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Abstract

In this chapter we consider the impacts of two factors, namely the form of the non-
linearity of the infectious disease transmission rate the and mortality associated with a
disease, on the dynamics of this infectious disease in a population. We consider a very
simple discrete-step compartment epidemiological models and a very general form of
the nonlinear transmission assuming that the transmission is governed by an arbitrary
function constrained by a few biologically feasible conditions. We show that when the
population size can be considered constant, these models exhibit asymptotically stable
steady states. Precisely, we demonstrate that the concavity of the disease transmission
function with respect to the number of infective individuals is a sufficient condition for
this stability: in this case the models have either an unique and stable endemic equilib-
rium state, or no endemic equilibrium state at all; in the latter case the infection-free
equilibrium state is stable.

We demonstrate that under some circumstances the mortality inflicted by the dis-
ease is able to destabilise endemic equilibrium state and can lead to a supercritical
Hopf bifurcation in the system. However, it appears that for the majority of human
infections the threshold for this bifurcation is too high to be realistic.

Key words: Infectious disease, discrete-time models, nonlinear transmission, endemic
equilibrium state, global stability, Hopf bifurcation, Neimark-Sacker bifurcation, non-linear
dynamics.
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1. Introduction

Numerous deterministic mathematical models for the spread of infectious diseases in a
population, where transmission of the infection is governed by the principle of mass action,
have asymptotically stable equilibria, and consequently the level of the infected population
exhibits damped oscillations toward an equilibrium level [1]. This stability of the equi-
librium state is in striking contradiction with the available clinical data on a number of
diseases, which demonstrate that if an infection persists in a population endemically then
it maintains self-sustained oscillations in the number of infected. These oscillations are of
almost constant period, and the magnitudes of the infectious level variations are generally
too high to suggest that they simply reflect stochastic perturbations [1, p. 44]. Moreover,
observed changes in disease incidence occur more regularly through time than can be ex-
pected on the basis of chance fluctuations alone.

A number of authors have suggested that a specifically chosen nonlinear disease trans-
mission function (or incidence rate) can lead to a system with an unstable endemic equilib-
rium state. There is a variety of reasons for nonlinear transmission to be used in modelling.
The first is that the principle of mass action is based on the underlying assumptions of
homogeneous mixing of the population and of homogeneous environment; either of these
assumptions may be invalid. In this case it is best to introduce the necessary population
structure and represent heterogeneous mixing directly using a specific form of the non-
linear incidence rate function. Incidence rates that increase more gradually than linear in
numbers of the infective and the susceptible individuals can also arise from saturation ef-
fects: if the number of infectives is very high, so that exposure to the disease agent is
virtually certain, the incidence rate may respond more slowly than linear to increase in the
number of infectives. This effect was encountered in clinical observations as well as in lab-
oratory experiments, e.g. see [5, 7]. Furthermore, the details of transmission of infectious
diseases are generally unknown, and may vary for different conditions; this observation
justifies the growing interest to the models with incidence rates of more general form.

Another phenomenon which appears to be able to affect the system behaviour is mor-
tality associated with the disease.

In this chapter we consider the impact of these two factors, namely non-linear disease
transmission and mortality caused by the disease, on the disease dynamics. We show that,
disregarding the reasons that can cause the non-linearity of the disease transmission and,
under the assumption that the population size is constant, any nonlinear disease transmis-
sion function satisfying certain biologically reasonable conditions leads to a system with an
asymptotically stable equilibrium. However, the mortality caused by the disease is generally
a destabilising factor reducing the system stability by decreasing the associated Lyapunov
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exponents. Under some circumstances it can even lead to a supercritical Hopf bifurcation
and thus may cause self-sustained oscillations in the number of infected. However, for the
majority of human infections (with perhaps such exceptions as AIDS) the threshold value
of the mortality for this bifurcation is too high to be biologically feasible.

In Section 2 we describe the basic discrete-generation model we use in this work. In
Section 3 we consider some examples of nonlinear transmission. In Section 4 we analyse
stability of equilibrium states of a general model with nonlinear transmission. The impact
of mortality associated with the disease is considered in Section 5, while in Section 6 we
estimate the threshold values of mortality for some of the specific models considered earlier
in Section 3. Finally, in Section 7 we make some additional observations.

2. Basic Discrete-Generation Model

To study the impacts of non-linear transmission and the mortality inflicted by the dis-
ease, we consider a very simple discrete-generation epidemiological model. This model
can be viewed as a special case of discrete-time models. Discrete-time models are not
new for mathematical epidemiology: difference equations have been used by Soper [23],
Bartlett [4], Hoppensteadt [12, 13, 14] and others.

Following the classical assumptions of mathematical epidemiology, we assume that
a population of size NN is partitioned into a number of compartments. In this case we
assume that the population is composed from susceptibles .S, infected , and removed (or
recovered) R compartments, that is N = S + I + R. After infection an individual moves
from the class of susceptibles into the class of infected and then into the class of removed
as a result of recovery, death or isolation. Recovery implies life-long immunity, that is no
return from the removed compartment into the susceptibles compartment is possible; thus
we are considering a SIR model.

