Modeling and Simulation in Science, Engineering and Technology

Series Editor
Nicola Bellomo
Politecnico di Torino
Italy

Advisory Editorial Board

M. Avellaneda (Modeling in Economics)
Courant Institute of Mathematical Sciences
New York University

251 Mercer Street

New York, NY 10012, USA
avellaneda@cims.nyu.edu

K.J. Bathe (Solid Mechanics)
Department of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139, USA
kjblmit.edu

P Degond (Semiconductor & Transport Modeling)
Mathématiques pour I'Industrie et la Physique
Université P. Sabatier Toulouse 3

118 Route de Narbonne

31062 Toulouse Cedex, France
degond@mip.ups-tlse.fr

A. Deutsch (Complex Systems

in the Life Sciences)
Center for Information Services

and High Performance Computing
Technische Universitat Dresden
01062 Dresden, Germany
andreas.deutsch@tu-dresden.de

M.A. Herrero Garcia (Mathematical Methods)
Departamento de Matematica Aplicada
Universidad Complutense de Madrid
Avenida Complutense s/n

28040 Madrid, Spain
herrero@sunma4.mat.ucm.es

-

W. Kliemann (Stochastic Modeling)
Department of Mathematics

lowa State University

400 Carver Hall

Ames, IA50011, USA
kliemann@iastate.edu

H.G. Othmer (Mathematical Biology)
Department of Mathematics
University of Minnesota

270A Vincent Hall

Minneapolis, MN 55455, USA
othmer@math.umn.edu

L. Preziosi (Industrial Mathematics)
Dipartimento di Matematica
Politecnico di Torino

Corso Duca degli Abruzzi 24
10129 Torino, Italy
luigi.preziosi@polito.it

V. Protopopescu (Competitive Systems,
Epidemiology)

CSMD

Oak Ridge National Laboratory

Oak Ridge, TN 37831-6363, USA

vvp@epmnas.epm.ornl.gov

K.R. Rajagopal (Multiphase Flows)
Department of Mechanical Engineering
Texas A&M University

College Station, TX 77843, USA
KRajagopal@mengr.tamu.edu

Y. Sone (Fluid Dynamics in Engineering Sciences)
Professor Emeritus

Kyoto University

230-133 Iwakura-Nagatani-cho

Sakyo-ku Kyoto 606-0026, Tapan
sone@yoshio.mbox.media.kyoto-u.ac. jp

Mathematical Modeling
of Biological Systems,

Volume 1

Cellular Biophysics, Regulatory Networks,
Development, Biomedicine, and

Data Analysis

Andreas Deutsch
Lutz Brusch
Helen Byrne

Gerda de Vries

Hanspeter Herzel

Editors

Birkhauser
Boston « Basel « Berlin



18

Mathematical Modelling of Vascular Tumour Growth
and Implications for Therapy

Jasmina Panovska,' Helen M. Byrne,? and Philip K. Maini® '

' Chemical Engineering, Heriot-Watt University, Riccarton Campus, Edinburgh, EH14 4AS;
J.Panovska@hw.ac.uk

2 Centre for Mathematical Medicine, Division of Applied Mathematics, School of '
Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD;
Helen Byrne@maths.nottingham.ac.uk

3 Centre for Mathematical Biology, Mathematical Institute, Oxford University, Oxford,
OX1 3LB; maini@maths.ox.ac.uk

Summary. In this chapter we briefly discuss the results of a mathematical model formulated

in [22] that incorporates many processes associated with tumour growth. The deterministic

model, a system of coupled non-linear partial differential equations, is a combination of two

previous models that describe the tumour-host interactions in the initial stages of growth [11]

and the tumour angiogenic process [6]. Combining these models enables us to investigate com-

bination therapies that target different aspects of tumour growth. Numerical simulations show |
that the model captures both the avascular and vascular growth phases. Furthermore, we recover

a number of characteristic features of vascular tumour growth such as the rate of growth of the

tumour and invasion speed. We also show how our model can be used to investigate the effect

of different anti-cancer therapies.

Key words: Vascular tumours, angiogenesis, hypoxia, anti-cancer therapy.

