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Derivation of the single crypt model

In this section we explain how the fluxes and production rate are modelled, pre-
scribe supplementary conditions, describe how the numerical solution is computed
and discuss the validity of the model assumptions.

Jy(y, s, τ ): Crypt Dynamics Model

Applying conservation of cell number in (y, s, τ) space, we obtain the conservation
equation

∂p(y, s, τ)

∂τ
+

∂Jy(y, s, τ)

∂y
+

∂Js(y, s, τ)

∂s
= r(p, y, s, τ), (S1)

where Jy(y, s, τ) is the physical cell flux along the crypt axis, Js(y, s, τ) is the cell
flux resulting from subcellular β-catenin dynamics and r is the net cell production
rate (see schematic diagram in Fig. S1). The structure of Eq. (S1) is similar to age-
or size-structured models (e.g. 1, 2); the main difference is that we consider a cell
population structured according to intracellular β-catenin concentration rather than
cell age or size.

Before continuing it is convenient to introduce the spatial cell number density,
q(y, τ), which is defined as follows:

q(y, τ) =

∫
∞

0

p(y, s, τ)ds. (S2)

Using this quantity we define the cell flux

Jy(y, s, τ) = −
D(q)

q

∂q

∂y
p(y, s, τ), (S3)

where D(q) = α
q2 and α is the cell spring constant/viscosity ratio. This choice for

the flux can be rationalised by assuming that Jy is convective (i.e. Jy = vp) with v

chosen to be the cell velocity field of a one-dimensional chain of cells connected by
overdamped linear springs (3)

v(q,
∂q

∂y
) = −

D(q)

q

∂q

∂y
. (S4)

Hence the flux defined in Eq. (S3) represents a continuum one-dimensional approx-
imation of the mechanics system considered by Meineke et al. (4) and van Leeuwen
et al. (5).

Js(y, s, τ ): Wnt Signalling Model

The canonical Wnt signalling pathway couples cell positional information to cell pro-
liferation and differentiation via β-catenin, a key downstream effector that regulates
the transcription of hundreds of genes related to cell proliferation. Lee et al. (6) have
developed an ODE model of this pathway. While Lee et al.’s original model consisted
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of 15 ODEs, Mirams et al. (7) have recently shown, using asymptotic analysis, that
the system dynamics simplify into activity upon a short (fast), an intermediate, and
a long (slow) timescale. They observed that β-catenin dynamics occur solely on the
long timescale, allowing them to propose a highly simplified single-ODE model which
retains the cytoplasmic β-catenin dynamics in response to Wnt signalling:

ds

dτ
= g(W (y), s), (S5)

where

g(W (y), s) = a −

((
W (y) + b

cW (y). + d

) (
e

e + s

)

+ f

)

s. (S6)

Here W (y) represents the external concentration of Wnt which takes dimensionless
values in the range 0 < W (y) < 1; a and f are rate constants for production of β-
catenin and degradation of β-catenin respectively (in a natural turnover, destruction-
complex independent manner). The remaining terms denote the destruction-complex-
dependent degradation: b is a dimensionless parameter, representing the activity of
the destruction complex in the absence of Wnt; c and d are timescales dictating how
the rate of β-catenin degradation increases and saturates in the absence of Wnt; and
e is a Michaelis-Menten β-catenin association constant. The parameter values are
presented in Table 1 of the main text. The steady-state of Eq. (S5) is plotted in Fig.
S2. In Mirams et al. (7) the parameters a–f are given as groups of the original Lee
et al. (6) parameters, so that in their original notation:

a = v12

b =
k2

k1

,

c =
(

k1k3Dsh0 + k1k−6

)(

k5k15K7K8

)/(

k1k4k6k9v14GSK0APC0
)

,

d =
(

k2k5k−6k15K7K8

)/(

k1k4k6k9v14GSK0APC0
)

,

e = K17,

f = k13.

Cho et al. (8) have considered how different truncation mutations of the APC
gene that modify APC-mediated β-catenin destruction can be captured in the Lee
et al. (6) Wnt signalling model, suggesting modified values for K7 and K8 for various
truncations (8). Upon substitution of these ‘mutant’ values into the above expres-
sions, we find parameter changes are manifest in the reduced Mirams et al. (7) model
through simple increases in the parameters c and d (as shown in Table 3 in the main
text) for increasingly severe truncation mutations.