We will denote the number of individuals in a compartment in a generation by a capital
letter with a subindex, e.g. I,,S,+1 etc. Let us assume that an infected individual is
introduced into an entirely susceptible population, that is in the first generation /; = 1
and S; = N — 1. This infected individual infects Ry individuals who form the second
generation of infected, Iy = Ryl;. Here Ry is the basic reproduction number, that is,
the average number of secondary cases produced by a single infective introduced into an
entirely susceptible population. These I infected produce, in turn, I3 infected in the third
generation, etc.

We assume that the population size is constant, that during one generation there are bN
new births all of whom come into the susceptibles compartment, and that the probability
for a susceptible to die during a generation from natural causes is c. Then, if at the nth
generation there are S, susceptibles, I, infected and R, recovered, and if these I, infected
produce I,,; infected of the (n + 1)th generation, we have for the susceptible population
the equation

Spi1 = Sp +bN — 41 — cSn. .1)

The principle of mass action assumes homogeneous mixing and takes into account that
an infective comes into contact with and might infect R individuals some of whom may be
already infected or recovered and therefore clinically unaffected by the contact. Then the
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Figure 1. Schematic representation of recovery. Here the curve A is typical observed data,
the curve B is for recovery of all infected after a definite period of time (a generation) and
the curve C is for continuous-rate recovery.

number of infective contacts in the nth generation is

InSn
N

E, =Ry (2.2)
Assuming that the number of infectives in the (n + 1)th generation is equal to the number
of infective contacts, we obtain the equations

In1 = Roly 3t @3)
for the infected population. The constant population size assumption allows us to omit the
third equation which describes dynamics of the removed population R.

The main advantage of such a model compared with continuous-time models is its nat-
ural time scaling which leads to important consequences. Firstly, the model ensures that
all infected recover after a definite period of time. This implies a natural approximation of
the recovery process by a step function (Fig. 1, curve A, B), whereas for continuous-time
models, unless we use integro-differential equations or equations with a time delay, we are
to postulate that “continuous recovery” arises from the standard assumption that motion
from exposed to the infectious class and then to the recovery class occurs at constant rates
(Fig. 1, curve C). This last assumption, while mathematically convenient, is rarely realistic
and can lead to results contradicting observations (see, for example [15]). Secondly, since in
the discrete generation model we consider disease transmission not as a continuous process
but in terms of secondary cases produced by an infective for a generation, we do not have
any need for the time delay associated with the incubation or the latent state; neither do we
have need for an exposed class (as for a S EIR model) to incorporate the delay between the
event of infection and the moment when the infected host becomes actually infectious into
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the model. The third (but not the least important) advantage of this model is that it allows
natural interpretation of all model parameters and data obtained.

An apparent drawback of the generation model is that generations may overlap in time,
and the infected individuals of several generations coexist. Nevertheless, it is obvious that
the model preserves the dynamic properties of discrete-time or continuous time models.
The system (2.1), (2.3) may be considered as a discrete-time model with a time step equal
to a generation (implying by this term the average time interval which commences when a
susceptible host is exposed to an infective dose, includes the period during which the host
passes infection and ends when the host is fully recovered, isolated or dead).

3. Non-linear Transmission

A model based on the principle of mass action is deficient in some aspects. The main
deficiency is that according to the principle the probability for a susceptible individual to be
infected during a generation (the “infection probability”) is not limited and can be larger that
one (Fig. 2). This feature is completely unrealistic, and it leads to the unrealistic behaviour
of the system: when the numbers of infectives and susceptibles are large enough but still
biologically feasible, some phase trajectories leave the positive quadrant of the SI space
(that is the positive quadrant is not an invariant set of discrete-time or discrete-step models).

This unlimited growth of the infection probability occurs because by the principle of
mass action for a finite time interval a susceptible may receive an infective dose from more
than one infective and will be counted eventually as several infectives in the next generation.
We have to stress that this is not a consequence of the length discrete time step: it is easy
to see that for transmission governed by the bilinear form with any transmission rate there
are such values of S and I which give the infection probability that is larger that 1. This
unlimited growth of the infection probability is a specific feature of discrete-time systems
exclusively, and that the bilinear incidence rate associated with the principle of mass action
is adequate for continuous-time models.

Furthermore, the principle of mass action assumes homogeneous mixing of the popu-
lation and homogeneous environment, which can be unrealistic in some cases. To avoid
these and other problems, other forms of transmission can be suggested. We now consider
a number of examples.

Example 3.1. Bartlett [4] assumed that infective contacts are distributed binomially, and,
instead of the infection probability RoI,, /N, given by the principle of mass action, he used
the expression

1—(1— Ro/N)™.

This function reduces to the standard mass action form when RyI,, /N is very small. This
infection probability leads to the equations

Ro In
Sn+1 = bN+Sn 1_W —CSn,

Ro\\™
I = Sn—Sn<1—W°> .
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Figure 2. The probability for a susceptible to be infected during a generation for different
transmission functions. Here (a) is the data for the principle of mass action; (b) and (c)
are for binomial and Poisson distributions of infective contacts (these curves practically
coincide); (d) to (h) are for negative binomial distribution with m = 0.1, 0.5, 1.0, 5.0,10.0
respectively. All data for N = 10°® and Ry = 10.

Example 3.2. Infectious contacts are rare events (compared with the population size), and
hence we can assume that the number of contacts is a Poisson variate. According to the
principle of mass action, the average number of infective contacts per susceptible (the ex-
pectation) is

= Rol,/N.