18.1 Introduction

Tumour growth is a complex process that involves a sequence of well-orchestrated
events. These characterise the initial avascular phase of growth, the angiogenesis that
enables the tumour to become vascularised and the vascular phase of growth. During
the early stages of growth, oxygen is delivered to the tumour cells via diffusion from
nearby blood vessels and the tumour cells proliferate rapidly and consume more oxy-
gen than the host cells [7]. Due to the diffusion-limited supply of oxygen such growth
is limited in size [31]. To grow larger the tumour must undergo a cascade of processes
that include the secretion of tumour angiogenic factors, such as vascular endothelial
growth factor (VEGF). VEGF stimulates the formation of a tumour-specific vascu-
lar network from the host vessels. Upon successful vascularisation oxygen is rapidly
supplied to the tumour and it can grow larger.
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Within the last three decades a number of mathematical models for tumour growth
have been developed as part of the quest to understand tumour growth dynamics.
Most of these models focus on one particular aspect, for example, avascular growth
(e.g., [27,32]), tissue-tissue interactions (e.g., [11,28]), angiogenesis (e.g., [1,6,21])
or vascular tumour growth (e.g., [4,5, 14, 18]). However, if we wish to compare and
contrast the effectiveness of different treatment protocols via mathematical modelling,
we need a model that integrates several key processes that occur during tumour growth.
A first attempt at deriving such a model was made by de Angelis and Preziosi [8]. They
developed a model to describe the evolution of tumour growth from the avascular stage
to the vascular stage through the angiogenic process. The model was able to predict the
formation of necrotic regions, the control of mitosis by the presence of an inhibitory
factor, the angiogenesis process with proliferation of capillaries just outside the tumour
surface and the regression of the tumour and the angiogenic capillaries when angio-
genesis was controlled or inhibited. Here we briefly describe an extended model to the
one in [8] by including the density of the healthy host cells in the system, and we also
model two distinct components of the vasculature, distinguishing between capillary
tips and blood vessels. We refer the reader to [22] for full details. In Section 18.2, we
present the model equations. In Section 18.3 we illustrate the types of behaviour that
the model yields when formulated on a one-dimensional spatial domain. The potential
use of our model for testing anti-tumour drug protocols is illustrated in Section 18 4.
We present our conclusions and comment on future research directions in Section 18.5.

18.2 Model Formulation

The model we develop comprises a system of non-linear partial differential equations
and aims to reproduce the animal chamber experiments of Gimbrone et al. [12] and
Muthukkaruppan et al. [17]. Thus we consider a small solid tumour implanted in the
cornea of a test animal close to the limbal vessels. Angiogenesis is quick (14-21 days)
and tumour growth evolves continuously from the avascular phase, through angiogen-
esis to the vascular phase.

A novel feature of our model, compared to previous models, is that tumour-host
interactions are active in the region while the new capillary network is forming during
angiogenesis. This enables us to investigate how the coupling of tumour-host dynam-
ics and angiogenesis influences tumour growth. To our knowledge this has not been
considered in existing models, which have tended to focus on a single specific aspect
of tumour development.

Tumour growth, via invasion of the surrounding host cells, and angiogenesis are
multidimensional processes. By averaging the dependent variables in a plane perpen-
dicular to the direction of motion of the vascular front it is possible to restrict attention
to one spatial dimension. This direction is chosen to be parallel to the line connecting
the limbus, situated at x = 0 and where the nearest host blood vessels are found, to the
tumour centre at x = 1 (in dimensionless terms). We introduce independent variables
¢ and x representing, respectively, time and spatial position in a direction parallel to
that of tip growth.
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Within our modelling framework we consider two types of dependent variables:
those that contribute to the tumour volume and those of negligible volume. In the for-
mer category we include the healthy (host) cell density 7 (x, ¢), the tumour cell den-
sity na(x, f) and two components for the vasculature, namely the capillary tip density
n3(x, t) and the density of the blood vessels b(x, ). The nutrient, which in our case
is oxygen, concentration a(x, t) and TAF, which in our model is VEGTF, concentration
c(x, 1) are assumed to be of negligible volume. To formulate the model equations we
combine models by Byrne and Chaplain [6] and Gatenby and Gawlinski [11]. Follow-
ing [6], the deterministic modelling of the vasculature-TAF interactions is based on the
fungal growth model of [9], the two processes sharing many common features, includ-
ing branching, anastomosis and migration [12, 17]. Based on experimental results by
Sholley et al. [29], we assume that migration of the capillary tips up the gradient of
VEGF concentration is the key mechanism during angiogenesis and that proliferation
of the cells at the capillary tip stimulated by VEGF is secondary, and as a result, less
significant. This makes our model assumptions biologically different from the mod-
elling assumptions from [6].

