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APPENDICES – WAVES AND PATTERNING IN DEVELOPMENTAL BIOLOGY :
VERTEBRATE SEGMENTATION AND FEATHER BUD FORMATION AS CASE

STUDIES

RUTH E. BAKER, SANTIAGO SCHNELL AND PHILIP K. MAINI

ABSTRACT. In this article we will discuss the integration of developmental patterning mechanisms
with waves of competency, which control the ability of a homogeneous field of cells to react to
pattern forming cues and generate spatially heterogeneouspatterns. We base our discussion around
two well known patterning events which take place in the early embryo: somitogenesis and feather
bud formation. We outline mathematical models to describe each patterning mechanism, present the
results of numerical simulations and discuss the validity of each model in relation to our example
patterning processes.

APPENDIX A. CLOCK AND WAVEFRONT MODEL

In (Baker et al., 2006a,b) we develop a mathematical formulation of the clock and wavefront
model using the assumptions of Pourquié and co-workers: the segmentation clock controlswhen
the boundaries of the somites form and the FGF8 wavefront controls wherethey form (Dubrulle
et al., 2001; Tabin and Johnson, 2001; Dubrulle and Pourquie, 2002). In addition, we assume the
following: (i) once cells reach the threshold level of FGF8,they become competent to segment
by gaining the ability to respond to a chemical signal, thereby producing a somitic factor; (ii)
after reaching the threshold level, cells undergo one oscillation of the segmentation clock and
then become competent to produce the aforementioned signal; (iii) once a cell reacts to the signal
and becomes part of a somite, it becomes refractory to FGF signalling. A cell becomes part of a
coherent somite with other cells which begin to produce a high level of somitic factor at a similar
time.

The mathematical model is based around the signalling modelfor somitogenesis, first proposed
by Maini and co-workers (Collier et al., 2000; Baker et al., 2003; McInerney et al., 2004; Schnell
et al., 2002). A verbal description of the model (first proposed in (Primmett et al., 1989)) can be
outlined as follows: at a certain time, a small fraction of cells at the anterior-most end of the PSM
will have undergone a whole oscillation of the segmentationclock after reaching the determination
front. Thesepioneer cellswill produce and emit a signal which will diffuse along the PSM. Any
cell which has a level of FGF8 below that expressed at the determination front will respond to
the signal by producing a somitic factor. At this point, a cell is specified as somitic and it will
go on to form a somite during subsequent oscillations of the segmentation clock: groups of cells
which begin producing somitic factor concurrently will form part of a somite together. The process
begins once again when cells now at the anterior end of the PSMbecome competent to signal. A
negative feedback loop between somitic factor and signalling molecule results in periodic pulses
in the signal and hence the specification of somites at regular time intervals.

The mathematical model constructed from Pourquié’s descriptive clock and wavefront model
consists of a coupled system of three non-linear PDEs. The variables which the system describes
are asomitic factorwhich determines the fate of cells (cells can only form part of a somite with
a high level of somitic factor), adiffusive signalling moleculeproduced by the pioneer cells at the
anterior-most end of the PSM and FGF8, which is able to conferthe ability upon cells to produce
somitic factor and signalling molecule (according to theirlevel of expression of FGF8).
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We choose to model the gradient by assuming that FGF8 is produced only in the tail, that it
diffuses out from the tail along the PSM and undergoes lineardecay (see (Baker et al., 2006b)
for more details). The FGF8 gradient moves in a posterior direction along the PSM and confers
the ability upon cells to produce a somitic factor; at timets later they gain the ability to signal.
Somitic factor production is activated in response to a pulse in signalling molecule emitted from
the pioneer cells at the anterior end of the PSM. Rapid inhibition of signal production by the
somitic factor ensures that peaks in signal concentration are transient and produced at regular
intervals (see (McInerney et al., 2004) for further details).