If the infective contacts have a Poisson distribution, then the probability for a susceptible
to escape infection is exp(—pu), which leads us to the infection probability

1 —exp(—RyI/N),

and to the disease transmission function S — S exp(—RoI/N). The corresponding system
is

Sn+1 = bN + Spexp(—Roln/N) — cSh,
In+1 = Sn - Sn eXp(—R()In/N).

A transmission function of this form was used by Cullen et al. [8] and Hoppensteadt [12,
13] (who did not mention that this transmission function is due to the Poisson distribution
of infectious contacts).

Example 3.3. To examine the impact of spatial heterogeneity due, for example, to de-
mographic, social or geographical factors, the negative binomial distribution of infective
contacts can be used. Specifically, the negative binomial distribution has been used to de-
scribe variation in the environment and diversity leading to a qualitative change in system
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behaviour [22, p. 94]. The stabilisation of the Nicholson-Bailey host-parasitoid system (see
Hassell [11] for details) is the classical example.

Let = be a random variable having a Poisson distribution p*e #/k! (k = 0,1,2,...)
which is the probability that a susceptible has k infective contacts. Inhomogeneity, whether
due to social or geographical factors, can be captured if x > 0 is itself considered as a
random variable with probability density function

m—1_—ap

P(u)=r(m)u e,

where m, o > 0 are constant parameters. Then the probability that x takes the value k is

00 ke—
aw = [TF © " P(u) d

oo ,ko—1 m
— p-e o m—1_—ap d
/0 o Tmt ¢

B < o >m -m ) (=1)*
- \l+4a ko] (14 a)k
This is the negative binomial distribution with mean m /« and variance m(1 + «)/a?.

The parameter o can be eliminated by assuming that the mean is the average number of
infective contacts per susceptible, that is

m - R()In

«o N

Then the probability of a susceptible escaping infection is

Q(0) = (1 + é)m - <1 + ROI")Am,

mN

which leads to the transmission function

oo

and to the model equations

RoIN™™
Sps1 = BN +S, (1+—°> — ¢S,
mN
RoI\™™
I, = Sp|1—-(14— .
+1 S [ ( +mN) }

The transmission function of this form was used by Cullen et al. [9].

Example 3.4. Cullen ef al. [8] suggested to consider the susceptibles as a collection of
marbles in a bag, and each contact with an infective is equivalent to taking a marble out of
the bag and then replacing it in the bag. The total number of times a marble is withdrawn
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from the bag (the total number of trials) equals the total number of contacts between infec-
tives and susceptibles during a generation and is assumed to be given by the mass action
principle (2.2). The probability that a particular marble is not withdrawn on any particular
trial is (S — 1)/S. Hence the probability that a particular marble is not withdrawn on any
of the trials during a generation is

IS

S —1\F¥
)

and the number of susceptibles (marbles) that remain uninfected at the end of the generation

1S
g(5-1 Ro'%
(5)

This leads to the transmission function

S —1\* IS
S_S(T) , wherek:ROW,

and to the system of difference equations

k
Swnt = BN +5, (Z2) s,
Sn
S, —1\*
)

Figure 2 shows the probability for a susceptible to be infected during a generation as a
function of I for different transmission functions. Note that the infection probability under
the principle of mass action grows linearly with I, and can be larger that one. We would like
to note that the binomial and Poisson distributions of infective contacts provide practically
indistinguishable infection probabilities.

In—H = Sn _Sn<

4. Stability of a General Model with Nonlinear Transmission

If we assume that disease transmission is governed by an unspecified function of the general
form F(S,I,N), then

Spi1 = Sp—F(Sp,In,N)+bN — cSy,
Int1 = F(Sp,In, N). (4.4)

To be a disease transmission function, the function F'(S, I, N) must satisfy the condi-
tions

F(S,I,N)>0 forall S,I>0 4.5
and
F(S,0,N)=F(0,I,N)=0. (4.6)
Also for all S, I, N > 0 the function F'(S, I, N) must satisfy the conditions
OF OF OF
— —_ — <0. 4,
8S>0’ 8]>0’ 8N_O 4.7
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Since the number of infectives in the (n+ 1)th generation can not exceed the number of
susceptibles in the nth generation, the function F'(S, I, N') must also satisfy the condition

Ini1 = F(Sn, I, N) < Sy (4.8)

Since the probability for a susceptible to be infected for a generation is less than one,
we must expect that the increase of the susceptible population by one person will lead to
the increase of the next generation infected population by less than one individual, that is
the condition

OF(S,I,N) 1
85

holds. Note that the condition (4.8) follows from the condition (4.9).

Furthermore, for a finite time interval a susceptible may come into infective contact a
number of times and may be considered as a number of infectives in the next generation. To
avoid “multiple” infection of a susceptible, a transmission function must necessarily satisfy
the condition

(4.9)

2
0°F(S,I,N) <o,
oI
Note that the mass action model (2.3) does not satisfy condition (4.10) and what is
more important, conditions (4.8) and (4.9) do not hold for this model. All examples of
transmission functions given in Section 3. satisfy conditions (4.5)—(4.9); condition (4.10)
holds for all these functions as well.
The basic reproduction number R of the system may be defined as

forall S,I,N > 0. (4.10)

.. OF(S,I,N)
BolM) =g Mo ar

It is easy to see that for all the above examples of transmission function this limit is
equal to Ry indeed. We also define the “effective reproduction number”

_ o OF(S,LN)
P= 6100, ol '

It is easy to see that p = Ry (and Sy = N ) when ¢ = b, and that p = gRo when
transmission depends linearly on S.