Following [11] we model the tumour-host interactions via non-linear reaction-
diffusion equations for the cell density. However, we assume that the normal tissue
is immobile and neglect its random motion coefficient. As in [11] we assume that
the tumour is unable to spread unless the surrounding healthy tissue has been dimin-
ished from its carrying capacity by, for example, increased acidity leading to death
of normal cells. Thus we consider the expansion of the tumour into the adjacent tis-
sue to depend on its composition and we model the random motion coefficient for the
tumour cell density to be dependent on the density of the surrounding normal cells.
Unlike [11] the equations we use for the tumour and the host cell density are coupled
via the oxygen equation, rather than hydrogen ion density H+ as a measure of the pH
and acidity of the region. Oxygen is blood-borne and it cottrols cell proliferation and
oxygen-deprived (hypoxic) death. These assumptions are based on experimental ob-
servations of tumour-host interactions in the presence and absence of oxygen [7]. The
novel aspect of our model is the coupling of the equations for the cell densities and
oxygen concentration with equations for the vasculature-TAF interactions. We explore
the fact that when oxygen concentration in the region lowers, tumour cells (and to a
lesser extent normal cells) secrete VEGF [13]. We incorporate this by assuming that
VEGEF is produced by the tumour and the normal cells under hypoxia. This coupling
distinguishes our model from [11], from [6] and from previous models such as [8].

Combining the above ideas we arrive at the following non-dimensionalised system
of equations (see [22] for details): '

any ripa Riny
— = —n; - rln% — — cining (18.1)
at 14 pra et 1+ pla ——
A —— crowding i competition
proliferation hypoxic death
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C ad ana rapa 2 Rana -
B Gl =miT—)te T 2= g = 3 coning
ot TE S dx 1 + pa s +pma  ——
g crowding ——— competition
random motion proliferation hypoxic death
(18.2)
da 3%a Ariang Aarpany (183)
% mdg+hb(l=a)~ T — — T — .
ot 3x2 ——— 1+pa + ma
——" delivery by —_ Sy
diffusion blood vessels consumption by consumption
host cells by tumour cells
P 2 o
(}—L = a—E e ny+ i ny— pibec — yc (18.4)
ot “9x2 1+ pia 14+ pa S e
Y ——— —— ———  removalby  natural
diffusion secretion by secretion by vessels loss
host cells tumour cells
i - d ¢ dc
ﬁﬁ =dp ?._n,a__.—— v n3— |+ pabc — _;31?133) (18.5)
at 39x2  9x \1+nc ~ox s ———
b branching  anastomosis
random chemotaxis
motion
c dc
8 _, 9ms Ve % isib(1—b)— 0b . (18.6)
at Sox  l4nc 9x  —m— T
S——— vessel natur_al
random snail-trail remodelling loss
motion production

The corresponding initial and boundary conditions are

d —k
M 6y =0, 2%0,1)=—hb(l—a), —©O.0)=psbc, n3On=e", (187)
ax ToAx ax

iny o a0 Lapneo Ta,n=o, (18.8)
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1

, a(x,0 =1, (18.9)
1 +exp (—€2(x — a2))

ny(x,0)=1- na(x,0), na(x,0)=

1 1 !
c(x,0)=0, bx,0)= T o le = T n3(x,0) = EWEY AT PR (18.10)
We make the simple modelling assumption that captures the effectg:r; a one-off
formation of capillary tips at the limbus as the condition n3(0,t) = e, where k
represents the rate of tip decrease at the limbus. The blood vessels at the limbus s._upply
the region with oxygen and also remove the excess VEGF. For the tumouF density we
impose a no-flux boundary condition at x = 0. We assume symmetry of the tumour
about its centre and hence impose no flux boundary conditions for n2, a, ¢ and n3 at
¥ = 1. We assume that initially some tumour cells are located at x = 1, the rest of
the domain is filled with normal cells and that the vasculature is only present near the
limbus. Initially the region is well oxygenated and no VEGF is present.
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18.3 Model Simulations

We investigate, using numerical computation, the behaviour of the model in various
parameter regimes. We use the NAG library routine DO3PCF which discretises the
system of equations using finite differences and solves the resulting system of ordinary
differential equations using backward differentiation [26]. We find that, by changing
parameter values, the model can simulate a growing tumour before and after vascular-
isation, as well as the clearance of the tumour due to interactions with the host tissue.
Qualitatively we can capture avascular tumour growth with invasion of the host cells,
the migration of the neovasculature during the angiogenic process and also vascular
tumour growth characterised by the tumour growing larger and invading the host cells
more rapidly than its avascular counterpart.

