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Malignant tumours are characterised by a low, acidic extracellular pH (pHe) which facilitates invasion
and metastasis. Previous research has proposed the potential benefits of manipulating systemic pHe,
and recent experiments have highlighted the potential for buffer therapy to raise tumour pHe, prevent
metastases, and prolong survival in laboratory mice. To examine the physiological regulation of tumour
buffering and investigate how perturbations of the buffering system (via metabolic/respiratory disorders
or changes in parameters) can alter tumour and blood pHe, we develop a simple compartmentalised
ordinary differential equation model of pHe regulation by the HCO�3 =CO2 buffering system. An approxi-
mate analytical solution is constructed and used to carry out a sensitivity analysis, where we identify key
parameters that regulate tumour pHe in both humans and mice. From this analysis, we suggest promising
alternative and combination therapies, and identify specific patient groups which may show an enhanced
response to buffer therapy. In addition, numerical simulations are performed, validating the model
against well-known metabolic/respiratory disorders and predicting how these disorders could change
tumour pHe.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Malignant tumours consume significantly higher amounts of
glucose than corresponding normal tissues or benign tumours
[1,2]. This increased glucose uptake is observed even in the pres-
ence of adequate levels of oxygen, a phenomenon referred to as
aerobic glycolysis. The use of aerobic glycolysis by cancer cells
was characterised as early as the 1930s and named the Warburg
effect [3,4]. The inefficiency of this type of metabolism significantly
contributes to the observed increased glucose uptake and a subse-
quently increased acid load.

Upregulated aerobic glycolysis is a hallmark of malignant can-
cers [1]. The high level of glycolysis results in increased production
of H+ ions, leading to an acidification of the tumour microenviron-
ment. This has been well documented by experiments showing
that solid tumour extracellular pH (pHe) is commonly 0.5–1 units
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lower than normal tissue (tumour pHe of 6.5–7 vs a normal tissue
pHe of 7.4) [5–7].

Despite the early discovery of the Warburg effect, little is
understood about the reasons why malignant tumours consistently
upregulate the use of aerobic glycolysis. In a series of papers, Gate-
nby et al. hypothesised that tumour acidification confers an advan-
tage to the tumour cells, by producing a harsh environment in the
peritumoural soft tissues as acid is transported along concentra-
tion gradients from the tumour in adjacent normal regions. This re-
sults in normal cell death, extracellular matrix degradation,
increased angiogenesis and disordered immune response facilitat-
ing tumour invasion [8,4,1,9,10,2]. This ‘acid mediated invasion
hypothesis’ is supported by experiments which have shown that
normal cells proliferate optimally at a pHe of 7.4, with a steep de-
crease in proliferative ability below 7.1, while tumour cells obtain
an optimal proliferation rate at pHe 6.8, which correlates with the
slightly acidic environment found in invasive tumours [9].

The ‘acid-mediated invasion hypothesis’ leads to the prediction
that neutralising the acidic tumour pHe will inhibit invasion and,
subsequently, spontaneous metastasis, which has been explored
in a recent set of experiments [11]. To test this prediction, Robey
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et al. implanted highly metastatic human breast cancer cells in the
mammary fat pad of severe combined immunodeficient mice. Oral
administration of sodium bicarbonate (which acts as a buffer to re-
sist changes in pHe) raised primary tumour pHe, reduced the num-
ber and size of metastases, and prolonged survival [11]. More
generally, Gatenby and Gawlinski [4] propose that manipulation
of systemic pHe (either through acidification or alkalinisation)
could reduce tumour growth by perturbing the system from the
optimal pHe for tumour proliferation.

To examine how manipulation of the systemic buffering system
can alter tumour pHe, we develop a simple but realistic model of tu-
mour pHe regulation via the HCO�3 =CO2 system, including the effects
of physiological control of blood buffering, detailed in Section 2.
With this model, we explore model behaviour by constructing an
asymptotic approximation (Section 2.2) and subsequently perform
a sensitivity analysis to ascertain the key parameters regulating tu-
mour pHe, and identify which of those parameters can be altered
with minimal effect on blood pHe regulation (Section 3.4). Addition-
ally, we model respiratory and metabolic disordered states, compar-
ing blood pHe predictions to known data, and predicting the
resulting effect on tumour pHe (Section 3.1).
Fig. 1. Schematic of the systemic buffering model presented in Eqs. (2)–(7). The two
compartments, blood and tumour, are linked through the vascular transfer of
protons and buffering components such as carbon dioxide (CO2) and bicarbonate
(HCO�3 ). In the blood, various physiological systems such as ventilation and renal
filtration tightly regulate the buffering system.
2. Mathematical model