If ¢ # 0, the system (4.4) has an infection-free equilibrium state Qo = (bN/c,0). Apart
from this, the system can have endemic equilibrium states satisfying

I* =bN —cS*,  F(S*,I*,N)=1I". 4.11)

Condition (4.8) implies that S* > bN > I* (in fact, for most infectious diseases of
humans S* ~ N/Ry > bN).

Lemma 4.1. If ZESLN) < ( holds for all S, I, N > 0, then 2EE-IWN) < 1
or oI
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F(S,LN)

I* 1

Figure 3. Transmission function F'(S, I, N) as a function of I (see text for details).

Proof. Assume that
OF(S*,I*,N)
oI
Then, by (4.6) and (4.11), and by the mean value theorem, there exists a point (S*, I1),
I, € (0,I%) such that

> 1. (4.12)

OF(S*,I,N) _ F(S*,I*,N) — F(S*,0,N) _

1.
oI I*-0

Applying the mean value theorem to the function g(I) = %@-

if (4.12) holds, then there exists a point (S*, Iy), Iy € (I1,I*) such that

, we get that,

* OF(S*,I1* N OF(S*,I,N
82F(S,10,N): (61 )_ (811 )>0
o012 I*— 1 '

This contradicts the hypothesis of this Lemma, and hence a—F%f*—M < 1. Further-

more, under condition (4.10) the strict equality w = 1holds only if mF—gJ’hN) =

0 for all I € (0, I*). Figure 3 shows a function with ZEELNY) < ( and a function with

or
2
8 F((;,I,N) _o O

Conditions (4.7) and (4.10) ensure that the endemic equilibrium state is unique.

Lemma 4.2. If
0?F(S,I,N)
oI?
holds for all S,I,N > 0, and p > 1, then, apart from the infection-free equilibrium
state Qq, there exists an unique positive endemic equilibrium state Q* satisfying equalities
(4.11). If p < 1 then the infection free equilibrium state is the only non-negative equilibrium
of the system.

<0
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S

S, h,

I

Figure 4. The curves h; and hy. See text for details.

Proof. Let us consider the curves defined by the equalities (4.11) on the ST plane, denoting
them by h; and hg respectively (Fig. 4).

The first equality, I + ¢S = bV, defines a negatively-sloped straight line h;. Existence
of the curve ho, defined by the equality F(S,I,N) — I = 0, is ensured by the implicit

OF(S,1
function theorem and by the condition % > 0. For the slope of the curve hs we
have -
h/ _ _@ —_ 1 B W
2~ dr< = OF

EE)
Lemma 4.1 holds for all S, I satisfying the equality F'(S, I, N)—I = 0, and hence the curve
hs is positively sloped (or at least, non-negatively sloped). Therefore, if S, = ha(0) <
So = bN/m = h;(0), then there is an unique point of intersection of the curves h; and hs.

Otherwise, that is if S > Sy, the curves hy and hy do not intersect.
F
The value S, = hg(0) is either a minimal value of S such that OF(5,0) = 1 holds,

al
OF (S, 0)
I

or, if such a value does not exist (for example, if is unlimited for all S > 0,

OF(S,0
as in the case of an exponent), S, = 0. By (4.6) and (4.7), M

ol
F
function of S, and hence the condition w > 1 is sufficient to ensure that S, <

So = bN/c. O

is a non-decreasing

The following theorem is a straightforward consequence of Lemma 4.1.

Theorem 4.3. If p > 1 and
0’F(S,I,N)
— 1" 70
oI? -
forall S, 1, N > 0, then the endemic equilibrium state Q* of the system (4.4) is asymptoti-
cally stable. If p < 1, then the system has no positive equilibrium state, and the infection-
free equilibrium is asymptotically stable.
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ian of the system (4.4) is

1l—c—9E _OF

_ oS al
J = oF oF
oS I

The characteristic equation of the Jacobian is

/\2—a1/\+a2:O,

where as = det J = (1 — c)a—F anda; =trJ = —+1—-c— (‘;_F Since c is the prob-
ability for a susceptible to die during a generation, a; > 0. Depending on the sign of
a1 = A1 + A2 > 0, there are three possibilities:

(?) both roots of the characteristic equation are complex conjugate;

(if) both roots of the characteristic equation are real and positive (in this case a; > 0);

(#ii) both roots of the characteristic equation are real and negative (in this case a; < 0).

By Lemma 4.1, at the endemic equilibrium state Q* = (S*,[*), ag < 1. Therefore,
if the roots are complex conjugate, then |A| = y/az < 1 (where strict equality holds only
when ¢ = 0 and azia(}g*’rl) = 0 for all I € (0,I%)), and hence the equilibrium state is
asymptotically stable in this case. If the roots are real and positive (a; > 0 holds in this
case) then we note that at Q*, by Lemma 4.1, a; < 1 + a2, and hence

a1 t+y/a] —day Jltat VIia) —dan _

1= 2 2 — 4

/2

a1 — +/ay — 4as
Ay = 21

Therefore, the equilibrium state Q* is asymptotically stable in this case. If the roots are

real and negative, then a; < 0 holds, and we note that, by (4.9),

and

<\ <Ll

|a|—)8F+1—c—aFl< <1
U =137 55 c .
Hence,
\/a2—4a2 \/a2
| = |- X1 = <ﬂ+—1:|a1|<m<1
2 2 2 2
and
a \/a%—4a2
|>\1|= 7+T <‘A2’.