In Fig. 18.1(a)—(e) we present numerical solutions of the equations (18.1)—(18.10)
for different parameter values. We observe avascular tumour growth and tumour inva-
sion of the host cells (see Fig. 18.1(a)); successful angiogenesis and tumour invasion
of the host cells (see Fig. 18.1(b)); avascular tumour growth and tumour coexistence
with the host cells (see Fig, 18.1(c)); successful angiogenesis and tumour-host coex-
istence (see Fig. 18.1(d)); and tumour regression during avascular growth only (see
Fig. 18.1(e)). We note that changes in key model parameters (competition parameters
c1, ¢2 and oxygen consumption A, as well as the chemotactic parameters 7, ) allow
us to switch from one type of behaviour to another. We illustrate this in the bifurca-
tion diagrams in Fig. 18.2(a)—(c) where parameter space is divided into distinct regions
depending on the outcomes of the simulations. '

Our results suggest that the success of the angiogenic process depends on the
strength of tumour-host competition: only when the tumour can compete with the
host cells will angiogenesis be completed (regions M and P in Fig. 18.2(a)—(b)). Thus
we predict that angiogenesis must follow invasive avascular tumour growth and it is
not possible for a tumour that initially regresses to then undergo angiogenesis and in-
vade the host cells. This occurs because in our model the tumour cells are the main
source of VEGF. Hence when the normal cells are dominant the tumour recedes and
VEGEF secretion decreases (see Fig. 18.1(e)). Tumour vascularisation is quicker when
the tumour consumes larger amounts of oxygen (i.e., as A7 increases; see Fig. 18.3(a)).
Equally, increasing X, and making the region hypoxic, in Fig. 18.2(a)—(b), increases
the size of the region P thus making it more likely for the tumour to invade the host
cells. This suggests that tumour invasion is stronger in hypoxic conditions and this is
a new prediction of our model. Combining these results we predict that hypoxic con-
ditions, brought about by large oxygen consumption by the tumour cells, render the
tumour more invasive and able to vascularise more quickly.

Successful angiogenesis, in Fig. 18.4(c)—(d), is characterised by vascular profiles
that propagate from the limbal vessels towards the tumour, with increasing speed and
increasing maximum density (see Fig. 18.4(c)). In addition the capillary tip profiles
precede the vessel profiles (compare Figs. 18.4(c) and 18.4(d)). These are features of
what is called the brush-border effect associated with successful tumour vascularisa-
tion in the experiments by Muthukkaruppan [17]. By tracking the position of a point
in the wave front over time, we estimate the speed of propagation of the tips to be
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Fig. 18.1. Series of plots illustrating the types of behaviour that emerge from equations (18.1)-
(18.10). The normal n(—) and the tumour cell density ny(——) propag.ate.as waves of normal
cell regression and tumour invasion before and after successful vascularisation (fi}—(d); or wh.cn
the normal cells are better competitors the tumour density regresses (e) in which case angio-
genesis is unsuccessful. Following successful vascularisation the tumour grows larger ((b) and
(d)). During avascular tumour invasion in (a) and (c) the capillary tips n3(—.—) proPagate from
the limbus towards the tumour with increasing speed and increased maximum density. Post an-
giogenesis tip profiles propagate with constant speed and either increase to a maximum value
within the tumour mass (b) or decrease towards the tumour centre (d). The results are shown at
dimensionless t = 5, 10, 15 in (a), (c) and (e) and ¢ = 20, 25 and 30 in (b) and (d). Parameter
values: ry =4, p1 =8,R) = 1,rp =10, pp = 15, Ry = 2,dy, = 0.0007,h = 10, A = 0.1,
ry =0.1,r4 = 10, p; = 10,d; = 0.28,y = 1,dp, = 0.0001, ¥ = 0.8,5 = 1.5, pr = 50,
B1=10,51 =1, =0.25,k =30, p3 = 10,€7 = 250,07 = 0.9,¢63 = €4 =250,a3 = a4 =0
and (a) c) = 10,¢p =5,22=50;(b)c; = 1,cp =5,k =0.5; () ¢ = 1,9 = 25, hy = 50.

