, Pourquié and co-workers have proposed a
revised version of the ‘Clock and Wavefront’ model [6,36,37]. They hypothesise that there is some
interaction between the wavefront of FGF8 and the segmentation clock in the PSM that acts to
gate cells into potential somites. FGF8 is expressed at a high level in the posterior PSM, and the
gradient of FGF8 regresses along the AP axis as the embryo develops, so that cells gradually go
from regions of high to low FGF8 signalling. For a cell at a particular point, they assume that
competence to segment will only be achieved once the FGF8 gradient has regressed far enough
along the AP axis and FGF8 signalling has decreased below a certain threshold.

It is postulated that the FGF8 gradient arises via a feedback loop with RA: FGF8 may either
down-regulate RA production via repression of the enzyme Raldh2, or it may increase the rate of
RA decay; in turn RA may either down-regulate FGF8 production by restricting fgf8 mRNA
transcription or it may accelerate the rate of decay via the MPK3 pathway [24].

2.1. Objectives for the model

We will be interested in constructing a model consisting of non-linear, coupled partial differen-
tial equations: one equation describing the dynamics of FGF8 and another the dynamics of RA.
We will explore the system in one spatial dimension, along the AP axis, and look for travelling
wave solutions, which correspond to gradients of FGF8 and RA moving along the AP axis. In
the scenario under consideration, FGF8 expression is highest in the posterior end of the embryo
(denoted here by letting x!1) and this gradient regresses along the axis in a posterior direction
as development proceeds (i.e., the interface between high and low FGF8 signalling travels in a
positive x direction).

Before beginning our investigation, we outline a definition of robustness for this system. First, we
note that in order for the model to be able to exhibit travelling waves of expression which are robust
to small variation in FGF8/RA concentrations ahead and behind the travelling wavefront, we need
to restrict ourselves to waves which connect steady states of the form (f*,0) and (0,a*) which are both
linearly stable. Our reasoning for this goes as follows: supposing we have a scenario in which a trav-
elling wave connects a state (f*,0), which is linearly unstable, to a state (0,a*), which is linearly stable.
It is possible that small perturbations in either f or a could be applied to the system due to slight
changes in morphogen production, decay or other, possibly external, factors. If they occur in the re-
gion of the axis not yet reached by the wavefront (i.e., as x!1) then these perturbations will grow
since the state is unstable, and it is possible that the gradient could be destroyed. Hence in this work,
we will consider waves of the above form and explore the effects upon these travelling waves of vary-
ing the type and strength of interactions between FGF8 and RA.
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Second, we would like to explore the response of the system to ‘step-wise’ parameter changes
and we will characterise this response in terms of the speed (and shape) of the travelling wave-
front. Our primary interest will be to explore the range of parameters for which the wavefront
travels in a positive x direction (for the reasons described earlier); an increase in robustness would
be indicated by a widening of this parameter space. However, the actual speed of wavefront pro-
gression is also important. We will also infer from our results which types of morphogen interac-
tion lead to a more tightly controlled wave speed.
3. Mathematical model

As discussed in the opening sections, we will investigate the negative feedback interactions be-
tween two morphogens, FGF8 and RA, which lead them to form gradients in their expression
levels which travel along the AP axis of vertebrate embryos. The ability of cells to differentiate
is controlled by the time at which FGF8 levels reach some critical threshold: in this way, the pro-
gram of development is controlled temporally and spatially by the morphogen. The type and
strength of interactions between the morphogens will control the shape of the gradients and
the rate at which they travel along the AP axis.

We consider an infinite, one-dimensional domain, the x axis (corresponding to the AP axis with
the tail of the embryo lying towards x =1), and we will assume that the concentrations of the
morphogens are bounded as x! ±1. Our two morphogens will be labelled F and A (after
FG8 and RA) and we suppose that their interactions are limited to those depicted in Fig. 1
(although all such interactions may not necessarily occur). The most general mathematical model
describing this system can be written as
Fig. 1
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. A graphical representation of the interactions taking place between morphogens F and A. Morphogen F
goes self-regulatory production, which may be suppressed by the presence of A, and linear decay, which may be
ented by the presence of A. Similarly for morphogen A. Actions of morphogen F are represented in blue, and
of A in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
n of this article.)
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where F and A represent, respectively, concentrations of morphogen F and A. pF(F,A), pA(F,A)
represent production of F and A, respectively, and dF(F,A), dA(F,A) decay of F and A, respec-
tively. DF and DA are the respective diffusion rates of F and A and we assume, for the sake of
simplicity, that spreading of the morphogens takes places solely by diffusion [38].