Hence the equilibrium state Q* is asymptotically stable in this case as well.

At the infection-free equilibrium @, az = (1 — ¢)pand a; = p + 1 — c. For this equi-
librium state a? — 4a2 = (p+ ¢ — 1)%, and hence A\; = pand Ay = 1 — ¢ < 1. That is, the
infection free equilibrium @) is a stable node when p < 1, and a saddle point when p > 1.

This completes the proof. O
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It is remarkable that stability of the equilibrium states is independent of how the trans-
mission rate depends on the number of susceptibles.

All examples of disease transmission functions given in Section 3. satisfy condi-
tions (4.5)—(4.10). Therefore, according to Theorem 4.3, all these transmission functions
lead to the systems having asymptotically stable endemic equilibria states. We now proceed
to analyse the impact of mortality caused by the disease on this disease dynamics.

S. Disease-Induced Mortality

The dynamics of a host-microparasite system depends on the size of the host population,
and that varies in time because, firstly, the host population varies as a consequence of or-
dinary demographic processes (growth or decline of a population), and secondly, a disease
itself may cause population size variations. For most human infections (with a very few
exceptions the most notorious of which is HIV) the demographic processes are slow com-
pared with epidemic processes. That is, in other words, the characteristic time scale of the
demographic process is considerably longer than that for the epidemic process. Therefore
a system combining both demographic and epidemic processes is a “slow-fast” (or “singu-
larly perturbed”) system, where the demographic process is “slow” whereas the epidemic
process is “fast”. A traditional approach to such a system is to consider in the first instance
the so-called “frozen” system, that is a system where the slow process is neglected, and the
corresponding slow-varying variables (the population size in this case) are postulated con-
stant. For epidemic models this leads to the traditional constant population size assumption.

However, while for the demographic processes the constant population size assumption
is a well posed and sound assumption, it is questionable for the population variation caused
by the disease: in this case variations in the population size, however small they are, co-
incide in their occurrence with disease outbreak, and hence their characteristic time-scales
coincide. For this reason the variation of the population caused by the disease cannot be
omitted so easily as the “slow” demographic variations.

While the influence of “slow” demographic variation of the population size has been
considered by a number of authors, the impact of the disease-induced variations of the pop-
ulation size on the disease dynamics has so far not been studied systematically. Here we
attempt to investigate the impact of the mortality caused by a disease on the disease dy-
namics, and we come to the conclusion that under some circumstances this mortality, even
if small, may affect the system by destabilising an otherwise stable endemic equilibrium
state.

The direct consequence of disease-induced mortality is a reduction of the population
size, which can affect behaviour of the system in two different ways. Firstly, disease-
induced deaths directly decrease the birth of new susceptibles which is usually assumed to
be proportional to the population size (we call this Effect A). Secondly, the probability for
a susceptible to come into an infective contact and to be infected is inversely proportional
to the population size, and hence decreasing the population size can effectively increase the
disease transmission (we call this Effect B).

N.T.J. Bailey was probably the first scientist who made an attempt to consider the im-
pact of disease-induced mortality on disease dynamics and come to the conclusion that it
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may affect the system stability [3, p. 142]. He considered a STR model for a disease as-
sumed to be lethal to all those contracting it and sufficiently virulent to suppress any live
births amongst circulating infectives. Thus all removals are in fact deaths, and make no
further contribution to the life of the community, and all new susceptible births therefore
arise solely from the susceptible group itself, i.e. reproduction of new susceptibles in this
case is proportional to the number of susceptibles S only. Under these assumptions the
S1R model equations are [3, p. 142]

S=~S—-p8SI, I=pSI-ol, (5.13)

where I and S are numbers of infected and susceptibles respectively, (3 is incidence rate,
~ is host reproduction rate and o is rate of removals. The system (5.13) is the Lotka-
Volterra prey-predator system where the “prey” are the susceptibles and the “predators” are
the infected. This system is known to be neutrally stable and structurally unstable. The
phase trajectories of the system (5.13) are an one-parameter family of closed curves given
by its first integral

VS, I)=5—-S*"InS+1—-TI"Inl,

where S* = o/, I* = «/[3 are the equilibrium levels of the susceptibles and the infected
respectively [10, 22].

Bailey’s analysis is not complete: of the two effects mentioned above he considered
only Effect A and disregarded dependence of the incidence rate on the population size.
That is. However even this incomplete analysis indicates that the mortality associated with
the disease may affect the system stability: for a lethal disease Effect A alone is able to put
the system on the edge of stability.

It may appear at first that incorporating the disease-induced mortality into an epidemic
model does not greatly affect its analysis. However, with the constant population size as-
sumption we can reduce the system dimension by one, so if this assumption is omitted then
we must consider the full system whose dimension is equal to the number of compartments.
This leads to unexpected complications. Firstly, such a system may either have no non-zero
equilibrium states at all, or have a continuum of these. Secondly, as we have mentioned
already the natural growth or decline of the population is a slow process compared with the
epidemic processes, and hence they should be considered separately.

