
Supplementary Information
We consider cell density (n) and concentration of an activator (a). Cells undergo random motion,

and also chemotaxis - moving preferentially up gradients inactivator concentration. The activator is
produced by cells, it undergoes linear decay and also randommotion. This behaviour can be described
using a system of partial differential equations:

∂n

∂t
︸︷︷︸

Rate of change of cell density

= Dn∇2n
︸ ︷︷ ︸

Random motion

− χ∇.(n∇c),
︸ ︷︷ ︸

Chemotactic movement

(1)

∂c

∂t
︸︷︷︸

Rate of change of activator concentration

= Dc∇2c
︸ ︷︷ ︸

Random diffusion

+
sn

β + n
− γc,

︸ ︷︷ ︸

Production and decay of activator

(2)

whereDn, Dc, χ, s, β andγ are positive constants. The first term on the RHS of each equation rep-
resents random motion/diffusion. The second term on the RHSof the cell density equation represents
chemotactic movement, with cells moving up gradients in activator concentration. The remaining terms
on the RHS of the activator equation represent activator production, which saturates for high cell density,
and activator removal/decay.

We consider a two dimensional feather field, rectangular in shape, given by cells lying in the region
D = [0, Lx] × [0, Ly ]. We assume that there can be no loss of cells or activator through the boundaries
of the field, which results in zero flux boundary conditions ofthe formn.∇u = 0 andn.∇v = 0 for
x ∈ ∂D, wheren is the unit normal to the boundary,∂D.

Non-dimensionalisation. We non-dimensionalise the model in such a way as to keepγ, the parameter
controlling the rate of activator decay/removal:

n = n0n̂, c = L

√
s

χ
ĉ, t =

L√
sχ

t̂, x = Lx̂, D =
Dn

Dc

, β = β̂n0, γ =

√
sχ

L
γ̂. (3)

Dropping thê notation the result is the system

∂n

∂t
= D∇2n −∇.(n∇c), (4)

∂c

∂t
= ∇2c +

n

β + n
− γc. (5)

Steady states. Since there are no terms for cell production or decay, the total cell number remains con-
stant over time. Hence the steady state levels of cell density and activator concentration in the spatially
uniform case are given by

n = n0 and c = c0 =
n0

γ(β + n0)
, (6)

wheren0 is the initial cell density.
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Linear stability. To investigate whether, and if so, which type of patterns maybe formed due to small
fluctuations away from the steady states, we linearise the system about the steady states. We taken =
n0 + u andc = c0 + v, where|u|, |v| ≪ 1, and substitute these expressions into our equations for the
evolution ofn andc:

∂(n0 + u)

∂t
= D∇2(n0 + u) −∇.[(n0 + u)∇(n0 + u)], (7)

∂(c0 + v)

∂t
= ∇2(c0 + v) +

(n0 + u)

β + (n0 + u)
− γ(c0 + v). (8)

Expanding the quotient and ignoring all quadratic and higher order terms inu andv we arrive at the
linearised system:

∂u

∂t
= D∇2u − n0∇2u, (9)

∂v

∂t
= ∇2v +

βu

(β + n0)2
− γu, (10)

which describes the behaviour of the system whilst|u|, |v| ≪ 1. In order that small perturbations to
the system to give rise to a spatially heterogeneous field, weseek solutions foru andv of the form
u, v ∝ exp(λt + ikx) for whichR(λ) > 0.

Searching for solutions of the above form the linearised equations (9)-(10) gives
(

λu

λv

)

=

(

−k2D k2n0
β

(β+n0)2 −k2 − γ

)(

u

v

)

, (11)

which has solutions if and only if

λ2 + [k2(D + 1) + γ]λ + h(k2) = 0, (12)

where

h(k2) = Dk2(k2 + γ) − k2n0β

(β + n0)2
. (13)

Hence we can see that solutions withR(λ) > 0 exist if the following condition on the critical wave
number,kcrit is satisfied:

k2
crit =

1

D

[
n0β

(β + n0)2
− Dγ

]

> 0. (14)

In other words, a necessary condition for spatial patterns in cell density is that

n0β

Dγ(β + n0)2
> 1. (15)

Pattern types. We consider now finding the nature of the patterns which couldarise. Taking into
account the boundary conditions atx = 0, Lx andy = 0, Ly a general solution of the linearised system
given by equations (9)-(10) can be written:

u(x, y, t) =
∑

px,py

Apx,py
eλ(k2)t cos

(
pxπx

Lx

)

cos

(

pyπy

Ly

)

, (16)
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Parameter Figure 1 Figure 2 Figure 3

D 0.001 0.001 0.001
n0 1.0 1.0 1.0
β 2.0 2.0 2.0
γ 30 60 90

Table 1: Parameter values for the numerical simulations

where thepx, py = 0, 1, 2, . . . and satisfy

0 < k2 =

(
pxπ

Lx

)2

+

(

pyπ

Ly

)2

< k2
crit =

1

D

[
n0β

(β + n0)2
− Dγ

]

. (17)

If k2
crit is sufficiently small, the only way to satisfy equation (17) may be to take eitherpx or py (or both)

equal to zero. If one ofpx or py is zero, the resulting pattern will be stripes in cell density, but if both
px andpy are zero the cell density will remain homogeneous. We note that k2

crit, and hence the possible
pattern types, can be fully controlled by varyingγ, the rate of activator removal/decay.

Numerical simulation. The model can be solved numerically using the FEMLAB package. We solve
the system given by equations (4)-(5) on the interval(x, y) ∈ [0, 10] × [0, 1] with zero flux boundary
conditions. The initial conditions are taken to be the steady states of the model, given by equation (6),
with small fluctuations added to the chemical concentration. The parameter values used in the numerical
simulations are shown in Table 1.

Results Figure 1: for for low decay rate, the critical wave number admits oscillation in both thex
andy directions, resulting in spots of high cell density. Figure2: as the decay rate is increased,k2

crit

decreases. SinceLy < Lx (the competent field is longer than it is wide for the primary row) oscillations
in the medial-lateral direction disappear, resulting in stripes. Figure 3: as the decay rate is increased
even further, oscillations are not permitted in either thex or y directions and the feather field remains
homogeneous. These results are summarised in Figure 4.
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Figure 1: Numerical simulations of the control model result in a spotted pattern of feather buds. (a) shows activator
concentration whilst (b) shows cell density.
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Figure 2: Numerical simulations with increased activator removal show a pattern of stripes in high cell density,
which corresponds to elongation of the feather buds. (a) shows activator concentration whilst (b) shows cell density.
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Figure 3: Numerical simulations result in a homogeneous feather fieldwhen the removal rate of the activator is
too high. (a) shows activator concentration whilst (b) shows cell density.
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Figure 4: A diagram showing the feather patterns expected with numerical solution of the mathematical model.
The top diagram shows the results for low activator removal rate: oscillations occur along both axes and the result
is spots of high cell density. The middle diagram shows the results with increased activator removal: oscillations
are no longer possible along the medio-lateral axis and stripes occur as a result. Finally the bottom diagram shows
the results for high activator decay: oscillations are no longer possible along either axis and the field remains
homogeneous.
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