In order to capture Wnt regulation of cell proliferation via β-catenin, we as-
sume that cell flux along the s axis, Js, (treating y as constant) is comprised of two
components: a convective term originating from the subcellular β-catenin dynamics
captured by Eq. (S6) and a diffusive term representing subcellular variability at the
cell population scale. The cell flux is therefore given by

Js(y, s, τ) = g(y, s)p(y, s, τ) − Ds

∂p

∂s
, (S7)
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where Ds is a measure of the noise strength.
Net cell proliferation is modelled via r(p, y, s, τ), the term on the right-hand-side

of Eq. (S1). As β-catenin is a transcription factor which regulates a large number
of genes related to cell proliferation, we assume that cells can divide only if their β-
catenin concentration exceeds the threshold s∗ and that the cells in the proliferative
region have a proliferation rate, ρ(1 − q

K
), such that cell proliferation occurs only if

the local cell density is less than the carrying capacity, K. Hence the cell production
rate is given by

r(p, y, s, τ) = ρp(y, s, τ)(1 −
q

K
)H(s − s∗), (S8)

where H(.) denotes a Heaviside function. We remark that for simplicity we do not
explicitly distinguish between the proliferation rates of stem and transit cells: the
differences in proliferative activity between these two populations is absorbed in the
averaged cell proliferation rate, ρ. We also assume that cell apoptosis is negligible
along the crypt axis and that all cell removal occurs via cell shedding at the top of
the crypt.

Substituting for the flux terms Jy, Js and the net cell production rate, r, from
Eqs. (S3), (S7) and (S8) in Eq. (S1), we arrive at the following nonlinear integro-
differential equation given by

∂p(y, s, τ)

∂τ
=

∂

∂y

(
D(q)

q

∂q

∂y
p(y, s, τ)

)

+
∂

∂s

[

−

(

a −

((
W + b

cW (y) + d

)(
e

e + s

)

+ f

)

s

)

p(y, s, τ) + Ds

∂p

∂s

]

+ ρp(y, s, τ)(1 −
q

K
)H(s − s∗). (S9)

As discussed in the Main Text, we close Eq. (S9) by imposing the following
boundary and initial conditions:

W (y) = e−
y

λ , (S10)

∂q

∂y y=0

= 0; (S11)

q(L, τ) =
1

l
; (S12)

Js(y, 0, τ) = 0; Js(y,∞, τ) = 0; (S13)

p(y, s, 0) = p0(y, s). (S14)

Numerical solution

In order to solve Eqs. (S9) - (S14) numerically, we discretise using a regular mesh with
∆y = L

Ny−1
and ∆s = smax

Ns−1
so that the y and s axes are discretised using Ny and Ns

equally spaced nodes, respectively. At each time step, q(y, τ) is approximated using
Simpson’s rule while the partial derivatives that appear in Eq. (S9) are approximated
using first order finite differences. The method of lines is then used to compute the
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time derivative and the resulting system of nonlinear ODEs is solved using the Matlab
stiff-ODE solver ‘ode15s’ .

Additional numerical results

While it is impossible to conduct an exhaustive search of the parameter space of this
model, here we present further simulation results in order to illustrate how model
behaviour depends on parameter values. In Fig. S3 average β-catenin concentrations
are plotted against crypt height for the increasingly truncated APC mutations intro-
duced in the Main Text. In Figs. S4-S6 we present numerical solutions to Eqs. (S9) -
(S14) in different regions of parameter space. In Fig. S4 the effective rate of β-catenin
activation has been increased by a factor of two. This results in a shift in the steady-
state β-catenin concentrations along the crypt axis. Consequently, cell proliferation
occurs throughout the crypt as the β-catenin division threshold is exceeded. In Fig.
S5 the cell proliferation rate ρ has been increased from 0.10 to 0.11. The β-catenin
dynamics remain close to the ‘wild-type’ case presented in Fig. 2 of the Main Text
but the increased cell proliferation rate results in larger cell densities at the bottom
of the crypt. In Fig. S6 the diffusion coefficient, Ds, which represents noise in the
β-catenin dynamics, has been increased by a factor of two and the distribution of
cells about the steady-state β-catenin concentration broadens.