In order for the system to display the behaviour shown in Fig. 1 these functions must have the
following properties:
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The first and fourth restrictions for F ensure that A is able to either down-regulate F production
or upregulate F decay (or both), the second ensures that F is self-activating and the third simply
that the rate of F decay increases with increasing F. The second set of requirements ensures similar
behaviour for A. In order to have travelling waves which are robust to external perturbations, we
also require the system to have a set of spatially uniform steady states which includes at least one
stable state each of the form (F,A) = (F*,0), (0,A*).

In order to satisfy these requirements we choose to investigate the system:
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where the ni (i = 1, . . . , 6) are chosen to be integers greater than unity and the remaining
parameters are positive constants. Here F production is self-regulatory, with maximal produc-
tion rate rF, and the rate of F production is decreased by the presence of A. In the absence of
A, F decays linearly but the decay rate is increased by the presence of A, up to a maximal rate
of gF + sF. Similar statements are true for A. We also note that this model allows us to con-
sider the effects of removing either morphogen: in Eq. (3) when we remove A the first fraction
involving A becomes unity and the second becomes zero. Similarly for Eq. (4) and removing
F.

We note that, in this model, we are implicitly assuming that both morphogens are present in
high enough concentrations to average out the fluctuations in production/decay rates which arise
on the individual molecule level.
3.1. Non-dimensionalisation

The system given by Eqs. (3) and (4) can be non-dimensionalised to give
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Usually [T] is chosen to eliminate one of rf or ra but since we wish to compare the effects of F upon
A and vice versa we leave the choice of [T] open.

3.2. Numerical simulation

The system described by Eqs. (5) and (6) must be solved numerically and the results of numer-
ical simulation for a particular set of parameter values are shown in Fig. 2. The system is solved
using the MATLAB solver pdepe with the infinite domain approximated by a finite domain with
zero flux boundary conditions for both morphogens. The initial conditions are such that F is in
a non-zero, stable steady state for n < 0 and zero on the remainder of the domain, and vice versa
for A. For the set of parameter values chosen, the waves move in a positive direction over time,
indicating a regressing gradient of morphogen F and an advancing gradient of A. After an initial
transient period, the wavefront assumes constant shape and moves along the axis with constant
speed. In a biological context, this could be equivalent to conferring the ability to differentiate,
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or initiating a developmental program at a constant rate upon cells which are evenly distributed
along some developmental axis.

We are predominantly interested in how the presence of a secondary morphogen, which
here we will choose to be A, influences the shape and speed of a travelling wave of primary
morphogen (here F). The system described above is complex, partly since it is designed to cap-
ture both possibilities for regulation: suppression of morphogen production and increase in
morphogen decay. It is therefore difficult to gain much insight into the model without the sup-
port of insight gained from the case in which we have a single morphogen, and so it is to this
case we turn first.
4. The case in which A is removed

The purpose here is to investigate the ‘knockout’ case in which the secondary morphogen, A, is
removed. This is a simplified form of the system, which is easier to tackle analytically, and which
will give important insights into the more general case. The resulting non-dimensional equation
that must be investigated is
of
os
¼ rf f n1

1þ f n1
� gf fþ D

o2f

on2
: ð10Þ
The non-zero steady states satisfy the equation
sðf ; bf ; n1Þ ¼ bf ð1þ f n1Þ � f n1�1 ¼ 0; ð11Þ

where bf = gf/rf. Depending on the value of bf there will be one or three steady states, f ¼ 0; f ��,
and we can determine the critical value of bf by a graphical argument (see Fig. 3). First we calcu-
late the points at which the derivative of s(f;bf,n1) = 0: these can be found to be
f ¼ 0 for n1 ¼ 3; 4; . . . and f ¼ �f ¼ n1 � 1

bf n1

for n1 ¼ 2; 3; . . . ð12Þ
Considering the form of the null cline for f > 0 (see Fig. 3) we see that in order for there to be two
non-zero steady states we must have sð�f ; bf ; n1Þ < 0 which occurs when
bf < bcritu
f ¼ ðn1 � 1Þ

n1

ðn1�1Þ=n1

: ð13Þ
We can also determine the linear stability of these steady states graphically and we see that f = 0 is
stable whilst (when they exist) f �� is unstable and f �þ is stable.

