Supplementary I nformation

We consider cell densitynf) and concentration of an activatar)( Cells undergo random motion,
and also chemotaxis - moving preferentially up gradientadtivator concentration. The activator is
produced by cells, it undergoes linear decay and also ramdotion. This behaviour can be described
using a system of partial differential equations:

0
an - D, Vn - XV.(nVe), (1)
Rate of change of cell density ~andom motion Chemotactic movement

dc

sn
— = D.NV?c 4+ —e, (2)
Rate of change of activator concentration Random diffusion Production and decay of activator

whereD,,, D., x, s, 3 and~ are paositive constants. The first term on the RHS of each iequedp-
resents random motion/diffusion. The second term on the BHBe cell density equation represents
chemotactic movement, with cells moving up gradients iivatdr concentration. The remaining terms
on the RHS of the activator equation represent activatafymion, which saturates for high cell density,
and activator removal/decay.

We consider a two dimensional feather field, rectangulahaps, given by cells lying in the region
D = [0, L;] x [0, L,]. We assume that there can be no loss of cells or activatanghrthe boundaries
of the field, which results in zero flux boundary conditiongtté formn.Vu = 0 andn.Vv = 0 for
x € 9D, wheren is the unit normal to the boundar§yD.

Non-dimensionalisation. We non-dimensionalise the model in such a way as to ke#me parameter
controlling the rate of activator decay/removal:

L . D, . NG
n = ngf, c:L\/gé, t=—h w=L& D=3 f=fn, 7= ;Xfy. 3)

Dropping the” notation the result is the system

on

5 = DV?n — V.(nVe), (4)
dc o n
E = Vic+ m — YC. (5)

Steady states.  Since there are no terms for cell production or decay, tla ¢ell number remains con-
stant over time. Hence the steady state levels of cell deasil activator concentration in the spatially
uniform case are given by

no

n=nyg and c=c¢c=———,
° * 7 5(B+no)

(6)

whereny is the initial cell density.



Linear stability. To investigate whether, and if so, which type of patterns b®jormed due to small
fluctuations away from the steady states, we linearise tesyabout the steady states. We take

no + v andc = ¢g + v, wherejul, |v| < 1, and substitute these expressions into our equations or th
evolution ofn andc:

d(no +u)

5 = DV?(ng +u) — V.[(no + u)V(ng + )], (7)
A Pt o)+ (o) ®

Expanding the quotient and ignoring all quadratic and higitder terms inu andv we arrive at the
linearised system:

ou

il DV*u — ngV?u, (9)
ov 2 Bu

b " 10
o Vv + Bty yu, (10)

which describes the behaviour of the system whil$t|v| < 1. In order that small perturbations to
the system to give rise to a spatially heterogeneous fieldseed solutions for, andv of the form
u, v x exp(At + tkx) for whichR(\) > 0.

Searching for solutions of the above form the linearisechtiqas (9)-(10) gives

A —k2D  K’ng w
() (52 (),
v (B+no)? v v
which has solutions if and only if

M4 [E2(D +1) + 4]\ + h(k?) =0, (12)

where
k‘QTLQﬁ
(B +no)?

Hence we can see that solutions wif{\) > 0 exist if the following condition on the critical wave
number.k,.,;; is satisfied:

Tt =D B+ no)?
In other words, a necessary condition for spatial pattereell density is that

nof3
Dy(3 + ng)?

h(k?) = DE*(k* +~) — (13)

— Dy| > 0. (14)

> 1. (15)

Pattern types. We consider now finding the nature of the patterns which cawise. Taking into
account the boundary conditionsaat= 0, L, andy = 0, L, a general solution of the linearised system
given by equations (9)-(10) can be written:

N2 DaTT bymyY
w(z,y,t) = Z Apopye (k*)t cos( I )cos( yLy ), (16)
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| Parameter | Figurel | Figure2 | Figure3 |

D 0.001 | 0.001 | 0.001
no 1.0 1.0 1.0
3 2.0 2.0 2.0
5 30 60 90

Table 1: Parameter values for the numerical simulations

where thep,,p, = 0,1,2, ... and satisfy

2 2
1 nof
k? = p”) 4 BT k2. _——[70 — Dyl 17
0< (Lx L,) “"t T D [Brae ) (7

If k2 ., is sufficiently small, the only way to satisfy equation (17aytbe to take eithes,. or py (0r both)
equal to zero. If one of, or p, is zero, the resulting pattern will be stripes in cell dendiut if both
pz andp,, are zero the cell density will remain homogeneous. We natekh,,, and hence the possible

pattern types, can be fully controlled by varyifngthe rate of activator removal/decay.

Numerical simulation. The model can be solved numerically using tleMEAB package. We solve
the system given by equations (4)-(5) on the inteffualy) € [0, 10] x [0, 1] with zero flux boundary
conditions. The initial conditions are taken to be the sfestdtes of the model, given by equation (6),
with small fluctuations added to the chemical concentrafidre parameter values used in the numerical
simulations are shown in Table 1.

Results Figure 1: for for low decay rate, the critical wave number #droscillation in both ther
andy directions, resulting in spots of high cell density. Fig@reas the decay rate is increased,.,
decreases. Sinde, < L, (the competent field is longer than it is wide for the primasw) oscillations

in the medial-lateral direction disappear, resulting mpsts. Figure 3: as the decay rate is increased
even further, oscillations are not permitted in either ther y directions and the feather field remains
homogeneous. These results are summarised in Figure 4.
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Figurel: Numerical simulations of the control model result in a spothattern of feather buds. (a) shows activator
concentration whilst (b) shows cell density.
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Figure 2: Numerical simulations with increased activator removalvela pattern of stripes in high cell density,
which corresponds to elongation of the feather buds. (ayslaativator concentration whilst (b) shows cell density.
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Figure 3: Numerical simulations result in a homogeneous feather figldn the removal rate of the activator is
too high. (a) shows activator concentration whilst (b) sboeill density.




Figure 4: A diagram showing the feather patterns expected with nuraksblution of the mathematical model.
The top diagram shows the results for low activator remaata:roscillations occur along both axes and the result
is spots of high cell density. The middle diagram shows tlselte with increased activator removal: oscillations
are no longer possible along the medio-lateral axis angestoccur as a result. Finally the bottom diagram shows
the results for high activator decay: oscillations are nmgkr possible along either axis and the field remains

homogeneous.