Here we apply an approach adopted from perturbation theory. Let us assume that as a
consequence of the disease a portion of infectives § in the nth generation dies (that is 0 <
0 < 1is a mortality expectation). We assume that in absence of the disease the population
is static or varies slowly enough to justify the constant population size assumption. Then
the population size in the nth generation is

Npy1=Np—6I,=No—06> I (5.14)
=0

We further assume that the magnitudes of the variations of the population size caused

by the disease are small compared with the population size itself. This may be due to a

comparatively low number of cases or a low value of the mortality expectation §. Then we
can assume that

N, = N = const, (5.15)
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while at the same time, according to equation (5.14),

ONo _ o ONa _

oI, S,

0. (5.16)

We have to stress that the assumptions (5.15) and (5.16) are independent assumptions.

As aresult of the incorporation of disease-induced mortality given by equations (5.14)—
(5.16) into the system (2.3), the system behaviour can change remarkably: a supercritical
Hopf bifurcation may occur in the system, the stable equilibrium can reverse its stability
and a stable limit cycle can arise. The approach used here is intuitively straightforward, but
it may appear to be not rigorous enough. The justification of this approach is given in the
Appendix.

Remark 5.1. In discrete-time systems the appearance of a closed invariant curve surround-
ing a fixed point while a pair of complex multipliers crosses the unit circle is sometimes
referred to as a Neimark-Sacker bifurcation, rather than Hopf bifurcation; the latter term is
reserved for a similar bifurcation in continuous-time systems [18, ch. 4]. However, here we
prefer to use the term Hopf bifurcation as it is more familiar to the majority of readers.

Theorem 5.2. There is a critical value d., > 0 such that the endemic equilibrium state Q*
of the system (2.3) with disease-associated mortality defined by the equations (5.14)—(5.16)
is asymptotically stable for all 0 < & < 6., and unstable for all § > i,

Proof. According to (5.14), N depends on I, and hence, by (5.16),

dF_8F+6F8N_6F_8_F
dIl 9 ON 9l 9l ON’
The Jacobian of the system (4.4) is now

(5.17)

aF oF OF
lel—c—ﬁ —6b—w+6ml‘
35 oI

OF OF _ 5OF
N

Here the term —¢ g—f, is due to Effect B; the term —db reflects the contribution of Ef-

fect A. The characteristic equation is

)\2—a1)\+a2=0,

Where OF OF OF
agzdeth(1—0)5T+(5<b5—8——(1—0)8—N>
and OF _OF OF
a=tl=Fr Oyt 5

The characteristic multipliers A1, A2 are complex conjugate if D = a% —4ay <0 holds_.
The fixed point Q* reverses its stability when the pair of complex conjugate multipliers A, A
crosses the unit circle in the complex plane, i.e. when |A| = 1. This condition holds when
as = 1, that is at

0
1-(1-c)%r

Ocr = 5 {9F'
b5s — (1 —o)gx

(5.18)
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At 6 = d., ao = 1, and hence

OGO I 5,2, 00
oI~ "aN ~ ‘oI 25 " “ON
and
oOF oOF OF\?
2 4 [(1_ I 97N -
D(dcr) = a7 — 4as (1 c(l 6I> 5caN (1+6b) 85) 4.
Therefore, D < 0 (and hence the multipliers A;, A2 are complex conjugate) if
oF OF

holds at Q*. This condition holds for all realistic models, since §,c < 1 and g—f, < % for
all biologically feasible S, I and N, including Q*. It is easy to see that this condition holds

for all models given in Section 3..

Oa
Furthermore, —— < 0 ensures =2 0, and hence the absolute value of the character-

istic multipliers grows with 4. That is the bifurcation is supercritical (the fixed point loses
its stability as § grows).
This completes the proof. O

Theorem 5.2 states only that as § increases, the stability of the fixed point Q* of the
system reverses. However, this theorem does not provide a necessary condition for a su-
percritical Hopf bifurcation, i.e. for existence of a stable limit cycle in the phase space of
the system for & > J.,. For the Hopf bifurcation to occur in the system (and for the limit
cycle to appear) an additional condition, namely that at 6 = J,, the fixed point is a weak
attractor [18, 19, p. 23], is necessary. In practice, this condition holds for robust systems [2,
p. 93]. However, pathological cases, such that at § = ., the fixed point is neutrally stable,
are possible. Andronov’s theorem [2, p. 93] states that for any structurally unstable sys-
tem there are “close” structurally stable systems such that a supercritical Hopf bifurcation
occurs at the same, or a close value of the bifurcation parameter.

While § grows further beyond 6., one more bifurcation of the fixed point Q* can occur:
an unstable focus can bifurcate into an unstable node.