4.1. Travelling waves

Using the standard travelling wave ansatz z = n � cs, Eq. (10) becomes
Df 00 þ cf 0 þ rf f n1

1þ f n1
� gf f ¼ 0; ð14Þ
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where 0 = d/dz. Letting f 0 = g we can determine the stabilities of the three steady states in the (f, f 0)
phase plane: (0,0) is a saddle point; ðf ��; 0Þ is a stable node or spiral; ðf �þ; 0Þ is a saddle point. In
this case, there are three possibilities for travelling waves: the first connects (0,0) to ðf ��; 0Þ; the
second connects ðf �þ; 0Þ to ðf ��; 0Þ; and the third connects (0,0) to ðf �þ; 0Þ. For reasons discussed
earlier, we will be interested in the third case, for which (by continuity arguments [39,40]) there
is a unique wave speed, c.

Specifying f ð1Þ ¼ f �þ and f(�1) = 0, so that F is at its upper steady state towards the tail of
the embryo, we can multiply Eq. (14) by f 0 and integrate with respect to z to obtain the following
expression for the wave speed:
c ¼ �
Z f �þ

0

rf f n1

1þ f n1
� gf f

� �
df

Z 1

�1
ðf 0Þ2dz

�
: ð15Þ
Hence the sign of the wave speed is determined by the sign of the numerator integral of Eq. (15),
which we will denote as I = I(bf,n1). For a regressing gradient of F along the axis, as in Fig. 2, we
require c > 0: whether this actually occurs or not is dependent on the parameter bf. Fig. 4 shows
how the wave speed depends on bf and n1. As bf increases (so that the decay rate increases relative
to the maximal production rate) the wave is more likely to travel in a negative direction, whilst
increasing the Hill function coefficient is more likely to make the wave travel in a positive direc-
tion. The latter suggests that a more defined ‘on–off switch’ of F production and a smaller mor-
phogen decay rate relative to production rate are more likely to force the wave to travel in a
positive direction. These results will be investigated more thoroughly in the following sections.

For each value of n1 there will be a corresponding critical value of bf such that I = 0: this can be
seen by considering the f null cline (see Fig. 3 and consider the changes in the null cline as bf

changes). The critical value of bf may be determined analytically, but apart from a couple of lim-
iting cases (specifically n1 = 2 and n1!1) the integrals are tedious to calculate (being composed
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of Hypergeometric functions). In the next couple of sections we investigate these limiting cases
before turning our attention to numerical calculation of the remainder of the cases.

4.1.1. The case in which n1 = 2
In this case, we have
of
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¼ rf f 2

1þ f 2
� gf fþ D

o2f

on2
; ð16Þ
which, for bf < 1/2, has spatially uniform steady states given by f ¼ 0; f �� where
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Evaluating I(bf, 2), we see that the wave speed will be positive so long as the following constraint is
satisfied by bf:
Cðbf Þ ¼
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4bf
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1� 4b2
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The function C(bf) is plotted in Fig. 5 and the critical value of bf for which the wave speed is equal
to zero can be estimated numerically to be bcritl

f � 0:4598. Since the two non-zero steady states, f ��,
only exist for bf < 1/2 we note that there is only a very small region of bf for which the wave travels
in a positive direction. This suggests that a mechanism for gradient formation which obeys the
kinetics of Eq. (16), i.e., one in which there is a single morphogen which has Hill function produc-
tion kinetics with Hill coefficient equal to two, would not be robust to external perturbations and
hence would be likely to lead to developmental anomalies. For example, small changes in gf or rf
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could easily reverse the direction in which the wave travels, thereby disturbing the normal pattern
of cell differentiation.

4.1.2. The case in which n1!1
Letting n1!1 the production term for f tends towards a Heaviside function centred at f = 1.

