THE INTERNA('%CiI)\IAL JOURN/KC])_}j

DE
doi: 10.1387/ijdb.072493rb B%L%/)[E(I\Q;Y

www.intjdevbiol.com

SUPPLEMENTARY MATERIAL

corresponding to:

Waves and patterning in developmental biology: vertebrate
segmentation and feather bud formation as case studies

RUTH E. BAKER*, SANTIAGO SCHNELL and PHILIP K. MAINI



APPENDICES — WAVES AND PATTERNING IN DEVELOPMENTAL BIOLOGY
VERTEBRATE SEGMENTATION AND FEATHER BUD FORMATION AS CASE
STUDIES

RUTH E. BAKER, SANTIAGO SCHNELL AND PHILIP K. MAINI

ABSTRACT. Inthis article we will discuss the integration of develagmtal patterning mechanisms
with waves of competency, which control the ability of a h@eneous field of cells to react to
pattern forming cues and generate spatially heterogenmiterns. We base our discussion around
two well known patterning events which take place in theyeambryo: somitogenesis and feather
bud formation. We outline mathematical models to descrimh@atterning mechanism, present the
results of numerical simulations and discuss the validitgazh model in relation to our example
patterning processes.

APPENDIXA. CLOCK AND WAVEFRONT MODEL

In (Baker et al., 2006a,b) we develop a mathematical fortiriaof the clock and wavefront
model using the assumptions of Pourquié and co-workeess¢égmentation clock controlghen
the boundaries of the somites form and the FGF8 wavefrorttasmwherethey form (Dubrulle
et al., 2001; Tabin and Johnson, 2001; Dubrulle and Pourg0i@2). In addition, we assume the
following: (i) once cells reach the threshold level of FGE&Y become competent to segment
by gaining the ability to respond to a chemical signal, thgrproducing a somitic factor; (ii)
after reaching the threshold level, cells undergo one laticih of the segmentation clock and
then become competent to produce the aforementioned s{galnce a cell reacts to the signal
and becomes part of a somite, it becomes refractory to FGRalting. A cell becomes part of a
coherent somite with other cells which begin to produce a kegel of somitic factor at a similar
time.

The mathematical model is based around the signalling nfodebmitogenesis, first proposed
by Maini and co-workers (Collier et al., 2000; Baker et al02; Mclnerney et al., 2004; Schnell
et al., 2002). A verbal description of the model (first pragmbén (Primmett et al., 1989)) can be
outlined as follows: at a certain time, a small fraction dfscat the anterior-most end of the PSM
will have undergone a whole oscillation of the segmentationk after reaching the determination
front. Thesepioneer cellswill produce and emit a signal which will diffuse along theN?.SAny
cell which has a level of FGF8 below that expressed at therm@tation front will respond to
the signal by producing a somitic factor. At this point, al ¢glspecified as somitic and it will
go on to form a somite during subsequent oscillations of dugrentation clock: groups of cells
which begin producing somitic factor concurrently will foipart of a somite together. The process
begins once again when cells now at the anterior end of the B&ldme competent to signal. A
negative feedback loop between somitic factor and sigrphnolecule results in periodic pulses
in the signal and hence the specification of somites at re¢gjola intervals.

The mathematical model constructed from Pourquié’s dasa clock and wavefront model
consists of a coupled system of three non-linear PDEs. Thabkas which the system describes
are asomitic factorwhich determines the fate of cells (cells can only form p&@ somite with
a high level of somitic factor), diffusive signalling moleculproduced by the pioneer cells at the
anterior-most end of the PSM and FGF8, which is able to cahfeability upon cells to produce
somitic factor and signalling molecule (according to theitel of expression of FGF8).
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We choose to model the gradient by assuming that FGF8 is peddanly in the tail, that it
diffuses out from the tail along the PSM and undergoes linkmay (see (Baker et al., 2006b)
for more details). The FGF8 gradient moves in a posteriactibn along the PSM and confers
the ability upon cells to produce a somitic factor; at timdater they gain the ability to signal.
Somitic factor production is activated in response to aguissignalling molecule emitted from
the pioneer cells at the anterior end of the PSM. Rapid itibibiof signal production by the
somitic factor ensures that peaks in signal concentratientransient and produced at regular
intervals (see (Mclnerney et al., 2004) for further dejails

