Supplementary Information
Cancer stem cellsasa proportion of thetotal tumour mass

The mathematical model described in Johnst@h.>>?* as based on Fig. 1, assumes
that the stem (respectively transit) cells either differentiate or renew at rates, a,

and a, (respectively3,, B8, and £3,), and that the fully-differentiated cells die sare

shed into the lumen at a rage  The model equations for stem cell8,(), transit cells

(N,) and fully-differentiated cellsN,) are given by

ANy _ KNG

= 900 1

dt ° 1+myN, )
2

%:m\ll_ klNl + No a,z + kONO ’ (2)
dt 1+mN, 1+myN,
dN, k,N

=—JN, +N +—1 1 3
e om0 ) .

where? =92~ =02 gnqB=B=Fb =B a gngB represent the net per-capita
growth rates of stem and transit ceffe, and B represent the linear parts of the
differentiation rates of stem and transit cellg] #re terms involving}<O and
represent, respectively, the nonlinear feedbacbciested with stem and transit cells.
Mo and™ represent feedback saturation parameters Yaistthe per capita rate of

fully-differentiated cell population removal.

In the exponential growth phase of the tumour, wihencell populations are very

large, N,, N, N, >>1, so that we can approximate (1)—(3) by
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These are linear ordinary differential equatioreg ttan be solved exactly to produce
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wheren, N, and N are the initial cell populations of stem, semi-elifintiated and

fully-differentiated cells, respectively, and cardis A, B,C are given by
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We note that numerical solution of the full systehequations (1)-(3) gives good
agreement with the solutions (7)-(9) of the appreated equations (4)-(6). We now
consider the two different cases of whether theeastem cell (CSC) originates from

tissue stem or transit cells.
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Firstly, when the CSC originates from the tissmrstells,e(a will be much
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In particular, this yields the key ratio
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Secondly, when a transit cell is the CSC (or dgwell of the tumour), the stem
cell population is in a steady state given®y = a/(k, —m,a). In this case the transit
and fully-differentiated cell populations grow watlt bound while the last term in (5),
representing stem cell differentiation, remainsstant. The ratio of the populations in

the limit ast ~ © is given by
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and, in particular, the key ratio is given by
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We note that qualitatively these results are ungednf linear feedback is used instead

of saturating feedback. For the stem cells, lifeadback corresponds to the case

wherem, =0, and saturating feedback occurs when# 0.

CSCsfrom transit cells compared to fully-differentiated cells

Alternatively, we could consider the ratio of thartsit cell population to the fully-

differentiated cells during unbounded growth. 8ime are only interested in the ratio

N, / N, with the N, population driving the cancer, we assume that tive gell

population is constant to ease computation. We sstloe constant

D =a,N; +k,(N;)?/@+m, N;) to represent the stem cell differentiation ratesing

equations (2) and (3), we get
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When N, and N,, are large, corresponding to the exponential grgse, this

equation can be written approximately as
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This can be solved directly to give
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whereC is a constant. Therefore, as long&s y >k, /m, (which is true in the

exponential growth phase in the saturating feedbaattel), as — o the limiting ratio

is
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Hence, the general ratio can be expressed as
N, _ Net transi cellgrowthrate+ Differentiatedcell removakate (19)
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