The system of non-linear PDEs describes the dynamics of somitic factor (u) signalling molecule
(v) and FGF8 (w) and can be written as follows (Baker et al., 2006a,b):

∂u

∂t
=

(u + µv)2

γ + u2
χu − u, (1)

∂v

∂t
= κ

(

χv

ǫ + u
− v

)

+ Dv
∂2v

∂x2
, (2)

∂w

∂t
= χw − ηw + Dw

∂2w

∂x2
, (3)

whereµ, γ, κ, ǫ, η, Dv, Dw are positive parameters. Production ofu, v andw are controlled by
the respective Heaviside functions1

χu = H(w∗ − w), (4)

χv = H(t − t∗(w∗, x) − ts), (5)

χw = H(x − xn − cnt), (6)

wherew∗ is the level of FGF8 at the determination front,t∗(w∗, x) is the time at which a cell
at x reaches the determination front (i.e. w(x, t∗) = w∗), ts is the period of the segmentation
clock,xn represents the initial position of the tail andcn represents the rate at which the AP axis
is extending.

Somitic factor production is activated by the signal and is self-regulating. High levels of somitic
factor also inhibits production of the signal, which is ableto diffuse. For a more detailed expla-
nation of the system of equations describing the somitic factor and the signal see (Collier et al.,
2000; Schnell et al., 2002; McInerney et al., 2004). FGF8 is produced only in the tail region of the
embryo.

The boundary conditions are taken to be

u, v → 0 as x − {xn + ct} → +∞,
u, v are bounded asx − {xn + ct} → −∞,
w is bounded as x − {xn + ct} → +∞,
w → 0 as x − {xn + ct} → −∞.

(7)

The initial conditions foru andv are taken to be (McInerney et al., 2004):

u(x, 0) =

{

1 if x ≤ 0,
0 if x > 0,

(8)

and

v(x, 0) = A∗H(−x) + B∗ cosh(λ(l − |x|)), (9)

where

A∗ =
1

1 + ǫ − ǫ1
, B∗ =

A∗sign(x)

2 cosh(λl)
, λ =

√

κ

Dv
, (10)

1The Heaviside functionH(x) is equal to unity ifx > 0 and zero otherwise: in this way it acts like a switch.
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Figure 1. Numerical solution of the clock and wavefront model in one spatial di-
mension.Continuous regression of the FGF8 wavefront (c), is accompanied by a series
of pulses in signalling molecule (b), and coherent rises in somitic factor concentration
(a).

andǫ1 ≪ 1. Sincew evolves to a travelling wave profile (Baker, 2005; Baker et al., 2006b):

wtw(x) =

{

n
−

η(n
−
−n+) exp{n+(x − xn − cnt)} if x − xn − cnt ≤ 0,

n+

η(n
−
−n+) exp{n−(x − xn − cnt)} + 1

η
if x − xn − cnt > 0,

(11)

we take the initial condition forw to be the state of the travelling wave at timet = 0.
We solved the mathematical formulation of the model numerically using the NAG library rou-

tine D03PCF and the results were plotted using the MATLAB function imagesc. Figures 1(a)–(c)
shows the dynamics of somitic factor, signalling molecule and FGF8, respectively. We see that
the region of high FGF8 expression moves in a posterior direction along the AP axis with constant
speed. A sequence of successive signals, moving in a posterior direction, produces a series of
coherent rises in the level of somitic factor which then enables cells to progress to form discrete
somites.

APPENDIX B. REACTION-DIFFUSION MODEL

We consider two chemicals: an activator (u) and an inhibitor (v). The interactions betweenu
andv and their movement through space can be modelled by the following system of PDEs (Tur-
ing, 1952):

∂u

∂t
= ∇.(∇u) + f(u, v), (12)

∂v

∂t
= ∇.(D∇v) + g(u, v), (13)

wherex ∈ D and t ∈ [0,∞). The left-hand side of each equation represents the change in
chemical concentration over time, the first terms on each of the right-hand sides represent diffusion
of the chemical throughout the volume under consideration and the second terms the interactions
between the chemicals.