The system of non-linear PDEs describes the dynamics otedattor () signalling molecule
(v) and FGF8{) and can be written as follows (Baker et al., 2006a,b):

ou  (u+pw)?

ov Xo 0%v

v _ _ p, 2 2
ot R(e—i—u U>+ Y02’ @
ow 0w

T Xw—anerﬁ, €)

wherey, v, k, €, n, Dy, D,, are positive parameters. Productiomofv andw are controlled by
the respective Heaviside functidns

Xu = H(W* - w)’ (4)
Xo = H(t—t"(w"z)—t), 5)
Xw = H(x — Tn — Cnt), (6)

wherew* is the level of FGF8 at the determination front(w*, x) is the time at which a cell
at x reaches the determination fronte{ w(z,t*) = w*), ts is the period of the segmentation
clock, z,, represents the initial position of the tail angdrepresents the rate at which the AP axis
is extending.

Somitic factor production is activated by the signal ancel=egulating. High levels of somitic
factor also inhibits production of the signal, which is atdadiffuse. For a more detailed expla-
nation of the system of equations describing the somititofaand the signal see (Collier et al.,
2000; Schnell et al., 2002; Mclnerney et al., 2004). FGF8aslpced only in the tail region of the
embryo.

The boundary conditions are taken to be

u,v -0 as z—{z, + ct} — +o0,
u,v are bounded asx — {z, + ct} — —o0,

w is bounded as x — {x,, + ct} — 400, (7)
w—0 as z—{x,+ct} — —oc.
The initial conditions for, andv are taken to be (Mclnerney et al., 2004):
1 ifz <0,
ML@‘{onx>m (8)
and
v(z,0) = A*H(—x) + B* cosh(A(l — |z|)), 9)
where
1 A*sign(x) K
l1+e—er’ 2cosh(Al)’ D,’ (10)

1The Heaviside functio#? (z) is equal to unity ifx > 0 and zero otherwise: in this way it acts like a switch.



WAVES AND PATTERNING IN DEVELOPMENTAL BIOLOGY — APPENDICES 3

(@) Somitic factor (u) (b) Signal (v) (c) FGF8 (w)

| ‘ H 1 | | l ﬂ 1
0 0 0 0 0
0 15 0 15 0 15

AP axis () AP axis () AP axis ()

Time (t)
Time ()
Time (t)

0

Figure 1. Numerical solution of the clock and wavefront modéin one spatial di-
mension. Continuous regression of the FGF8 wavefront (c), is acconepaby a series
of pulses in signalling molecule (b), and coherent risesoimiic factor concentration

(a).

ande; < 1. Sincew evolves to a travelling wave profile (Baker, 2005; Baker et20006b):

3 exp{n4(z — x, — cpt)} if x—xz,—cut

Wi (2) = { n(nalm

ntn_—ny) exp{n_(r — zn — cnt)} + % if o—x,—cyt>0,

<0,
(11)

we take the initial condition fow to be the state of the travelling wave at time: 0.

We solved the mathematical formulation of the model nunadisiaising the NAG library rou-
tine DO3PCF and the results were plotted using therdMB functionimagesc. Figures 1(a)—(c)
shows the dynamics of somitic factor, signalling molecuid &GF8, respectively. We see that
the region of high FGF8 expression moves in a posterior tiine@along the AP axis with constant
speed. A sequence of successive signals, moving in a pwsthréction, produces a series of
coherent rises in the level of somitic factor which then demisells to progress to form discrete
somites.

APPENDIXB. REACTION-DIFFUSION MODEL

We consider two chemicals: an activata) @nd an inhibitor ¢). The interactions between
andv and their movement through space can be modelled by thevialipsystem of PDEs (Tur-
ing, 1952):

ou

= VAVu)+ f(u), (12
ov
= V(DV0)+guv) (13)

wherex € D andt € [0,00). The left-hand side of each equation represents the change i
chemical concentration over time, the first terms on eachefight-hand sides represent diffusion
of the chemical throughout the volume under consideratiwhthe second terms the interactions
between the chemicals.