Comparison with experimental data

In Table S1 numerical results from Eqs. (S9) - (S14) are compared with data from
murine small intestinal crypts (9). In order to calculate the total cell number and
proliferative fraction in the crypt, we assume that there are 16 cells along the crypt
circumference (9). Since our model does not account for the hemispherical shaped
crypt bottom, we expect the numerical results to overestimate the total cell number
and proliferative fraction. When calculating the crypt renewal time (i.e. the time
taken for a cell to move from the bottom to the top of the crypt) we assume that the
cell starts one position up from the bottom of the crypt since the cell velocity is zero
at y = 0. In practice we expect that the cell dynamics at the bottom of the crypt will
be regulated by other factors not considered in our model (e.g. stochastic cell motion
and individual stem cell behaviour).

A discussion of the validity of the continuum model hypothesis

In Fig. S7 we present simulation results from a pseudo-steady, two-dimensional crypt.
Each cell has two variables: β-catenin concentration, si(t), and spatial position, xi.
In the underlying discrete model, each si evolves according to Eq. (S5). Cells in-
teract mechanically via a linear force law, hence at each time step of the simulation
cell positions are updated using Newton’s second law in the overdamped limit (5).
Cells divide if their β-catenin concentration exceeds a threshold, s∗, and the axis of
cell division is randomly chosen. The data presented in Fig. S7 were obtained by
considering a crypt simulation at dynamic equilibrium: each of the ri and si’s were
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recorded and the cells were subdivided into equally spaced bins of area ∆y∆s, allow-
ing a numerical estimation of cell number density in sy space to be calculated. The
simulation data are in qualitative agreement with numerical solutions of Eqs. (S9)
- (S14), providing an indication that the continuum model represents a reasonable
approximation to crypt dynamics. We refer the interested reader to van Leeuwen
et al. (5) for further details.

Restriction to one spatial dimension

In a healthy crypt, cell proliferation and differentiation are controlled by chemical
gradients that vary along the crypt axis. Accordingly, cell proliferation occurs pre-
dominantly at the bottom of the crypt while cell shedding occurs at the top. In a
homeostatic crypt, mitochondrial DNA staining experiments indicate that cell mo-
tion occurs predominantly along the crypt axis (10, 11); cells that orginate from a
common stem cell are observed in narrow ribbands along the crypt axis. Thus in Eq.
(S1) only one spatial dimension has been considered.

In (12) we examine the validity of this approximation by comparing numerical re-
sults from a two-dimensional simulation of a crypt (similar to Meineke et al. (4)) with
the one-dimensional continuum model. A comparison of steady-state velocity fields
between the models shows excellent agreement. Moreover, analysis of the continuum
model demonstrates that there exists a restricted region of parameter space which
permits a homeostatic solution. Subsequently, a corresponding region of parameter
space is found for the discrete model. We note that the inherent noise in the two-
dimensional simulations resulting from the random positioning of daughter cells upon
cell division does not appear to be important at the continuum level of description.

Deriving a form for the cell flux

We have adopted a continuum modelling approach in which cell number density is
described as a function of the two independent variables s, the subcellular β-catenin
concentration, and y, the cell position along the crypt axis. At each point along
the y axis we therefore assume a distribution of cells in s space (see Fig. S1). A
valid question to be asked of the modelling methodology is whether or not there
are a sufficient number of cells in the crypt such that a continuum framework can
accurately capture the evolution of the distributions.

Consider fixed y and assume a population of M1 cells, each of which has a variable
si(t) whose deterministic evolution is given by Eq. (S5). Eq. (S5) has a single stable
steady-state which we define by s0 = s0(y). Subdividing the s axis into boxes of
width ∆s and defining Mi(t) to be the number of cells in the box centred at si, the
master equation for the evolution of the stochastic mean in each interior box is given
by:

∂Mi

∂t
= T+

i−1Mi−1 − (T+
i + T−

i )Mi + T−

i+1Mi+1, (S15)

(S16)
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where the T+
i and T−

i denote the transition probabilities of a cell in the ith box
moving to the (i − 1)st or (i + 1)st box, respectively (13). We assume that the
transition probabilities have two components: the first represents random hopping
between boxes as a result of noise in the system while the second is deterministic
and represents changes in β-catenin concentration owing to the underlying β-catenin
dynamics given by Eq. (S5).

For the random hopping component of the cell dynamics, we assume the transition
probabilities are isotropic and constant, hence

T+ = T− =
D

∆s2
, (S17)

and Eq. (S15) is given by

∂Mi

∂t
= D

(Mi−1 − 2Mi + Mi+1)

∆s2
. (S18)

This equation is of the form of a discretised Laplacian operator, hence the evolution
of the stochastic means in time evolve via a diffusive process.