In this case, the non-zero steady state exists for bf < bcritu
f ¼ 1 and
sign½Iðbf ;1Þ� ¼ �sign
r2

f

2gf
gf ð1� 2bf Þ

" #
; ð19Þ
so that the wave moves in a positive direction for bf > bcritl
f ¼ 1=2. It is interesting to note that the

region of bf-space for which the wave moves in a positive direction is significantly greater than
that for n1 = 2. This suggests that increasing n1 increases the robustness of the model, in the sense
that it widens the parameter space over which the wave travels in a positive x direction.

4.1.3. The remaining cases
The remaining cases cannot easily be dealt with analytically and so we use numerical techniques

to determine the lower bound, bcritl
f , for which the wave moves in a positive direction. This critical

value is found by numerically determining f �þ and I(bf,n1): a bisection method is employed to
determine where the sign of I(bf,n1) changes.

The results of Fig. 6 show that as n1, the Hill coefficient controlling F production, increases
the range of bf for which the wave travels in a positive direction expands to over ten times its
value for n1 = 2. Fig. 6(a) shows the window for small values of n1 whilst Fig. 6(b) demon-
strates the extent to which the window expands as n1 becomes very large. These results show
that in order to achieve a robust mechanism for gradient formation, in the sense described in
Section 4.1.2, n1 should be large. In the following, we will show that the presence of a second-
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ary morphogen, A, can increase this window of bf parameter space, thereby relaxing the con-
dition that n1 be so large.

4.2. Numerical solution

Numerical solutions of the system are shown in Fig. 7 for two sets of parameter values. In
both cases, the wave travels in a positive direction since the parameters are chosen within the
window ðbcritl

f ; bcritu
f Þ. In general, numerical investigation shows that increasing n1 increases the

steady state level of F, f �þ, increases the slope of the wave and correspondingly decreases the
wave speed. These changes in steady state and wave speed as a function of bf are shown in
Fig. 8(a). The opposite effects are seen to occur with changes in gf and this is demonstrated
in Fig. 8(b).
5. The full model

Armed with some insight into the problem we now return to the full model outlined in Sec-
tion 3. As before, we investigate linear stability and the possibilities for travelling wavefronts,
before using numerical techniques to determine the effects of a secondary morphogen. Before
starting, we note that in Fig. 2 (which shows simulations of the full model) the parameters are
such that bf = 0.25 which puts bf < bcritl

f , yet the wave still moves in a positive direction. This
already shows that the addition of a secondary morphogen widens the parameter space for
which we obtain waves travelling in a positive direction, thereby increasing the robustness
of the system.
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5.1. Spatially uniform steady states

For the general case specified by Eqs. (5) and (6) the null clines for f are given by
rf k
n2
f f n1ðbn3

f þ an3Þ � ½gf ðbn3
f þ an3Þ þ sf an3 �ð1þ f n1Þðkn2

f þ an2Þf ¼ 0: ð20Þ
Similarly, the null clines for a are given by
rak
n5
a an4ðbn6

a þ f n6Þ � ½gaðbn6
a þ f n6Þ þ saf n6 �ð1þ an4Þðkn5

a þ f n5Þa ¼ 0: ð21Þ

As in the ‘knockout’ case, similar conditions are required for steady states of the form (f *,0) and
(0,a*):
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bf < bcritu
f ¼ ðn1 � 1Þ

n1

ðn1�1Þ=n1

and ba < bcritu
a ¼ ðn4 � 1Þ

n4

ðn4�1Þ=n4

; ð22Þ
where bf = gf/rf and ba = ga/ra. In all cases, we have the steady state (f,a) = (0,0) and when the
conditions above are satisfied we also have four further steady states: ðf ; aÞ ¼ ðf ��; 0Þ and
ðf ; aÞ ¼ ð0; a��Þ.

Under the parameter conditions outlined above, there are two general possibilities for the phase
plane, and null clines for these cases are plotted in Fig. 9, along with the velocity field and the
trajectories. Case I, depicted in Fig. 9(a), shows the scenario in which there are no steady states
with both F and A non-zero, whilst Case II, depicted in Fig. 9(b), shows the scenario in which
there are two steady states with both F and A non-zero. In general, it is not possible to calculate
these steady states explicitly, but after numerical examination of the phase plane we conclude that
the parameters kf and ka play the greatest role in determining whether Case I or Case II arises: in
Fig. 9, these are the only parameters which are changed between the two plots. For simplicity, we
shall only consider Case I.