Assuming that there is no loss of chemical through the baynafthe domain, we have zero
flux boundary conditions of the form.Vu = 0 = n.Vuv for & € 9D wheren is the unit normal
to the boundaryD. Working in one spatial dimension, the domain is giveruby D = (0, L)
and the boundary conditions can be writterdagdx = 0 = dv/0x for x = 0, L.

The condition fordiffusion-driven instability(Turing, 1952), and hence a spatial pattern in
chemical concentration, is that the steady state condi&mtsaof« andv must be stable to small
perturbations in the absence of diffusion, but become blestahen diffusive effects are added.
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We demonstrate this phenomenon with an example using theieinhardt scheme (Gierer
and Meinhardt, 1972) to describe the interactions betweandwv:

ou 2

u
% = V.(DVv)+u? -, (15)

whereb > 0. Herew activates its own production (self-activation) and alsat tbf v, whilst v
inhibits both its own production (self-inhibition) and thaf «. The spatially uniform steady states
(up, vo) of the model satisfy
2

U, 11

U—g—buozozug—vo = (up,vo) = <E’b_2> (16)
We wish to investigate the stability of this steady statentaléperturbations in. andv concentra-
tion. Lettingu = ug + @ andv = vy + 0, wherez ando are small, and substituting into equations
(14), (15) gives

ot o (ug +@)? ~
b v Al e 17
T V.(Va) + (o + ) b(uo + u), a7)
9%
a—: = V.(DVD) + (ug + @)% — (vo + 7). (18)
Considering only terms which are linearirando we have the following system
% = V.(Va) + ba — b*, (19)
00 N 2
% = V.(DV7v) + 70—, (20)

which describes the behaviour whilgt|, |5 remain small. To see if small perturbations to the
system will grow, we consider finding solutions foand? which are of the form

= aexp(At +ikx), 0= [Fexp(At+ ikx). (21)
The termexp(ika) describes the spatial pattern, whilst the testp(A¢) describes the amplitude
of the spatial oscillations. For a stable steady state, Ististilirbances must decay with time and
hence the real part of must be negative, whilst for fluctuations to grow into a sgdaiattern the

real part ofA must be positive.
Substituting (21) into equations (19) and (20) gives

Al b—k*  —b? i
(M;):( 2/b —1—Dk2><6>’ (22)

which has solutions if and only if

A+ (D +1D)k* + (1 = b))+ h(k?) =0, (23)
where

h(k*) = Dk* + (1 — bD)k? + b. (24)
For the steady state to be stable in the absence of diffusfos: (0) the solutions of

M4 (1—-bA+b=0, (25)

must have negative real parts. This occurs & 1. For the steady state to be unstable in the
presence of diffusionkf # 0) equation (23) must have at least one root with positive pes.
Sinceb < 1, this occurs ifh(k?) < 0 for somek? # 0. The minimum ofh.(k?) occurs where

dh(k?2) ) B ,  Db—1
k2 =2Dk"+(1-bD)=0 = kcm’t_Ta

(26)
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Figure 2. A plot of h(k?) as given by equation (24)The roots are given approximately
by k2 = 0.0426 andk? = 0.2741 (red asterisks), which gives a range of admissible
modes:n = 6,7, ...,13. Parameters are as followB. = 30 andb = 0.35.

and hence we see thatk?) < 0if Db > 3 + 2y/2. The wave numbers of the admissible
modes,j.e. the values of:? which result in a spatially heterogeneous solution, areefsuch that
k2 < k* < k% where

o L _ 12—
=5 [(bD 1)+ /(D — 1) 4Db] . @27)
The general solution of the linearised sytem (in 1D) can b#ewrin the form
u(z,t) = AR [A cos(kx) + Bsin(kx)], (28)
o(z,t) = A {fl cos(kz) + Bsin(k‘x)] . (29)