Assuming that there is no loss of chemical through the boundary of the domain, we have zero
flux boundary conditions of the formn.∇u = 0 = n.∇v for x ∈ ∂D wheren is the unit normal
to the boundary∂D. Working in one spatial dimension, the domain is given byx ∈ D = (0, L)
and the boundary conditions can be written as∂u/∂x = 0 = ∂v/∂x for x = 0, L.

The condition fordiffusion-driven instability(Turing, 1952), and hence a spatial pattern in
chemical concentration, is that the steady state concentrations ofu andv must be stable to small
perturbations in the absence of diffusion, but become unstable when diffusive effects are added.
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We demonstrate this phenomenon with an example using the Gierer-Meinhardt scheme (Gierer
and Meinhardt, 1972) to describe the interactions betweenu andv:

∂u

∂t
= ∇.(∇u) +

u2

v
− bu, (14)

∂v

∂t
= ∇.(D∇v) + u2 − v, (15)

whereb > 0. Hereu activates its own production (self-activation) and also that of v, whilst v
inhibits both its own production (self-inhibition) and that of u. The spatially uniform steady states
(u0, v0) of the model satisfy

u2
0

v0
− bu0 = 0 = u2

0 − v0 ⇒ (u0, v0) =

(

1

b
,

1

b2

)

. (16)

We wish to investigate the stability of this steady state to small perturbations inu andv concentra-
tion. Lettingu = u0 + ũ andv = v0 + ṽ, whereũ andṽ are small, and substituting into equations
(14), (15) gives

∂ũ

∂t
= ∇.(∇ũ) +

(u0 + ũ)2

(v0 + ṽ)
− b(u0 + ũ), (17)

∂ṽ

∂t
= ∇.(D∇ṽ) + (u0 + ũ)2 − (v0 + ṽ). (18)

Considering only terms which are linear iñu andṽ we have the following system

∂ũ

∂t
= ∇.(∇ũ) + bũ − b2ṽ, (19)

∂ṽ

∂t
= ∇.(D∇ṽ) +

2

b
ũ − ṽ, (20)

which describes the behaviour whilst|ũ|, |ṽ| remain small. To see if small perturbations to the
system will grow, we consider finding solutions forũ andṽ which are of the form

ũ = α exp(λt + ikx), ṽ = β exp(λt + ikx). (21)

The termexp(ikx) describes the spatial pattern, whilst the termexp(λt) describes the amplitude
of the spatial oscillations. For a stable steady state, small disturbances must decay with time and
hence the real part ofλ must be negative, whilst for fluctuations to grow into a spatial pattern the
real part ofλ must be positive.

Substituting (21) into equations (19) and (20) gives
(

λũ
λṽ

)

=

(

b − k2 −b2

2/b −1 − Dk2

)(

ũ
ṽ

)

, (22)

which has solutions if and only if

λ2 + [(D + 1)k2 + (1 − b)]λ + h(k2) = 0, (23)

where

h(k2) = Dk4 + (1 − bD)k2 + b. (24)

For the steady state to be stable in the absence of diffusion (k2 = 0) the solutions of

λ2 + (1 − b)λ + b = 0, (25)

must have negative real parts. This occurs ifb < 1. For the steady state to be unstable in the
presence of diffusion (k2 6= 0) equation (23) must have at least one root with positive realpart.
Sinceb < 1, this occurs ifh(k2) < 0 for somek2 6= 0. The minimum ofh(k2) occurs where

dh(k2)

dk2
= 2Dk2 + (1 − bD) = 0 ⇒ k2

crit =
Db − 1

2D
, (26)
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Figure 2. A plot of h(k2) as given by equation (24).The roots are given approximately
by k2

