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This issue, the third (and final) of a series in this journal devoted to cancer modeling,
is focused on analytic problems arising from the application of mathematical models
to the simulation of biological phenomena. The contents of the preceding issues are
described in the Prefaces.7,8

In some cases, the qualitative and computational analyses of problems need the
development of sophisticated mathematical methods and even new tools suitable to
deal with the complexity inherent to the biological sciences. In particular, cancer
modeling generates challenging problems which strongly attract applied mathe-
maticians.

Although the impact of mathematical models on the biological sciences is only
now beginning to be evident, the benefits to mathematics of the need to meet the
challenge of the novel problems raised by biological systems have been apparent for
some time now and we expect that there will be future exciting developments in
the mathematical sciences.

This issue presents six research papers which deal with different aspects of
mathematical problems related to cancer modelling. They follow from the pre-
ceding special issues by focusing on how the modelling approaches have generated
specific mathematical problems which will enrich applied mathematics. Moreover,
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they cover the multiscale aspects of the biological system under consideration, from
the microscopic level of genes to the macroscopic level of tissues.

The first paper by Komarova20 deals with the development of stochastic game
methods to model the dynamics of cancer initiation and progression. Possible ways
to develop a mathematical approach to describe these highly complex biological phe-
nomena are well documented in the literature in the field of biological sciences.26,29

The interest of applied mathematicians in the above topic is ongoing as docu-
mented in the papers of the first issue16,23 focused on the perspective objective
of developing a mathematical theory for multicellular systems.4 The paper by
Komarova20 contributes to the above aim which needs, as an essential step, a deep
understanding of the links between the molecular and the cellular scales focused
on the mechanisms of genetic mutations that generate the evolution of cellular
functions.17

The second paper by Bellomo, Bellouquid, Nieto, and Soler2 deals with the
derivation, by asymptotic methods, of macroscopic equations, at the tissue level,
from the underlying microscopic (cellular) description.3 This paper develops a
hyperbolic scaling which generates models with source terms related to mutations
and proliferation rates. This topic was also dealt with in previous issues looking
for diffusion limit methods22,11 and is a crucial step towards multiscale modeling
by identifying the correct mathematical description of living tissues, rather than
the heuristic approach of continuum mechanics in which the equations is generally
postulated a priori. This literature shows that different mathematical structures
correspond to different scalings, and that during the time evolution of cancer tissues
the structure of the equations also evolves in time due to genetic mutations.17,29

Real biological systems are such that even when cells are condensed into solid
forms cellular and molecular phenomena still play a crucial role.10,12,6 This aspect
is carefully dealt with in the paper by Marchiniak-Cozchra and Kimmel,24 which
refers to the modeling of the early stage of tumors related to genetic mutations.
The model consists of a hybrid system of ordinary and partial differential equations
where cell populations develop mutualistic interactions that produce growth factors.

The fourth and fifth papers refer to different aspects of the qualitative analysis of
moving boundary problems related to cancer modeling. This is a challenging prob-
lem that was also mentioned in the first issue.5 Specifically, the paper by Wilson,
King and Byrne30 deals with the qualitative analysis and simulations of a moving
boundary problem for a two-scale system where biological tissues are in contact
with dispersed cells. Therefore, the model operates at the cellular and macroscopic
scales. Several important phenomena are related to these types of interactions (free
cells with tissue) as documented, in a different context, in the papers by Bru and
co-workers.10,6

The paper by Friedman14 deals with the qualitative analysis of moving boundary
problems in the context of tumor growth. The novelty of the challenging problems
posed and analyzed by Friedman is the study of models where the material behavior
of biological tissues changes in type due to genetic mutations. This paper provides
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applied mathematicians with new research perspectives in a field in which interest-
ing contributions have already been given by Friedman and co-workers,13 as well
as in the first issue of this series devoted to cancer modeling.5

The paper by Kim, Stolarska, and Othmer21 deals with a multiscale approach
to modeling avascular tumors. The modeling approach looks at the behavior of
the whole as emerging from the interaction of coupled subsystems represented by
models operating at specific length scales. The model is focused on the avascular
stage. The research line on multiscale modeling was initiated by Alarcon, Byrne and
Maini,13 focused on vascularized tumors, and then developed in a sequel of papers
as documented in the bibliography of a paper published in the second issue.9 It is
worth stressing that one of the objectives pursued in Ref. 21 refers to the design of
experimentally testable models.

All contributions to this special issue refer to multiscale aspects related to
genetic mutations. The book by Weinberg29 offers an essential guideline to applied
mathematicians for understanding the great complexity of cancer, from the onset
of the neoplastic state to progression through successive stages characterized by
increasing degrees of malignancy. The main guidelines are reported in the already
cited paper.17

Therefore, the interactions between the biological and mathematical sciences
appears very deep and links high level research activity in biology to sophisti-
cated mathematical methods. The mathematical approach needs to be permanently
updated to respond to the challenges coming from biology; hopefully mathematics
can contribute to the evolution of biology that is foreseen by the scientific commu-
nity in this century.31
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