The boundary condition at = 0 gives B, B = 0 whilst the boundary condition at= L requires
that for a non-trivial solutiok L = nx forn = 0, 1,2, ... The general solution can now be written
as a combination of the admissible modes:

) N (T et — S LA g (T
u(x,t) ;Ane cos( 7 ) and o(z,t) Zn:Ane cos( 7 ), (30)
where then satisfy

K2 < (”—7)2 < k2. 31)
Figure 4 (main text) shows the results of numerical solutdbthe system in one spatial di-
mension using the MrLAB function pdepe. The field is initially at the homogeneous steady
state, with small random fluctuations added:toOver time, the fluctuations are amplified into a

series of peaks and troughs in chemical concentration, witien, = 9 chosen in this particular
simulation: this is consistent with the set of admissibledesgiven in Figure 2. Parameters are
as follows: D = 30 andb = 0.35. By way of illustration of the different patterning posdities,
Figure 5 (main text) shows numerical simulation of the sysiretwo spatial dimensions using the
same parameter values, carried out usim@vSoOL MULTIPHYSICS.

Notice that with the GM kinetics, the pattern of peaks andgiws coincide as the kinetics are
of pureactivator-inhibitor type: the Jacobian matrif, describing the interactions betweemand
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v is of the form

However, the Schakenberg kinetics (Schnakenberg, 19@80kxample, are ofrossactivator-

inhibitor type:
of
o + +
ov

o~

and in this case, a peak inconcentration coincides with a trough«rconcentration.

SN

APPENDIXC. CELL-CHEMOTAXIS MODEL

We consider cell densityn) and activator concentratior)( The interactions between cells
and the chemical and their movement through space can bdlptbbyg the following system of
PDEs (Murray, 2003):

on

= = VA(DVn) = V.(x(e)nVe) + f(n,c), (34)
% = V.(V¢)+g(n,c), (35)

wherex € D andt € [0, 00). The first term on the RHS of each equation represents themand
motion/diffusion of cells/chemical. The second term in ¢ggiation describing cell density repre-
sents the chemotaxis term, with cells moving up gradienthemical concentration if(c) > 0.
The remaining terms on the RHS represent cell (chemicalf@ration (production) and decay.

Assuming that there is no loss of cells or chemical througtbtbundary of the domain, we have
zero flux boundary conditions of the formVn = 0 = n.Vc for x € 9D, wheren is the unit
normal to the boundaryD. Working in one spatial dimension, the domain is givenchy (0, L)
and the boundary conditions can be writterdagdz = 0 = dc/0x for z = 0, L.

In this case, we require that the steady states of cell geasil chemical concentration are
unstable when diffusive and chemotactic effects are pteséle demonstrate this phenomenon
using the following scheme (Myerscough et al., 1990, 1998):

% = V.(DVn)—V.(xnVc)+rn(N —n), (36)
Jc n
5 = V(Vo+ e (37)

whereD, x, r and N are all positive parameters. Here cell density controlsnibal production,
with saturation for high cell density, and the chemical ugdes linear decay. Cell proliferation
is controlled via a logistic growth term, with carrying cajpg N. The spatially uniform steady
stategng, cy) of the model are given by

N
1+ N’
We wish to investigate the stability of this steady statertml perturbations in cell density

and chemical concentration. Lettimg= ny + n andc = ¢y + é, wheren and¢ are small, and
substituting into equations (36) and (37) gives

o

8—;‘ = V.(DV#) — V.[x(no + 2)Vii] — riu(N + 71), (39)

% .. (N+q) N o
ot vc+1+(N+fz)_<1+N+”>‘ (40)

ng=N and ¢y= (38)
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Figure 3. A plot of h(k?) given by equation (45). The roots are given approximately
by k2 = 0.0493 andk? = 0.8107 (red asterisks), which gives a range of admissible
modes:n = 6,7, ...,22. Parameters are as follow® = 0.25, y = 1.9, » = 0.01 and

N =1.0.