− = 0.0426 andk2
+ = 0.2741 (red asterisks), which gives a range of admissible

modes:n = 6, 7, . . . , 13. Parameters are as follows:D = 30 andb = 0.35.

and hence we see thath(k2) < 0 if Db > 3 + 2
√

2. The wave numbers of the admissible
modes,i.e. the values ofk2 which result in a spatially heterogeneous solution, are those such that
k2
− < k2 < k2

+ where

k2
± =

1

2D

[

(bD − 1) ±
√

(bD − 1)2 − 4Db
]

. (27)

The general solution of the linearised sytem (in 1D) can be written in the form

ũ(x, t) = eλ(k2)t [A cos(kx) + B sin(kx)] , (28)

ṽ(x, t) = eλ(k2)t
[

Ã cos(kx) + B̃ sin(kx)
]

. (29)

The boundary condition atx = 0 givesB, B̃ = 0 whilst the boundary condition atx = L requires
that for a non-trivial solutionkL = nπ for n = 0, 1, 2, . . . The general solution can now be written
as a combination of the admissible modes:

ũ(x, t) =
∑

n

Aneλ(k2)t cos
(nπx

L

)

and ṽ(x, t) =
∑

n

Ãneλ(k2)t cos
(nπx

L

)

, (30)

where then satisfy

k2
− <

(nπx

L

)2
< k2

+. (31)

Figure 4 (main text) shows the results of numerical solutionof the system in one spatial di-
mension using the MATLAB function pdepe. The field is initially at the homogeneous steady
state, with small random fluctuations added tou. Over time, the fluctuations are amplified into a
series of peaks and troughs in chemical concentration, withmoden = 9 chosen in this particular
simulation: this is consistent with the set of admissible modes given in Figure 2. Parameters are
as follows:D = 30 andb = 0.35. By way of illustration of the different patterning possibilities,
Figure 5 (main text) shows numerical simulation of the system in two spatial dimensions using the
same parameter values, carried out using COMSOL MULTIPHYSICS.

Notice that with the GM kinetics, the pattern of peaks and troughs coincide as the kinetics are
of pureactivator-inhibitor type: the Jacobian matrix,J , describing the interactions betweenu and



WAVES AND PATTERNING IN DEVELOPMENTAL BIOLOGY – APPENDICES 6

v is of the form

J =

(

∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

)

=

(

+ −
+ −

)

. (32)

However, the Schakenberg kinetics (Schnakenberg, 1979), for example, are ofcrossactivator-
inhibitor type:

J =

(

∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

)

=

(

+ +
− −

)

, (33)

and in this case, a peak inu concentration coincides with a trough inv concentration.

APPENDIX C. CELL-CHEMOTAXIS MODEL

We consider cell density (n) and activator concentration (c). The interactions between cells
and the chemical and their movement through space can be modelled by the following system of
PDEs (Murray, 2003):

∂n

∂t
= ∇.(D∇n) −∇.(χ(c)n∇c) + f(n, c), (34)

∂c

∂t
= ∇.(∇c) + g(n, c), (35)

wherex ∈ D andt ∈ [0,∞). The first term on the RHS of each equation represents the random
motion/diffusion of cells/chemical. The second term in theequation describing cell density repre-
sents the chemotaxis term, with cells moving up gradients inchemical concentration ifχ(c) > 0.
The remaining terms on the RHS represent cell (chemical) proliferation (production) and decay.

Assuming that there is no loss of cells or chemical through the boundary of the domain, we have
zero flux boundary conditions of the formn.∇n = 0 = n.∇c for x ∈ ∂D, wheren is the unit
normal to the boundary,∂D. Working in one spatial dimension, the domain is given byx ∈ (0, L)
and the boundary conditions can be written as∂n/∂x = 0 = ∂c/∂x for x = 0, L.