5.2. Linear stability

We linearise the system about the fixed points so that stability is given by the eigenvalues of the
matrix Mls evaluated at the steady states, where
Mls ¼
opf

of �
odf

of
opa
of �

oda
of

opf

oa �
odf

oa
opa
oa �

oda
oa

0
@

1
A; ð23Þ
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and the functions p(.) and d(.) are the non-dimensionalised production and decay terms. The linear
stability of the five fixed points given above can be calculated as follows: (f,a) = (0,0) is a stable
node; ðf ; aÞ ¼ ðf ��; 0Þ is a saddle point; ðf ; aÞ ¼ ðf �þ; 0Þ is a stable node; ðf ; aÞ ¼ ð0; a��Þ is a saddle
point; ðf ; aÞ ¼ ð0; a�þÞ is a stable node.

We can also determine the sign of the eigenvalues of the other two possible fixed points
(when they exist) by considering the manner in which the null clines intersect. In doing so
we see that: ðf ; aÞ ¼ ðf y�; ay�Þ is an unstable point; ðf ; aÞ ¼ ðf yþ; ayþÞ is a saddle point. The
stability of these points is demonstrated in Fig. 9 using the velocity field and trajectory
plots.

5.3. Travelling waves

As mentioned above, we are interested in travelling waves which connect two stable steady
states, one with high f and low a and the other with low f and high a: here these are the points
ðf �þ; 0Þ and ð0; a�þÞ. We use the travelling wave ansatz z = n � cs to transform Eqs. (5) and (6)
to the following system of ordinary differential equations (ODEs):
�cf 0 ¼ pf ðf ; aÞ � df ðf ; aÞ þ Df 00; ð24Þ

�ca0 ¼ paðf ; aÞ � daðf ; aÞ þ a00; ð25Þ

where 0 = d/dz. This system can be converted to a first order system of ODEs by taking f 0 = g and
a 0 = b, and linear stability of each of the fixed points of the first order system can be determined
by finding the roots of the equation
k
c
D
þ k

� 	
�M21

h i
kðcþ kÞ �M43½ � �M23M41 ¼ 0; ð26Þ
where the coefficients Mij correspond to the entries of the matrix describing the first order ODE
system linearised about the fixed point:
M21 ¼
1

D
gf þ

sf an3

ðbn3
f þ an3Þ �

n1rf f n1�1

ð1þ f n1Þ2
kn2

f

ðkn2
f þ an2Þ

" #
; ð27Þ

M23 ¼
1

D

n2k
n2
f an2�1

ðkn2
f þ an2Þ2

f n1

ð1þ f n1Þ þ
n3sf b

n3
f an3�1f

ðbn3
f þ an3Þ2

" #
; ð28Þ

M41 ¼
n5k

n5
a f n5�1

ðkn5
a þ f n5Þ2

an4

ð1þ an4Þ þ
n6sab

n6
a f n6�1a

ðbn6
a þ f n6Þ2

" #
; ð29Þ

M43 ¼ ga þ
saf n6

ðbn6
a þ f n6Þ �

n4raan4�1

ð1þ an4Þ2
kn5

a

ðkn5
a þ f n5Þ

" #
: ð30Þ
When the steady state has either a or f (or both) equal to zero then M23M41 = 0 and Eq. (26) can
be solved to give the following solutions for k:
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k�21 ¼
1

2

�c
D
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

D2
þ 4M21

r" #
and k�43 ¼

1

2
�c�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4M43

ph i
: ð31Þ
Hence both ðf ; g; a; bÞ ¼ ðf �þ; 0; 0; 0Þ and ðf ; g; a; bÞ ¼ ð0; 0; a�þ; 0Þ have k�21; k
�
43 < 0 and

kþ21; k
þ
43 > 0, and it is possible that there exists a trajectory in (f,g,a,b) space connecting these

two steady states. Since all the eigenvalues for these steady states are purely real, whatever the
parameter values, we cannot establish from this analysis a minimum wave speed, only that the
gradients of both f and a will be monotonic in z.