Considering only terms which are lineariinrandé we have the following system:

(?3—7; — DV%i— xNV3i — rN#, (41)
9é .. Ni

A L 42
Y Vc+(1+N)2 ¢, (42)

which describes the behaviour whilgt|, |¢| remain small. To see if small perturbations to the
system will grow, we consider finding solutions foendé which are of the formi = avexp(At +
ikx) and¢ = [exp(At + ikx). To ensure that small fluctuations grow into a stable patteen
we must find a parameter space which ensuresRifa) > 0.

Substituting the expressions farand¢ into equations (41) and (42) gives

Al —k*D —rN  k*xN it
<A6>:<1/(1+N)2 —k:2—1><é>’ (43)
which has solutions if and only if the following equation #isfied:
M4+ [K(D+1)+1+rNA+h(k*) =0, (44)
where
h(k?) = Dk* + [TN - XN ] k2 +rN. (45)
(1+N)?

Perturbations to the steady states will growif\) > 0 for somek? > 0. Considering the case
A = 0 we see that this occurs/if(k?) = 0 has a real, non-negative root. This condition holds if

Nx Nx
N+D<-——— and N+D—-—=——|>4rND. 46

VDS [P+ D - “o
The wavenumbers of the admissible modes the values of which will give a spatially hetero-
geneous solution, are those such tfat< k? < k2 where

1 Ny 2 Ny 2
2~ )| 2X N _p| +4-2X _ _N—_—D| —4rND\. (@47
M =3p [(H—N)? " ] {(1+N)2 " ] " “7)
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The general solution of the linearised sytem (in 1D) can kigewrin the form
n(x,t) = A [Acos(kx) + Bsin(kz)], (48)
é(x,t) = A [fl cos(kz) + B sin(k:x)} . (49)

The boundary condition at = 0 gives B, B = 0 whilst the boundary condition at= L requires
that for a non-trivial solutiok L = nx forn = 0, 1,2, ... The general solution can now be written
as a combination of the admissible modes:

n(x,t) = ZAne)‘(kz)t cos (?) and ¢&(z,t) = Zﬁne“k% cos (nLﬂ) ,  (50)

where then satisfy

2
k2 < (”—T) < k2. (51)
Figure 6 (main text) shows the results of numerical solutibthe model in one spatial dimen-
sion using the MTLAB function pdepe. The field is initially close to the homogeneous steady
state, with small random fluctuations added:tthroughout the domain. Over time, the fluctua-
tions are amplified into a series of peaks and troughs in atermdncentration, with mode = 16
chosen in this particular simulation: this is consistenthwihe set of admissible modes given in
Figure 3. Parameters are as follow3:= 0.25, x = 1.9, »r = 0.01 and N = 1.0. By way of illus-
tration of the range of patterning possibilities, Figurariain text) shows the results of numerical
simulation of the model in two spatial dimensions, carrietusing GMSOL MULTIPHYSICS.
We note that a specific mode?, may be isolated by choosing the parameters such\{#d) =
0 (Maini et al., 1991). In this case
n
rN+D— ﬁ = -2V"ND = kX=+rND. (52)
Figure 8 (main text) shows the results of numerical soluttbrthe model in one spatial di-
mension using the MrLas function pdepe with the initial disturbance localised to = 0. We
observe propagating patterning across the field, from ¢éefight. The pattern corresponds to
n = 16 which is consistent with the set of admissible modes givefigre 3. Parameters are as
follows: D = 0.25, x = 1.9, = 0.0l and N = 1.0.

APPENDIXD. MECHANO-CHEMICAL MODEL

We consider cell density,(x,t), ECM density,p(x,t), and the displacement vector of the
ECM, u(x,t), so that a material point in the matrix initially at undergoes displacement to
x + u. A more detailed description of the models can be found inr(&uet al., 1983; Oster
et al., 1983; Maini, 1985; Murray and Maini, 1986; Perelsbale 1986; Murray et al., 1988).