In this case, we require that the steady states of cell density and chemical concentration are
unstable when diffusive and chemotactic effects are present. We demonstrate this phenomenon
using the following scheme (Myerscough et al., 1990, 1998):

∂n

∂t
= ∇.(D∇n) −∇.(χn∇c) + rn(N − n), (36)

∂c

∂t
= ∇.(∇c) +

n

1 + n
− c, (37)

whereD, χ, r andN are all positive parameters. Here cell density controls chemical production,
with saturation for high cell density, and the chemical undergoes linear decay. Cell proliferation
is controlled via a logistic growth term, with carrying capacity N . The spatially uniform steady
states(n0, c0) of the model are given by

n0 = N and c0 =
N

1 + N
. (38)

We wish to investigate the stability of this steady state to small perturbations in cell density
and chemical concentration. Lettingn = n0 + ñ andc = c0 + c̃, whereñ and c̃ are small, and
substituting into equations (36) and (37) gives

∂ñ

∂t
= ∇.(D∇ñ) −∇.[χ(n0 + ñ)∇ñ] − rñ(N + ñ), (39)

∂c̃

∂t
= ∇2c̃ +

(N + ñ)

1 + (N + ñ)
−

(

N

1 + N
+ ñ

)

. (40)
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Figure 3. A plot of h(k2) given by equation (45).The roots are given approximately
by k2

− = 0.0493 andk2
+ = 0.8107 (red asterisks), which gives a range of admissible

modes:n = 6, 7, . . . , 22. Parameters are as follows:D = 0.25, χ = 1.9, r = 0.01 and
N = 1.0.

Considering only terms which are linear inñ andc̃ we have the following system:

∂ñ

∂t
= D∇2ñ − χN∇2ñ − rNñ, (41)

∂c̃

∂t
= ∇2c̃ +

Nñ

(1 + N)2
− c̃, (42)

which describes the behaviour whilst|ñ|, |c̃| remain small. To see if small perturbations to the
system will grow, we consider finding solutions forñ andc̃ which are of the form̃n = α exp(λt+
ikx) andc̃ = β exp(λt + ikx). To ensure that small fluctuations grow into a stable pattern, then
we must find a parameter space which ensures thatR(λ) > 0.

Substituting the expressions forñ andc̃ into equations (41) and (42) gives
(

λñ
λc̃

)

=

(

−k2D − rN k2χN
1/(1 + N)2 −k2 − 1

)(

ñ
c̃

)

, (43)

which has solutions if and only if the following equation is satisfied:

λ2 + [k2(D + 1) + 1 + rN ]λ + h(k2) = 0, (44)

where

h(k2) = Dk4 +

[

rN + D − χN

(1 + N)2

]

k2 + rN. (45)

Perturbations to the steady states will grow ifR(λ) > 0 for somek2 > 0. Considering the case
λ = 0 we see that this occurs ifh(k2) = 0 has a real, non-negative root. This condition holds if

rN + D <
Nχ

(1 + N)2
and

[

rN + D − Nχ

(1 + N)2

]

> 4rND. (46)

The wavenumbers of the admissible modes,i.e. the values ofk which will give a spatially hetero-
geneous solution, are those such thatk2

− < k2 < k2
+ where

k2
± =

1

2D







[

Nχ

(1 + N)2
− rN − D

]2

±

√

[

Nχ

(1 + N)2
− rN − D

]2

− 4rND







. (47)
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The general solution of the linearised sytem (in 1D) can be written in the form

ñ(x, t) = eλ(k2)t [A cos(kx) + B sin(kx)] , (48)

c̃(x, t) = eλ(k2)t
[

Ã cos(kx) + B̃ sin(kx)
]

. (49)

The boundary condition atx = 0 givesB, B̃ = 0 whilst the boundary condition atx = L requires
that for a non-trivial solutionkL = nπ for n = 0, 1, 2, . . . The general solution can now be written
as a combination of the admissible modes:

ñ(x, t) =
∑

n

Aneλ(k2)t cos
(nπx

L

)

and c̃(x, t) =
∑

n

Ãneλ(k2)t cos
(nπx

L

)