approximately 0.03 in dimensionless units (or 0.11 mm day~! in dimensional unit§}
near the limbus and 0.13 in dimensionless units (or 0.4 mm day~!) near the tumour in
Fig. 18.4(c). This agrees with experimental measurements showing the v:;lscular speed
increasing from 0.1-0.2 mm day~! near the limbus to 0.3-0.8 mm day ! near the tu-
mour [10]. Once the tumour is vascularised the speed of the vascular front becomes
constant and approximately that near the limbus prior to angiogenesis. Therefore once
the vessels penetrate the tumour their rate of propagation becomes constant. Further-
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Fig. 18.2. (a)~(b) Diagram showing how the competition (cy, ¢3) parameter space can be de-
composed into distinct regions depending on the long-time behaviour of the model solutions,
for two different values of A;. In (a) A, = 5 and in (b) A2 = 50. In regions M and P the tu-
mour is a similar or better competitor than the normal cells, the numerical solutions evolve as
travelling waves of tumour invasion of the host cells during the avascular phase followed by
successful angiogenesis and vascular tumour growth. In region Q the normal cells dominate; the
tumour regresses and fails to become vascularised. (c) Diagram showing the existence of a nu-
merically calculated region where the tumour grows as avascular or vascular depending on the
values of the chemotactic parameters 5 and Y. This parameter space is determined with detailed
numerical simulation. The rest of the parameter values are as per Fig. 18.1(a) with tumour being
the better competitor and (cq, ¢;) € P from (a)—(b). Qualitatively the results are the same when
(c1, c2) € M from (a)—(b).

more the maximum density of the capillary tips either reaches a maximum value within
the tumour mass (see Fig. 18.1(b)) or decreases towards the tumour centre once the
tips have penetrated the tumour (see Fig. 18.1(d)). The former case occurs when the
tumour is a better competitor than the host cells, whereas the latter case occurs when
the tumour cells coexist with the host cells. Therefore we predict that the outcome of

(&) [ e

/ K N
' \

/;‘I
i

Tima of tumourcapillary cantact
: s & =
/._~—’
s

/

n \

\ &
. \
s\
v T
b -
2 5 © 61“ El = ) -

zts-l’neuuumu © ﬁ‘ e w %

B
2

———

=

/J'
-
L

Fig. 18.3. (a) Numerically calculated decrease in the time when the tumour becomes vascu-
larised as a function of the parameter A2 that controls oxygen consumption by the tumour cells.
(b)~(c) Diagrams illustrating how the (A1, Az) and (Ay, B>) parameter spaces can be decom-
posed into distinct regions depending on the effectiveness of an anti-proliferative therapy. In (b)
in the long term, only tumour cells are killed (I1), only normal cells are killed (IV), both cell
types are killed (IIT) by the therapy, or it has no effect on tumour growth (I). In (c) the therapy
is not effective in region N: the tumour regresses and is removed in region R and the tumour
reaches saturated growth in region S.
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Fig. 18.4. Series of plots illustrating the profiles of the capillary tips an(‘l IhC. vessel density
during unsuccessful angiogenesis (a)—(b) and during successful angiogenesis with brush border
(¢)~(d). The parameters are as in Fig. 18.1(a) apart from y = 19, n = 50 for (a)~(b)and y =1,
n = 1.5 for (c)—(d). We plot the profiles at dimensionless r = 5, 10, 15, 20.

the tumour-host interaction affects the behaviour of the vasculature during vascular
growth. A large vascular density (capillary tips in Fig. 18.1(b)) during vascular. tumour
growth is, in our simulations, present during successful invasion of the host tissue b.y
the tumour cells. A small vascular density (capillary tip density in Fig. 18.1(d)) is
associated with tumour-host coexistence during vascular growth.