As before, we can determine the sign of the wave speed by multiplying Eqs. (24) and (25) by f 0

and a 0, respectively, and integrating with respect to z. Considering the case in which
f ð�1Þ ¼ 0; f ð1Þ ¼ f �þ; að�1Þ ¼ 0; and að1Þ ¼ a�þ; ð32Þ
we see that c must satisfy the following:
c
Z 1

�1
ðf 0Þ2dzþ

Z f �þ

0

½pf ðf ; aÞ � df ðf ; aÞ�df ¼ 0; ð33Þ

c
Z 1

�1
ða0Þ2dz�

Z a�þ

0

½paðf ; aÞ � daðf ; aÞ�da ¼ 0: ð34Þ
Hence the c is positive (and the wave moves in a positive direction along the axis as s in-
creases) if
If ¼
Z f �þ

0

½pf ðf ; aÞ � df ðf ; aÞ�df < 0; ð35Þ
and vice versa for the integral, Ia, containing pa and da. First, we note that in the above equations,
f and a are not independent of each other, so in order to compute the value of either If or Ia, a
must be found as a function of f or vice versa. Second, we also note that the expressions together
form a ‘consistency condition’ for f, a, f 0 and a 0.

The first point above requires If to be computed along a certain curve which lies within the re-
gion of (f,a) space bounded by the lines f ¼ 0; f �þ and a ¼ 0; a�þ. Supposing for now that a is inde-
pendent of f then we can differentiate If to get
oIf

oa
¼
Z f �þ

0

opf

oa
� odf

oa

� �
df ; ð36Þ
which gives
oIf

oa
¼
Z f �þ

0

� n2k
n2
2 an2�1

kn2
f þ an2

rf f n1

1þ f n1
�

n3sf b
n3
f an3�1f

bn3
f þ an3

" #
df 6 0: ð37Þ
So we see immediately that if Ifja=0 < 0 (so that the wave travels in a positive direction in the
‘knockout’ case) then If < 0 when A is present. Supposing that Ifja=0 > 0, (so that the wave travels
in a negative direction in the ‘knockout’ case) then since oIf/oa 6 0, it is possible that the intro-
duction of A could cause the direction of travel to reverse. A necessary condition for this to occur
is that
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If ja¼a�þ
¼
Z f �þ

0

½pf ðf ; a�þÞ � df ðf ; a�þÞ�df < 0; ð38Þ
and from the ‘knockout’ case we see that this occurs for bnec
f > bcritl

f where
bnec
f ¼

gf þ sþf
rf k

þ
f

and kþf ¼
kn2

f

kn2
f þ ða�þÞ

n2
; sþf ¼

sf ða�þÞ
n3

bn3
f þ ða�þÞ

n3
: ð39Þ
In order to consider the integral along the actual path taken in (f,a) space, we use a similar argu-
ment: we write
If ¼
Z f �þ

0

rf k
a
f f n1

1þ f n1
� gf þ sa

f

� 	
f

� �
df ; ð40Þ
where
ka
f ¼

kn2
f

kn2
f þ an2

2 ð0; 1Þ and sa
f ¼

sf an3

bn3
f þ an3

2 ð0; sf Þ for a > 0: ð41Þ
Given the bounds on ka
f and sa

f we deduce that the effective value of bf is increased:
beff
f ¼

gf þ sa
f

rf k
a
f

> bf ¼
gf

rf
: ð42Þ
In other words, the addition of A increases the region of (rf,gf) space in which the wave travels in a
positive direction, by decreasing bcritl

f . We also note that both suppression of F production and aug-
mented F decay by A have the same effect. In other words, the presence of a secondary morphogen
increases the robustness of the primary morphogen gradient to changes in the system parameters, by
widening the parameter space in which the wavefront travels in a positive x direction.

Fig. 10 shows the actual change in wave speed as kf and sf are varied. Fig. 10(a) demonstrates a
decrease in wave speed as kf is increased: a result of the fact that increasing kf actually decreases
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the effect A has on the system. There are two things to note here: first, that for kf ’ 10 the wave begins
to travel in a negative direction; second, as kf decreases (so that the effect of a upon f production in-
creases) the variation in wave speed increases. Fig. 10(b) demonstrates the increase in wave speed as sf

is increased: this can be understood by reasoning that increased decay of F leads to an increase in the
rate of A production, so that A may advance along the axis more quickly. In this case, we see that the
change in wave speed as sf varies becomes less marked as sf becomes large. It should be noted that
although the plots in Fig. 10 are on different scales, our results suggest that a relatively high value
of sf is preferable to a relatively low value of kf. In other words, increasing the rate of primary mor-
phogen decay by the addition of a secondary morphogen seems to be a more robust mechanism than
decreasing the rate of primary morphogen production by the addition of a secondary morphogen.
6. Discussion