, (50)

where then satisfy

k2
− <

(nπx

L

)2
< k2

+. (51)

Figure 6 (main text) shows the results of numerical solutionof the model in one spatial dimen-
sion using the MATLAB function pdepe. The field is initially close to the homogeneous steady
state, with small random fluctuations added tou throughout the domain. Over time, the fluctua-
tions are amplified into a series of peaks and troughs in chemical concentration, with moden = 16
chosen in this particular simulation: this is consistent with the set of admissible modes given in
Figure 3. Parameters are as follows:D = 0.25, χ = 1.9, r = 0.01 andN = 1.0. By way of illus-
tration of the range of patterning possibilities, Figure 7 (main text) shows the results of numerical
simulation of the model in two spatial dimensions, carried out using COMSOL MULTIPHYSICS.

We note that a specific mode,k2
i , may be isolated by choosing the parameters such thatλ(k2

i ) =
0 (Maini et al., 1991). In this case

rN + D − nχ

(1 + N)2
= −2

√
rND ⇒ k2

i =
√

rND. (52)

Figure 8 (main text) shows the results of numerical solutionof the model in one spatial di-
mension using the MATLAB function pdepe with the initial disturbance localised tox = 0. We
observe propagating patterning across the field, from left to right. The pattern corresponds to
n = 16 which is consistent with the set of admissible modes given inFigure 3. Parameters are as
follows: D = 0.25, χ = 1.9, r = 0.01 andN = 1.0.

APPENDIX D. MECHANO-CHEMICAL MODEL

We consider cell density,n(x, t), ECM density,ρ(x, t), and the displacement vector of the
ECM, u(x, t), so that a material point in the matrix initially atx undergoes displacement to
x + u. A more detailed description of the models can be found in (Murray et al., 1983; Oster
et al., 1983; Maini, 1985; Murray and Maini, 1986; Perelson et al., 1986; Murray et al., 1988).

Cell density equation.The basic format for the cell density equation is a balance equation:

∂n

∂t
= −∇.J + M, (53)

so that the rate of change in cell density is dependent on the cell flux (J) and the proliferation
rate(M). A simple assumption forM is that cell proliferation obeys a logistic equation:M =
rn(1− n), r > 0. The flux term includes terms describing cell motion, and these will be outlined
below.
Convection. Cells may be passively transported due to deformations in the ECM:

Jc = n
∂u

∂t
, (54)

where∂u/∂t is the velocity of ECM deformation.
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Diffusion. Cells tend to undergo random diffusion in a homogeneous, isotropic medium – with
movement down local density gradients. Cells may also sensedensities further afield since they
extend long filopodia, and in this case it is also relevant to include a non-local diffusive effect:

Jd = −D1∇n + D2∇(∇2n), (55)

whereD1 > 0 is the local diffusion coefficient andD2 > 0 the non-local diffusion coefficient.
Haptotaxis. The traction effects of cells upon the matrix lead to gradients in ECM density. It is
assumed that gradients in ECM density correspond to gradients in adhesive sites. Cells move up
adhesive gradients as they may anchor more strongly to the ECM. This leads to a net flux of cells
up the ECM gradient:

Jh = n∇(a1ρ − a2∇2ρ), (56)

wherea1 > 0 represents the strength of the local contribution anda2 > 0 the non-local contribu-
tion.

Taking the above factors into account, the cell density equation becomes

∂n

∂t
= −∇.

(

n
∂u

∂t

)

+ ∇.
[

D1∇n − D2∇(∇2n)
]

−∇.
[

n∇(a1ρ − a2∇2ρ)
]

+ rn(1 − n). (57)

Chemotaxis terms (motion up chemical gradients) and galvanotaxis terms (motion up gradients in
electric potentials) may also be included if necessary.