Cell density equationThe basic format for the cell density equation is a balanceon:

on
o= =V + M, (53)

so that the rate of change in cell density is dependent ondlélex (J) and the proliferation
rate (M). A simple assumption fol is that cell proliferation obeys a logistic equatioh/ =
rn(1 —n),r > 0. The flux term includes terms describing cell motion, and¢heill be outlined
below.

Convection. Cells may be passively transported due to deftions in the ECM:

ou
e =n—, 54
J n 5 (54)

wheredu /0t is the velocity of ECM deformation.
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Diffusion. Cells tend to undergo random diffusion in a homiegous, isotropic medium — with
movement down local density gradients. Cells may also seessities further afield since they
extend long filopodia, and in this case it is also relevanhttuide a non-local diffusive effect:

Ja = —D1Vn + DoV (V?n), (55)

whereD; > 0 is the local diffusion coefficient anfd, > 0 the non-local diffusion coefficient.
Haptotaxis. The traction effects of cells upon the matredi¢o gradients in ECM density. It is
assumed that gradients in ECM density correspond to griadiermdhesive sites. Cells move up
adhesive gradients as they may anchor more strongly to tihé EGis leads to a net flux of cells
up the ECM gradient:

Jn =nV(a1p — azV?p), (56)
wherea; > 0 represents the strength of the local contribution @and- 0 the non-local contribu-
tion.

Taking the above factors into account, the cell density toidecomes

0 0
5 = -V <na—’t‘> + V. [D1Vn — DV(Vn)]
—V.[nV(a1p — a2V2p)] +rn(l —n). (57)

Chemotaxis terms (motion up chemical gradients) and gateais terms (motion up gradients in
electric potentials) may also be included if necessary.

Cell-matrix mechanical interaction equatiott is assumed that mechanical deformations are
small and so the composite material of cells and ECM is mededk a linear, isotropic viscoelas-
tic continuum with stress tenser(x, t). The time scale of embryonic development is very long
compared to the spatial scale, which is very small: hencenamg ignore inertial terms (since
the Reynolds number is very small) and suppose that theédnaftirces generated by cells are in
equilibrium with the viscoelastic restoring forces of thatnx and any other forces which act on
the system. In this case the force balance equation becomes

V.o + pF =0, (58)

whereF represents the external forces.
Stress tensor. Contributions from the ECM and cells give

0 =0gcM + Ocell- (59)

The stress-strain relationship can be written using thaliestpression for linear viscoelastic ma-
terial as a sum of the viscous and elastic components (LaggiLifshits, 2004):

Oe ol
OECM = {MlE‘FMQEI] +E [€+V,HI] . (60)
where
E = and /= 2. (61)
14+v 1—-2v

In the above equations is the unit tensory1, us > 0 are the shear and bulk velocities of the
ECM ande and@ are the strain tensor and dilation, respectively, defined as

1
e=3 (Vu + vuT) and 0= V.u, (62)

whereE > 0 is the Young's modulus and > 0 the Poisson ratio.
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The contribution to the stress tensor from the cells thewesetomes from the traction forces.
Experimental evidence suggests traction force increagascell density, until cell-cell contact
inhibition begins to play a role and the traction force dasess:

™

)= T

T > 0 is a measure of the traction force generated by a celband0. Assuming that non-local
effects (similar to those for diffusion and haptotaxis)ogiéay a role:

(63)

™
Tl = T3yt |

wherey > 0 indicates the strength of the non-local contribution.

p+V2p], (64)

The body force can be derived by supposing that the matriemais tethered to the underlying
tissue, with body forces per unit ECM area proportional ndisplacement of the ECM:

F = —su, (65)

wheres > 0 characterises the strength of the elastic attachments.