The second term in the transition probabilities originates from the underlying
β-catenin dynamics. For each y, Eq. (S5) has the steady-state value s0(y) with
g(y, s) > 0 ∀ s < s0(y) and g(y, s) < 0 ∀ s > s0(y) and we assign the transition
probabilities as follows:

s < s0(y) : T−

i = 0, T+
i =

g(y, si)

∆s
, (S19)

and

s > s0(y) : T−

i =
g(y, si)

∆s
, T+

i = 0. (S20)

Considering the case when s < s0(y), Eq. (S15) reduces to

∂Mi

∂t
=

g(y, si−1)Mi−1 − g(y, si)Mi

∆s
, (S21)

and making a Taylor expansion of g(y, si−1) about si and substituting in Eq. (S21)
yields

∂Mi

∂t
= −g

Mi − Mi−1

∆s
− Mi−1

∂g

∂s
. (S22)

Now summing contributions from the two different components, we find that the
evolution equations for the stochastic means are given by

∂Mi

∂t
= −g

Mi − Mi−1

∆s
− Mi−1

∂g

∂s
+ D

(Mi−1 − 2Mi + Mi+1)

∆s2
. (S23)

Eq. (S23) determines how the stochastic means evolve at each si and is a discretised
form of the PDE

∂M

∂t
= −

∂

∂s

(

g(y, s)M − D
∂M

∂s

)

, (S24)

with the cell flux of the same form as that derived in Eq. (S7). Hence, we assume
that the population density evolves like the stochastic mean of an underlying discrete
model.
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A model of multiple intestinal crypts

Model development

Integration of Eq. (S9) with respect to s, together with the zero-flux boundary
conditions, yields

∂q

∂τ
=

cell movement
︷ ︸︸ ︷

∂

∂y

(

D(q)
∂q

∂y

)

+

source
︷ ︸︸ ︷

ρ(1 −
q

K
)

∫
∞

0

pH(s − s∗)ds, (S25)

where D(q) = α
q2 and the source term ensures that cell division is restricted to cells

with s > s∗. However, the numerical results presented in Figs. 3 and 4 of the Main
Text demonstrate that there is a one-to-one relationship between average β-catenin
concentration and spatial position along the crypt axis. Motivated by these results
we assume that for any value of s∗ there is a corresponding crypt position y∗ = y∗(s∗)
such that cell proliferation occurs in the region 0 < y < y∗. This assumption allows
us to replace the source term in Eq. (S25) by a term that depends on q and y so that

∂q

∂τ
=

cell movement
︷ ︸︸ ︷

∂

∂y

(

D(q)
∂q

∂y

)

+

source
︷ ︸︸ ︷

ρq(1 −
q

K
)H(y∗ − y), (S26)

and the PDE for q is independent of s. We note that the parameter y∗ can be related
to the β-catenin dynamics by considering numerical solutions of the model presented
in the previous section as necessary.

As illustrated in Fig. 5 of the Main Text, we now consider a spatial domain
y ∈ [−NL,NL] with the crypt bottoms and tops positioned at {..,−2L, 0, 2L, ..} and
{..,−L,L, ..}, respectively. The independent variable y now represents arc length
along the chain of connected crypts and the source term in Eq. (S26) is generalised
to be a periodic binary function which models the localisation of cell proliferation to
the bottom of each crypt.

In the single crypt model cell shedding was incorporated via boundary condition
(6) is the Main Text, which states that cells at the top of the crypt experience zero
force from above (i.e. we implicitly assumed that the removal rate maintained the
cell number density at y = L at the constant value 1

l
). When considering interactions

between cells in neighbouring crypts, we can no longer model cell removal at the top
of each crypt through a Dirichlet boundary condition. Instead we introduce a cell
shedding term with the spatial form depicted in Fig. 5 (dashed line) and Eq. (S26)
is modified such that

∂q(y, τ)

∂τ
=

∂

∂y

(

D(q)
∂q

∂y

)

+ ρf(y, y∗)q(1 −
q

K
) −

Shedding
︷ ︸︸ ︷

δqg(y, yD), (S27)

where δ is the linear shedding rate, and g(y, yD) and f(y, y∗) are periodic, binary
functions which model cell shedding and birth, respectively (see Fig. 5 of the Main
Text).
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We close Eq. (S27) by imposing periodic boundary and initial conditions of the
form

q(−NL, τ) = q(NL, τ), (S28)