The model also shows that angiogenesis enhances the ability of the tumour cells
to invade the host tissue. For example, for the profiles depicted in Fig. 18.1(c) the
tumour invasion speed increases from 0.09 (or 0.27 mm day") to 0.10§ (o'r 0.315
mm day ') following successful angiogenesis. In addition the tumour density is much
larger following angiogenesis (compare Figs. 18.1(a) and lS.l(b)): Thfese results sug-
gest that in the later stages of tumour growth, following vascularisation, the tumour
grows much larger and is more invasive than during the initial avas:::ular stages of
tumour growth. These observations agree with experimental observations of tumour
growth in vive [10].
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18.4 Applications of the Model

The model (18.1)-(18.10) can be used to investigate the effect of different anti-cancer
treatments. We now extend our model to include an equation for a blood-borne drug
with different modes of action. For example, model simulations suggest that a tumour
which in the absence of therapy invades the adjacent host tissue, when treated contin-
uously with an anti-proliferative drug can saturate in growth or can regress. The effect
of the drug in our simulations is thus similar to the effect of chemotherapeutic drugs
such as doxorubicin [3] which target rapidly proliferating cells. In Fig. 18.3(b)—(c) we
depict the bifurcation diagrams for the parameters that control the effectiveness of the
anti-proliferative therapy: A; and A; associated with the potency of the drug on the
healthy and the tumour cells and f; representing the rate of drug uptake by the tumour
cells. We predict that the therapy is most effective when the potency on the tumour
cells and the uptake of the drug by the tumour cells are large, whereas the potency on
the normal cells is small,

Alternatively we study administration of a drug that destroys the vascular network.
Such a drug may fall into two categories: one that targets the angiogenic stimuli (e.g.,
VEGF) via inhibitors such as endostatin [19] or angiostatin [20]; or a drug such as com-
bretastatin (CAP4) [33] that directly targets the immature blood vessels. Within our
model we are able to incorporate these different modes of action of the anti-vascular
drug and compare the outcomes. Qualitatively the results are the same. Our simula-
tions predict that upon administration of the anti-vascular drug tumour vascularisation
can be prevented but tumour invasion of the host cells continues in this case. The tu-
mour density resembles an avascular mass that invades with a constant speed. This is
unrealistic, as we know that avascular tumours cannot grow indefinitely, and occurs
because the model [11] does not properly include necrosis. Recently, an extension of
the model in [11] has been proposed and shown to exhibit growth saturation [30]. A
future extension of the present integrated model would be to include this new model.

When a combination of anti-proliferative and anti-vascular therapy is introduced
into our model, the qualitative outcome is similar to that when only anti-proliferative
therapy is applied. Tumour invasion into the host cells can either be halted and the
tumour reaches a saturated growth, or tumour invasion is reversed and the tumour

regresses. For more details of these and other therapeutic applications see [22] and
[24].

18.5 Conclusions

We believe that the mathematical model presented here enables us to better understand
the complex interactions that govern tumour growth. The continuum approach adopted
in [22] allows us to make analytical predictions, for example, of wavespeed of invasion.
Recently many cellular automata (CA) approaches have been developed to describe
different aspects of tumour growth (see [16]). CA allows one to consider properties
of individual cells but there is little in the way of mathematical theory developed for
such models. Our model was the first deterministic model to study how tumour cells,
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host cells and host blood vessels interact. With our results we can capture avasc‘ular
followed by vascular tumour growth, as well as tumour elimination due to 1nte1tact10ns
with the host tissue. We can confirm that a vascular tumour is more aggressive and
grows larger than its avascular counterpart. This agrees with in vivo observan‘ons of
tumour growth and the modelling results presented in [4]. Furtherm?re we ;?redlct that
it is not possible for a tumour that initially regresses to undergo angiogenesis and then
invade the host cells. This may be a consequence of the fact that we do not aIlFJW
for genetic mutations of the tumour cells. Our simulations a]sp suggest that, during
vascular growth, the maximum density of immature vessels W.l[]'llll the. turr.mur mass
stays constant or decreases towards the tumour centre. l'n practice the situation which
arises depends on the nature of the tumour-host interactions. .

In terms of novel therapies, our numerical results suggest that targeting a v?.scular
tumour with a highly potent anti-proliferative drug in cornbinatio.n with reducing Fhe
VEGF influence in the region (and thus preventing angiogenesis) is the most effecn_ve
treatment. When the therapy only destroys the vascular network, we predict that angio-
genesis can be prevented but tumour invasion will continue unaffecte,td. We note that
in our model there is continuous infusion of the drug. Questions remain as to whether
such a therapy is feasible and, of course, our modelling framework does not account
for the issue of side effects. A full critique of this modelling approach together with
possibilities for further research are presented in [24].
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