Cell-matrix mechanical interaction equation.It is assumed that mechanical deformations are
small and so the composite material of cells and ECM is modelled as a linear, isotropic viscoelas-
tic continuum with stress tensorσ(x, t). The time scale of embryonic development is very long
compared to the spatial scale, which is very small: hence onemay ignore inertial terms (since
the Reynolds number is very small) and suppose that the traction forces generated by cells are in
equilibrium with the viscoelastic restoring forces of the matrix and any other forces which act on
the system. In this case the force balance equation becomes

∇.σ + ρF = 0, (58)

whereF represents the external forces.
Stress tensor. Contributions from the ECM and cells give

σ = σECM + σcell. (59)

The stress-strain relationship can be written using the usual expression for linear viscoelastic ma-
terial as a sum of the viscous and elastic components (Landauand Lifshits, 2004):

σECM =

[

µ1
∂ε

∂t
+ µ2

∂θ

∂t
I

]

+ E′
[

ε + ν ′θI
]

, (60)

where

E′ =
E

1 + ν
and ν ′ =

ν

1 − 2ν
. (61)

In the above equationsI is the unit tensor,µ1, µ2 > 0 are the shear and bulk velocities of the
ECM andε andθ are the strain tensor and dilation, respectively, defined as

ε =
1

2

(

∇u + ∇u
⊤

)

and θ = ∇.u, (62)

whereE > 0 is the Young’s modulus andν > 0 the Poisson ratio.
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The contribution to the stress tensor from the cells themselves comes from the traction forces.
Experimental evidence suggests traction force increases with cell density, until cell-cell contact
inhibition begins to play a role and the traction force decreases:

τ(n) =
τn

1 + λn2
. (63)

τ ≥ 0 is a measure of the traction force generated by a cell andλ > 0. Assuming that non-local
effects (similar to those for diffusion and haptotaxis) also play a role:

σcell =
τn

1 + λn2

[

ρ + γ∇2ρ
]

, (64)

whereγ > 0 indicates the strength of the non-local contribution.

The body force can be derived by supposing that the matrix material is tethered to the underlying
tissue, with body forces per unit ECM area proportional to the displacement of the ECM:

F = −su, (65)

wheres > 0 characterises the strength of the elastic attachments.

Putting the above contributions back into the force balanceequation gives

∇.

[

µ1
∂ε

∂t
+ µ2

∂θ

∂t
I + E′

(

ε + ν ′θI
)

+ ∇.

{

τn

1 + λn2

(

ρ + γ∇2ρ
)

}]

− sρu = 0. (66)

Matrix conservation equation.The conservation equation can be written

∂ρ

∂t
+ ∇.

(

ρ
∂u

∂t

)

= 0, (67)

that is, matrix movements are solely due to convective effects.

Simplified model.In order to present some simplified analysis, we make the following assump-
tions: (i) cells cannot diffuse⇒ D1 = 0 = D2; (ii) cells cannot sense adhesive gradients
⇒ a1 = 0 = a2; (iii) there is no cell proliferation or death⇒ r = 0. In this case, cells are
simply convected by the ECM, which is thought to be one of the major transport processes (Mur-
ray, 2003).

In one spatial dimension, the equations become

0 =
∂n

∂t
+

∂

∂x

(

n
∂u

∂t

)

, (68)

0 =
∂

∂x

[

µ
∂2u

∂x∂t
+

∂u

∂x
+

τ ′n

1 + λn2

(

ρ + γ
∂2ρ

∂x2

)]

− s′ρu, (69)

0 =
∂ρ

∂t
+

∂

∂x

(

ρ
∂u

∂t

)

, (70)

where

µ =
µ1 + µ2

E′(1 + ν ′)
, τ ′ =

τ

E′(1 + ν ′)
and s′ =

s

E′(1 + ν ′)
. (71)