∂q

∂y y=−NL

=
∂q

∂y y=NL

, (S29)

q(y, 0) = q0, (S30)

with N chosen to be large enough (e.g. N = 5 in the examples shown below) such
that boundary effects can be neglected over time-scales of interest. When computing
numerical solutions of Eqs. (S27) - (S30), we use a regular mesh with Ny nodes
to discretise the domain −NL ≤ y ≤ NL. At each time step, the spatial partial
derivatives that appear in Eq. (S27) are approximated using finite differences. The
method of lines is then used to solve the resulting system of nonlinear ODEs.

Numerical Results

In order to describe cell shedding and proliferation where there are multiple crypts
we have introduced three parameters: y∗, δ and yD. The parameter y∗ is the crypt
height below which cell division occurs and can be related to the β-catenin threshold
using the model results (Eqs. (2) - (8)) presented in Fig. 4. The rate of cell shedding
at the top of the crypts, δ, is fixed such that the total rate of shedding is equal to the
experimentally known total rate of cell production at steady-state (e.g. 250 cells per
day per crypt in small intestinal crypts (9)). The parameter yD bounds the spatial
region over which cell shedding occurs which we assume to be only at the very top
of each crypt (e.g. for the crypt centred at y = 0 shedding occurs in the region
yD < |y| < L).

In Fig. S8 numerical results depicting the steady-state solution profiles of the
multiple crypt model (Eqs. (S27) - (S30)) are presented; a population of normal cells
has evolved to dynamic equilibrium such that there is a balance between the net rates
of cell shedding and proliferation at the top and bottom of each crypt, respectively.
The cell velocities (which depend on density gradients) are zero at the bottom of
each crypt, increase in magnitude along the crypt axes (e.g. v(y) < 0 for y ∈ [−L, 0],
as cells move up the left-hand crypt), and are zero again at the top of each crypt.
These results indicate that the behaviour of each individual crypt in the multiple
crypt model is in broad agreement with previous models of single crypts (e.g. cell
proliferation at the bottom of each crypt resulting in cells moving up each crypt and
being shed at the top).

Introducing a second cell population

Model development

We now consider populations of normal and mutated cells with number densities
q1(y, τ) and q2(y, τ), respectively, whose shedding rates (δ1 and δ2) and division
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thresholds (yC1 and yC2) are different. The total cell density is defined to be q(y, τ) =
q1(y, τ) + q2(y, τ). Applying the principle of conservation of cell number to each cell
population we obtain

∂qi

∂τ
+

∂Jyi

∂y
= ρf(y, yCi)qi(1 −

q

K
) − δiqig(y, yDi); i = 1, 2, (S31)

where Jyi are the cell fluxes. As in the previous section we assume that the total cell
flux (Jy) is given by

Jy = Jy1 + Jy2 = −
α

q2

∂q

∂y
= −D(q)

∂q

∂y
. (S32)

For simplicity we suppose that the individual cell fluxes are weighted according to
their relative cell number density so that

Jyi = −
qi

q

α

q2

∂q

∂y
; i = 1, 2. (S33)

We note that the cell fluxes Jyi are similar in form to those considered in a model
of avascular tumour growth devised by (14). The main difference between our model
and the earlier work is that they assume D(q) to be constant and hence recover linear
diffusion, whereas because we assume that the cells are connected by overdamped
linear springs D(q) = α

q2 .
In order to examine the behaviour of a small population of ‘mutant’ cells that

are initially centred around some region of the crypt y = y0, we define qss(y) to be
the steady-state solution in the case of a single normal cell population and choose as
initial conditions

q2(y, 0) = qss(y)e
−(y−y0)2

2σ2 (S34)

and
q1(y, 0) = qss(y) − q2(y, 0), (S35)

where σ is a lengthscale characterising the initial size of the patch of introduced
mutant cells. We close Eqs. (S31)-(S35) by imposing periodic boundary conditions
of the form

qi(−NL, τ) = qi(NL, τ), (S36)

∂qi

∂y y=−NL

=
∂qi

∂y y=NL

; i = 1, 2. (S37)