6. Stability and Bifurcation of the Specific Models

Though Theorem 5.2 ensures that the positive value d,, exists for all disease transmission
functions F'(S, I, N) satisfying conditions (4.7)—(4.11), only 6 < 1 is biologically realistic.
For human populations b, ¢ < 1, and the divisor in the equation (5.18), namely

OF(S*,I*) OF(S*,I*)
e T
is a very small value. For instance, for the mass action model, S* = N/Ry, [* =
(Rob — ¢) N/ Ry, and
OF(S*,I*) OF (S*,I%) OF(S*,I™) Rob —c
—_— =1, ————~ = Rgb—c, = — .
ol oS ON Ry
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Hence the divisor is

Rob — ¢ 2 c c?
= b+ Rob* — 2bc — — + — = b.
0 o ¢ R0+R0

b(Rob — C) + (1 — C)

It can differ for other models, however it is easy to see that it is of the same order for all
disease transmission functions mentioned in Section 3., and we may expect that it will be
of the same order for all realistic disease transmission functions. Therefore, d., < 1 holds
only for transmission functions F'(S, I, N) such that 1 — (1 — 0)% is of the same
order as the denominator. Generally, é., grows with the difference.

For the mass action model

1
az = (1—c) +05-(Rob—c) (Rob+1 ),
0

and
& ROC

Ocr = .
¢ (Rob - 6)2 + (Rob - C)

It is easy to see that d., depends on two constants, A; = Roc and Ay = Ropb — ¢, and
is independent of the population size N. Furthermore, J., grows as ¢ grows, and ., = 0
when ¢ = 0. However, since we may expect that ¢ does not exceed b, d., < 1.

It is easy to see that for any model ., grows monotonically with ¢, and hence d., is
minimal when ¢ = 0. In the case ¢ = 0, for the model with Poisson distribution of infective
contacts

bN
I* =bN St oo
’ 1 — exp(—Rob)
and the disease transmission function satisfies
OF(S*,I*) exp(—Rob)
G g
oI 1 — exp(—Rob)
% = 1- exp(—ROb)’
OF(S*,I*) 5 exp(—Rpb)
—_——~ = —Rpp)—m——.
ON 1 — exp(—Rpb)

(Note that the condition (5.19) that the multipliers are complex conjugate holds for this
model.) Denoting o = 6b, o, = d.b and € = Rpb, we obtain

az =e€(l+ 0‘)% + o(1 — exp(—¢))
and
oo — 1—(1+€)exp(—e)

(1 — exp(—¢))? + eexp(—e€)’

In the case ¢ = 0, ay and consequently ., depend on the parameters b and Ry only
and this makes further calculations comparatively simple. The function o, (€) satisfies
lime_00e = 0 and lim._,o, 0o = 1, and increases monotonically on the positive semi-
axes € > 0 ensuring that there is a o € (0, 1) for all € > 0 (Fig. 5).
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Figure 5. o, versus € for ¢ = 0 for Poisson distribution of infective contacts.

However, since for the majority of human infections b < 1, only very small values of
o and e are of the interest. In the vicinity of zero the estimation

le - -1-62 < O < <€

2 3 T2

holds. Consequently, for small values of ¢, d,, is of the same order as Ry which is too large
a value for the typical mortality expectation §. In fact, recalling that Ry ~ 10, we come
to the condition that, in the case of the Poisson distribution of infective contacts, b ~ 101
should hold in order to ensure §., < 1. Such values of b are too high for the majority of

human infections. For ¢ > 0, d,, is even higher.

6.1. Negative Binomial Distribution

In the case of the negative binomial distribution of infective contacts for ¢ = 0,

bN

I*=bN, §*= ,
1— (1 + Rob/m)—™

and the transmission function satisfies

OF(S*,1%) _ Rb(H@)‘("’*” 1 (14 20
oI 0 m m ’

OF(S*, I*) Rob\ ™™
—_— 0 2 — 14+ ==

oS 1 ( = m ) ’
OF (S*,I*) S* ( R0b>‘(m+1) .

_ i i — 2
N = RobN 1+ =, Ryb

(14 Rob/m)~(m+1)
1 — (14 Rob/m)—m"
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Hence, using ¢, o notation,

(1+ ¢/m)~(m+1)
1-(1+¢/m)—m™

as = €(1+ o) +o(1—(14+¢/m)™™)

and
1= (1+e/m)™™ —€(1 + e/m)~(m+D)
(1= (14 ¢/m)=™)? 4 €(1 + ¢/m)~(m+1)’

Again as for the Poisson distribution both the parameters ay and d.. depend on the
constants b and Ry only which makes further calculations comparatively simple. As in
the case of the Poisson distribution, the function o, (€) satisfies lim,_,go., = 0 and
lime . 0c = 1. (In contrast with the Poisson distribution the function o.(¢) does not
grow monotonically reaching a maximum on the axes € € (0,00).) In the vicinity of zero
for the function o, (€) the inequalities

cr

%m(m+1)e—%(m+1)(m+2)e2 Im+1
3 < O < 5

€

m m

hold. Therefore for small € values in the case of the negative binomial distribution the value
of ., is even higher than for the Poisson distribution, approaching the latter as m — oo.

7. Discussion and Conclusion

In this paper we assume that a disease transmission function F'(S, I, N) satisfies the condi-
tion
0?F(S,I,N)
oI

This condition ensures uniqueness and stability of the endemic equilibrium state of the
models considered. We should stress that this result is valid for autonomous models with
the assumption of constant population size.