Putting the above contributions back into the force balatpeation gives

Oe 06 ™
. — —I+F ‘01 — 2 — =0.
\Y {mat—i-uzat +E' (e+ 10 )+V{1+)\n2 (p+V p)H spu = 0. (66)

Matrix conservation equationThe conservation equation can be written

ap ou
- . ) = v

that is, matrix movements are solely due to convective effec

Simplified modelln order to present some simplified analysis, we make theviitlg assump-
tions: (i) cells cannot diffuse=- D; = 0 = Ds; (ii) cells cannot sense adhesive gradients
= a1 = 0 = ag; (iii) there is no cell proliferation or deatk> » = 0. In this case, cells are
simply convected by the ECM, which is thought to be one of tlagomtransport processes (Mur-

ray, 2003).
In one spatial dimension, the equations become
on 0 ou
0 = E—F%(TLE), (68)
0 0%u  Ou 'n 0?p ,
0—’%@%m+%+ﬂjﬁ@+wﬁﬂ‘ww (69)
dp 0 ou
0 = 54'8—96(,05), (70)
where
Mt pe r_ T r_ S
= 7}3/(1 ) T = 7}3,(1 ) and s = 7E’(1 oy (71)

The spatially uniform steady state in which we will be ingteal is(ng, po, ug) = (1,1,0). Lin-
earising about the steady state by writing= ng + 7, p = po + p andu = uy + @, wheren, p, @
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are small, we have, to first order,

on 0%
O = B T o (72)
o[ 0% ou 0%p ,
= = — 7 p+y— )| — '@ 7
0 o uaxat—k&ﬂ—i-ﬁn—km <p+'yax2>] s'a, (73)
_0p D%
O = % T owar (74)
where
1 _ /
= TU=N g e T (75)

(1+2)2 L+

Once again, we consider finding solutions of the farm: « exp(At + ikz), p = Bexp(At +ikx)
andu = 0 exp(\t + ikx). Substituting into equations (72)-(74) gives

AT A 0 ik n
Ao | = | ikmy (ik —ik3y)e —KX(uA+1) — & o | (76)
At 0 A ik U
which has solutions if and only if
A2 [E2pA + b(k%)] =0, (77)
where
b(k?) = ymk* + (1 — 11 — m)k? + 5. (78)

HenceA(k%) > 0 for somek? # 0, and spatially heterogeneous solutions exist, if and dnly i
b(k?) < 0. This gives the first conditions; + 75 > 1. The minimum ofb(£?) occurs at
(11 + 79— 1)2

2 _TtT - 1

man ~ 27_27
Substituting the expressions fer andr, into the above gives the second condition for spatially
heterogeneous solutions:

b(k?

min

(14 N4
4

In this way, we may treat’, the parameter measuring traction strength, as a biforcagtrameter
and show that the surface

7% — 7 (14 A2 L+ (L+ N)] + > 0. (80)

7oA 8 y) = (L+ A% [L+ 'y (1 + N)] {1 - \/1 - (81)

[T+ s'y(1+ )] } ’
defines the boundary between spatially homogeneous swdytib < 7/, and spatially heteroge-
neous solutions;’ > 7/.

Assuming zero flux boundary conditions farand p and thatu(z,¢) = 0 for x = 0, L, the
general solution can be written as a sum of the admissibleemod

n(x,t) = Zn:Ane)‘(k‘Q)t Cos <n—zx) , (82)
plx,t) = Zn:zzlne)‘(kQ)t cos <n_7£m> , (83)

a(z,t) = Z;lne)‘(k%tsin<?>, (84)
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h(K?)

0.1

h(k?)

0.0

k2

Figure 4. A plot of b(k?) given by equation (78). The roots are given approximately
by k2 = 0.0531 andk? = 0.2214 (red asterisks), which gives a range of possible modes
ofn =6,7,...,11. Parameters are as followg:= 0.1, 7/ = 15.0, A = 2.0, v = 1.7
ands’ = 0.1.

where then satisfy

(7'1+7'2— l)i\/(Tl—l-TQ— 1) —4’}’7’28,

k2 < (85)
291

nme\ 2
(T) < k‘_Q'_ and kZ:QI: =
Numerical results.A detailed numerical study of the original model was caret by Perelson
and co-workers in (Perelson et al., 1986). They carry oull inftestigation of the pattern forming
capabilities of the system and develop a technique for im@at mode selection. Finally they
apply their method to sequential feather bud formation éndhick embryo.
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