A schematic illustration of the simulation results presented in Fig. 6 of the Main
Text is presented in Fig. S9: (a) a small patch of mutated cells is initially placed in
the centre of the homeostatic central crypt (i.e. at y = 0). Numerical simulations are
performed using these initial data for different parameter values; (b) the mutant cell
population has a neutral mutation; (c) the mutant cells proliferate throughout the
crypt and (d) the mutant cells proliferate throughout the crypt and have a reduced
shedding rate. This combination of parameter changes results in the mutant cells
migrating into neighbouring crypts.
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Table S1: Comparison of murine intestinal crypt data taken from Potten and Loeffler
(9) with results from the continuum model at dynamic equilibrium. Ns = 50, Ny = 15,
λ = 3, Ds = 25, s∗ = 100, ρ = 0.1, α = 35, K = 2.

Quantity Continuum model Numerical estimate Experimental data

Cell number Nx

∫ L

0

∫
∞

0
pdsdy 288 cells 250-300 cells

Renewal time
∫ L

1

q3

α
( ∂q

∂y
)−1dy 2.4 days 2-3 days

Proliferative fraction
R L

0

R s∗

0 pdsdy
R L

0

R

∞

0 pdsdy
0.6 0.67
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Figure Legends

Fig. S1.

A schematic illustration of the crypt continuum model. In the discrete model (left),
y is the spatial coordinate along the crypt axis, L denotes the crypt height and α

the resting spring length. Unit length is chosen to be a cell diameter, l. Each cell
is defined by the coordinate pair (yi, si). In the continuum model, we assume that
there is a distribution of β-catenin for each volume element along the crypt axis,
∆y. Every volume element (e.g. the hatched region) has an associated cell number
density, p(y, s), and on the right-hand side, a schematic of how p(y, s), varies with y

and s is depicted. In this schematic cells have high and low β-catenin concentrations
at the bottom (y = 0 ) and top (y = L) of the crypt, respectively.

Fig. S2.

The steady-state of Eq. (S6) is plotted against y for W (y) given by Eq. (4) of the
main text.

Fig. S3.

A plot of average β-catenin concentrations along the crypt axis for wild-type (starred
line), m7 (solid line), m8 (dashed line) and m9 (dotted line) parameter sets presented
in Table ??. Eqs. (S9) - (S14) were solved numerically until a dynamic equilibrium
was reached. Plots shown at τ = 40 hours with parameters as in Tables ?? and ??.
s̄ was then numerically calculated using Eq. (??).

Fig. S4.

Additional numerical results from the single crypt continuum model (Eqs. (S9) -
(S14)) at dynamic equilibrium. Here the β-catenin production rate is increased by a
factor of two, (a = 50.) Other details as in Fig. 2 of the Main Text.

Fig. S5.

Additional numerical results from the single crypt continuum model (Eqs. (S9) -
(S14)) at dynamic equilibrium. Here TC = 10. Other details as in Fig. 2 of the Main
Text.

Fig. S6.

Additional numerical results from the single crypt continuum model (Eqs. (S9) -
(S14)) at dynamic equilibrium. Here Ds = 12. Other details as in Fig. 2 of the Main
Text.
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Fig. S7.

Simulation results from a two-dimensional discrete crypt model. (a) A plot of the
cell distribution. (b) Cell density plotted against y and s. Densities calculated by
binning simulation data into regular equally-spaced bins of area ∆y∆s. Here ∆y = 2
and ∆s = 10.

Fig. S8.

Cell density (solid line) and velocity (dashed line) fields are plotted against spatial
coordinate, y. The proliferation (f) and shedding (g) functions are denoted by the
dot-dashed lines, respectively. Eqs. (S27) - (S30) were solved numerically using the
finite difference method. In this plot α = 35, y∗ = 0.6L, yD = 0.15L, ρ = 0.1,
δ = 0.09, N = 5, L = 16, K = 2 and Ny = 281.

Fig. S9.

A schematic illustration of the biological interpretation of the numerical results pre-
sented in Fig. 5: (a) initial conditions – a small mutant population (shaded cells)
is introduced into the bottom of the central crypt; (b) a neutral mutation: mutated
cells have the same parameters as the normal cells. As the mutated cell population is
introduced at the bottom it pushes the normal cells out of the central crypt; (c) a cell
proliferation mutation – the mutant cells proliferate throughout the crypt resulting
in an increased cell density in the mutant crypt; (d) a cell proliferation and shedding
mutation allows the mutant population to invade into the neighbouring crypts.
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