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Supplementary Information 

Cancer stem cells as a proportion of the total tumour mass 

The mathematical model described in Johnston et al.23,24, as based on Fig. 1, assumes 

that the stem (respectively transit) cells either die, differentiate or renew at rates 1α , 2α  

and 3α  (respectively 1β , 2β  and 3β ), and that the fully-differentiated cells die and are 

shed into the lumen at a rate γ .  The model equations for stem cells (0N ), transit cells 

( 1N ) and fully-differentiated cells ( 2N ) are given by  
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where 213 αααα −−=  and 213 ββββ −−= .  α  and β  represent the net per-capita 

growth rates of stem and transit cells, 2α   and 2β  represent the linear parts of the 

differentiation rates of stem and transit cells, and the terms involving 0k  and 1k  

represent, respectively, the nonlinear feedback associated with stem and transit cells. 

0m  and 1m  represent feedback saturation parameters, and γ  is the per capita rate of 

fully-differentiated cell population removal.  

In the exponential growth phase of the tumour, when the cell populations are very 

large, 1,, 210 >>NNN ,  so that we can approximate (1)–(3) by           
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These are linear ordinary differential equations that can be solved exactly to produce  
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where 0n , 1n  and 2n are the initial cell populations of stem, semi-differentiated and 

fully-differentiated cells, respectively, and constants CBA ,, are given by  
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We note that numerical solution of the full system of equations (1)-(3) gives good 

agreement with the solutions (7)-(9) of the approximated equations (4)-(6). We now 

consider the two different cases of whether the cancer stem cell (CSC) originates from 

tissue stem or transit cells. 

Firstly, when the CSC originates from the tissue stem cells, 
tmke )( 00−α
will be much 

greater than 
tmke )( 11−β
 and so the limiting ratio as ∞→t  is given by 

BAnNNN :::: 0210 = ,  which can be expressed as                 
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In particular, this yields the key ratio              
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Secondly, when a transit cell is the CSC (or driving cell of the tumour), the stem 

cell population is in a steady state given by ( )αα 00
*
0 mkN −= . In this case the transit 

and fully-differentiated cell populations grow without bound while the last term in (5), 

representing stem cell differentiation, remains constant. The ratio of the populations in 

the limit as ∞→t  is given by  
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and, in particular, the key ratio is given by 
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We note that qualitatively these results are unchanged if linear feedback is used instead 

of saturating feedback.  For the stem cells, linear feedback corresponds to the case 

where 00 =m , and saturating feedback occurs when 00 ≠m . 

CSCs from transit cells compared to fully-differentiated cells 

Alternatively, we could consider the ratio of the transit cell population to the fully-

differentiated cells during unbounded growth.  Since we are only interested in the ratio 

21 / NN with the 1N  population driving the cancer, we assume that the stem cell 

population is constant to ease computation. We choose the constant 

)1()( *
00

2*
00

*
02 NmNkND ++= α  to represent the stem cell differentiation rate.  Using 

equations (2) and (3), we get
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When 1N  and 2N  are large, corresponding to the exponential growth phase, this 

equation can be written approximately as  
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This can be solved directly to give 
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where C  is a constant.  Therefore, as long as 11 mk>+ γβ  (which is true in the 

exponential growth phase in the saturating feedback model), as ∞→t  the limiting ratio 

is 
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Hence, the general ratio can be expressed as  
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