It also follows from this result that to have an unstable equilibrium the transmission
function F'(S, I, N') must necessarily be a convex function with respect to the variable I at
least at some points. This leads us to the question whether a transmission function convex
with respect to the variable [ is biologically feasible. In the case of continuous-time models
convexity of the incidence rate may be associated with some form of cooperation or com-
munity effect [16]. However for discrete-time models the situation is completely different:
for such models to avoid a multiple infection and to have realistic limited infection prob-
ability (see Section 3.) a disease transmission function must necessarily be concave with
respect to I (that is satisfy (4.10)). The same result, a concave disease transmission func-
tion, can be obtained by the introduction of a non-homogeneous population structure; for
example, the negative binomial distribution is associated with a distinctively concave trans-
mission function. It is remarkable that the properties of the steady-states are completely
independent of how the transmission rate depends on the number of susceptibles.

We would like to note that the same result, that is stability of the endemic equilibrium
states of models with incidence rates concave with respect to I, holds for continuous-time
models as well [16].

<0.
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In the case of the system (4.4), disease-induced mortality affects the system stability
in two ways: through decrease of the total births due to the reduction of population size
(Effect A) and through intensification of disease transmission due to the rise of the infective
contact probability (Effect B). Though much more sophisticated models — continuous-time
or discrete-time — can be considered, Effects A and B remain the most important factors
for the system dynamics.

In the case of the system (4.4), by equation (5.18) the contributions of these two effects
toward instability are (5b%;1*) and —4(1—¢) % (remember that g—ﬁ < 0) respec-
tively. For example, in the case of mass action (2.3) Effect A (birth rate decline) contributes
0b(Rob— c) toward instability, and Effect B (increase of infective contacts probability) adds
d(1—c)(b—c/Ry). For other possible disease transmission functions, such as those given in
Section 3., the values of the partial derivatives = (g;’l ) and & (aS ]:,’I 2 can differ from those
for mass action, however they are of the same order (at least for the transmission functions
given in Section 3.), and hence we can expect that the contribution of these Effects will be
of the same order as well.

For human communities the birth ratio b is fairly small: humans reproduce with rate
about 2-3% of a population size per annum while for the majority of infections there are
tens of generations per year; that is b ~ 1073, Though for endemically persistent diseases
the basic reproduction number Ry > 1 always, it never reaches or exceeds 100. Con-
sequently, for the majority of human diseases Rob ~ 1072 and Rob < 1; therefore for
human communities and for the mass action model (2.3), of the two factors, Effect B (in-
crease of the disease transmission) prevails. For the majority of domestic and wild animals
the host reproduction number b is considerably higher than that for humans and can reach
(for rodents) values of order 10~1. Furthermore, for many social animals the disease re-
production number Ry can be higher than that for humans. Then the impact of Effects A
and B can be comparable, or even Effect A can prevail. Whether each of these two effects
manifests itself in a specific case depends on the infection in question.

The analysis of specific models shows that for the Poisson distribution and negative
binomial distribution J,., tends to be larger than one, whereas for mass action 6., ~ ¢/b. As
we already have mentioned, for animals a value of the divisor

OF(S*, I*) OF(S*, I*)

b—%5 — ~ -9y

is considerably higher than for humans, and since the probability of death due to a disease
for animals is higher than that for humans, disease-induced mortality would more often lead
to self-sustained oscillations in animal populations.

Bubonic plague is an example of infection when mortality can affect the system sta-
bility. Bubonic plague is in a fact a rat disease. Humans contact it as a consequence of
disease outbreak in rat communities. For rats the host reproduction rate b as well as the
basic reproduction number R are much higher than for humans. Since the mortality ratio d
for bubonic plague is high (tends to 1.0), we can expect that high magnitude self-sustained
oscillations caused by disease-induced mortality can occur in an infected rat community.

It is noteworthy that the characteristic multipliers of the system decrease and the critical
value d., grows as the susceptible mortality rate c increases. This can explain an observed
phenomenon that, in spite of the difference in the quality of public health systems, in the
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prevaccination era the magnitudes of measles epidemics in England and Wales were higher
than in India and Bangladesh.

The approach applied in this paper can be used for more sophisticated discrete-time and
continuous-time models. Though for specific models critical values of death expectation
can differ, the qualitative result will be the same, namely that disease-induced mortality is
a destabilising factor.

Appendix
We are interested in the stability of the system

Sn+1 = Sp— F(Sn, In,Ny) + bNy, — cSh,
In+1 = F(SnalmNn)a

Npy1i = No—0I,=No—6)> L.
1=0

It is easy to see that for an endemically persistent infection (that is for I > 0) this system
has no fixed points for all § # 0. However, we may consider the stability of the phase
orbit initiated at the point (S*, I'*, Ny), where S* and I* are the coordinate of the endemic
equilibrium state Q* of the system with § = 0 (we will denote this orbit by 7).

It is obvious that for § # 0 the population size N monotonically decreases, and we
are interested whether the phase orbits initiated near the point (S*, I*, Ny) will approach
the orbit g. Therefore, instead of stability of the three-dimensional system, we consider a
projection of the system to the ST plane. The behaviour of such a projection is governed by
the equations

n n
Sny1 = Su—F (Sn,In,No—ézI,) +b(N0 —525) — ¢Sp,

=0 =0
n
Inyr = F(Sn,fn,No—ézL-).
=0

In is easy to see that these equations do not depend on N. Linearising this system in the
vicinity of the orbit vy, we obtain the Jacobian (5.17) and Theorem 5.2.
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