The spatially uniform steady state in which we will be interested is(n0, ρ0, u0) = (1, 1, 0). Lin-
earising about the steady state by writingn = n0 + ñ, ρ = ρ0 + ρ̃ andu = u0 + ũ, whereñ, ρ̃, ũ
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are small, we have, to first order,

0 =
∂ñ

∂t
+

∂2ũ

∂x∂t
, (72)

0 =
∂

∂x

[

µ
∂2ũ

∂x∂t
+

∂ũ

∂x
+ τ1ñ + τ2

(

ρ̃ + γ
∂2ρ̃

∂x2

)]

− s′ũ, (73)

0 =
∂ρ̃

∂t
+

∂2ũ

∂x∂t
, (74)

where

τ1 =
τ ′(1 − λ)

(1 + λ)2
and τ2 =

τ ′

1 + λ
. (75)

Once again, we consider finding solutions of the formñ = α exp(λt+ ikx), ρ̃ = β exp(λt+ ikx)
andũ = δ exp(λt + ikx). Substituting into equations (72)-(74) gives





λñ
λρ̃
λũ



 =





λ 0 ikλ
ikτ1 (ik − ik3γ)τ2 −k2(µλ + 1) − s′

0 λ ikλ









ñ
ρ̃
ũ



 , (76)

which has solutions if and only if

λ2
[

k2µλ + b(k2)
]

= 0, (77)

where

b(k2) = γτ2k
4 + (1 − τ1 − τ2)k

2 + s′. (78)

Henceλ(k2) > 0 for somek2 6= 0, and spatially heterogeneous solutions exist, if and only if
b(k2) < 0. This gives the first condition:τ1 + τ2 > 1. The minimum ofb(k2) occurs at

k2
min =

τ1 + τ2 − 1

2τ2γ
⇒ b(k2

min) = s′ − (τ1 + τ2 − 1)2

4τ2γ
. (79)

Substituting the expressions forτ1 andτ2 into the above gives the second condition for spatially
heterogeneous solutions:

τ ′2 − τ ′(1 + λ)2
[

1 + γs′(1 + λ)
]

+
(1 + λ)4

4
> 0. (80)

In this way, we may treatτ ′, the parameter measuring traction strength, as a bifurcation parameter
and show that the surface

τ ′

c(λ, s′, γ) = (1 + λ2)
[

1 + s′γ(1 + λ)
]

{

1 +

√

1 − 1

[1 + s′γ(1 + λ)]

}

, (81)

defines the boundary between spatially homogeneous solutions, τ ′ < τ ′
c, and spatially heteroge-

neous solutions,τ ′ > τ ′
c.

Assuming zero flux boundary conditions forn andρ and thatu(x, t) = 0 for x = 0, L, the
general solution can be written as a sum of the admissible modes:

ñ(x, t) =
∑

n

Aneλ(k2)t cos
(nπx

L

)

, (82)

ρ̃(x, t) =
∑

n

Ãneλ(k2)t cos
(nπx

L

)

, (83)

ũ(x, t) =
∑

n

Ăneλ(k2)t sin
(nπx

L

)

, (84)
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h(k2)
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Figure 4. A plot of b(k2) given by equation (78).The roots are given approximately
by k2

− = 0.0531 andk2
+ = 0.2214 (red asterisks), which gives a range of possible modes

of n = 6, 7, . . . , 11. Parameters are as follows:µ = 0.1, τ ′ = 15.0, λ = 2.0, γ = 1.7
ands′ = 0.1.

where then satisfy

k2
− <

(nπx

L

)2
< k2

+ and k2
± =

(τ1 + τ2 − 1) ±
√

(τ1 + τ2 − 1) − 4γτ2s′

2γτ2
. (85)

Numerical results.A detailed numerical study of the original model was carriedout by Perelson
and co-workers in (Perelson et al., 1986). They carry out a full investigation of the pattern forming
capabilities of the system and develop a technique for non-linear mode selection. Finally they
apply their method to sequential feather bud formation in the chick embryo.
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