In this work, we have investigated possible mechanisms by which two morphogens may interact
in order to produce travelling wavefronts of expression along some developmental axis. The mod-
els constructed were based on a specific developmental context: the gradients of FGF8 and RA
which exist along the AP axis of vertebrate embryos, controlling axis segmentation and neuronal
differentiation. We started by constructing a generic model from basic experimental hypotheses,
which we investigated both analytically and numerically. In order to gain insight into the model,
and to compare with the case of a single morphogen, we first investigated a ‘knockout’ case in
which the secondary morphogen, taken to be A, was removed.

In the single morphogen case, we found a condition for the existence of travelling wave
solutions and a further condition which must be satisfied by the model parameters in order
to ensure that the wave of F regresses along the AP axis with time, i.e., that it moves in a
positive direction. We showed that if production of the morphogen is controlled by Hill-type
kinetics, a small Hill coefficient results in only a small window of parameter space that gives
rise to regressing waves of F. Increasing the Hill coefficient widens the parameter window,
eventually to over ten times its original value, thereby making the system more robust to
changes in parameter values, which may arise due to variations in morphogen production
or decay, or from external factors.

Upon returning to the dual morphogen case, we were able to use these results to show that the
presence of a secondary morphogen is able to widen the parameter space for which the waves re-
gress along the axis. In this way, the two-morphogen model increases the robustness of the model
to perturbation – it is more able to display the required behaviour as model parameters are varied.

Earlier in this work we described another aim: to elucidate the robustness of the wave speed to
changes in parameter values. Both suppression of primary morphogen production and increase in
primary morphogen decay by a secondary morphogen were show to increase the speed of the
wavefront. However, it seems that as the effect of a on f decay increases, the change in the speed
of the wavefront decreases, whilst increasing the effect of a of f production has the opposite effect.
Therefore we postulate that the presence of a secondary morphogen, acting to increase the decay
rate of a primary morphogen, will lead to a more robust mechanism for development, both in
terms of an increased parameter space for a positive wave speed and the change in wave speed
as the strength of the secondary morphogen increases.
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It is somewhat difficult to compare the results of our model to others which consider the role of
secondary morphogens [9,13]. The reasons for this are as follows: first, our gradients are not sta-
tionary, second we consider their formation on an infinite, rather than a bounded domain, and
third we consider a fairly generic system, rather than a specific developmental context. It is our
aim that the knowledge and insight gained from this study will provide a foundation upon which
more biologically accurate models may be built.

6.1. Application to models for somite formation

Several mathematical models for somite formation have been suggested in recent years, includ-
ing one by the authors [41,42], which is based on the version of the ‘Clock and Wavefront’ model
formulated by Pourquié and co-workers [6,36,37]. To date these models only consider a gradient
of FGF8 along the AP axis: they are able to reproduce coherent somite formation and the anom-
alies observed experimentally upon local perturbation of the FGF8 gradient [6]. However, since
RA is not explicitly modelled, they are not able to reproduce the experimental observations upon
RA removal: the rate of AP axis extension is decreased and small somites form, although the total
number of somites is regulated [43,44]. These facts are consistent with the results of this paper and
the ‘Clock and Wavefront’ model which suggest that removal of RA would slow the progression
of the FGF8 wavefront, thereby conferring the ability to segment upon fewer cells in each oscil-
lation of the segmentation clock. One aim for future work is to integrate this system into these
previous models for somite formation [41,42] to see if it is indeed capable of mimicking the results.
7. Conclusion

In summary, the model suggests that introduction of a secondary morphogen, acting in an
antagonistic manner to a primary morphogen, is able to increase robustness of the primary mor-
phogen gradient to perturbation and that it also plays a role in determining wave speed and shape.
The models and context considered here are excellent paradigms for other scenarios in which mor-
phogen gradients are known to act and as such, these results have direct application to many other
developmental systems.
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