2.1. Model formulation and construction

To produce a basic model of blood and tumour buffering we first
develop a simple model of the main extracellular buffering system,
the HCO�3 =CO2 system, along with the physiological regulation of
this system. The aim is to develop a simple model of pHe at the tu-
mour and blood compartment scale which accurately models the
physiological regulation of tumour and blood pHe. Although as a
first approximation, we compare the behaviour of our model to
known human data. Any additional buffering from intrinsic non-
motile buffers (such as proteins, amino acids, and phosphates)
operate on a faster scale than the HCO�3 =CO2 buffer. As there is lit-
tle to no movement of intrinsic buffers between compartments, we
assume this contribution in the tumour tissue is constant and
implicitly incorporated in the tumour proton production parame-
ter. Furthermore, our model tracks arterial blood delivery to the tu-
mour, which has haemoglobin in the oxygen-bound form with low
proton carrying capacity. Consequently, it is reasonable to assume
only a small proportion of blood delivered to hypoxic areas of the
tumour will contain the deoxygenated form of haemoglobin which
can bind protons. This hypoxic subcompartment would be low in
bicarbonate, high in CO2, and likely have poor flow and connectiv-
ity to the vascular network, and therefore would likely reduce the
potential efficacy of any buffer delivery to that region. Subse-
quently, our model could be extended to include additional buffer-
ing components at different spatial and temporal scales. Hence, we
consider a two-compartment model, simulating the blood and tu-
mour tissue, incorporating the bicarbonate–carbon dioxide system.
Crucially, the model also includes the physiological regulation of
the bicarbonate system through ventilation and kidney filtration.
In this respect, our model can be seen as an extension of the work
of [12], and our analysis will show that inclusion of these effects
can significantly affect model predictions. As we are interested in
average tumour pHe and not pHe differences within the tumour,
we neglect fine scale spatial variations in tumour acid production.
Hence, we can subsequently ignore regional variation in oxygen
levels and consumption as considered in previous models [12]
and assume an average acid production rate. Furthermore, as tu-
mour cells exhibiting the glycolytic phenotype rely on glycolysis
even in the presence of oxygen, the local oxygen concentration
should not significantly alter acid production.
The schematic for the mathematical model is shown in Fig. 1.
We have that Bt,b represents the concentration of bicarbonate per
volume in the tumour and blood, respectively, in units of mol/L.
Ht,b represents the volumetric concentration of free protons within
the tumour and blood, respectively, in units of mol/L. Ct,b repre-
sents the concentration of carbon dioxide for the tumour and
blood, respectively, in units of mol/L. Note that as we are modelling
extracellular pH, we model the levels of ions in the tumour inter-
stitial fluid surrounding the cells, and neglect the intracellular pH
of the tumour cells themselves.

Each equation includes a term describing the chemical buffering
reactions of the HCO�3 =CO2 system, which proceeds as follows:

HCO�3 þHþ �
k1

k2

CO2 þH2O: ð1Þ

The first two terms in each equation describe this chemical buffer-
ing reaction, with k2 and k1 the reaction rate constants. This reac-
tion is accelerated by the presence of the enzyme carbonic
anhydrase (CA), the activity of which varies depending on the iso-
zyme type. In our model, we include the action of carbonic anhy-
drase in both the blood and tumour by increasing the rate
constants of the reaction to reflect this acceleration. The fastest
acceleration occurs in the blood, where CA II in red blood cells
can accelerate the hydration reaction 50000 to 1000000 fold over
the uncatalyzed rate at human body temperature [13]. Tumour
associated carbonic anhydrases include CA II and CA IX [14], and
the activity of CA IX has recently been found to be as high as CA
II [15]. Hence, we assume for simplicity that the catalytic rates in
the blood and tumour tissue are equal. Further, the asymptotic
analysis indicates that the model is robust to changes of several
orders of magnitude of these parameters (provided the pKa, and
hence ratio of the kinetic parameters, remains equal), as this will
only alter the fast reaction timescale as the solution relaxes to the
intermediate and slow solutions.
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The equations also include a vascular exchange term for the
respective ion or molecule between the blood and the tumour.
Hence, c1, c2, c3 are the vessel flux rates for bicarbonate, lactate,
and carbon dioxide, respectively. The vessel fluxes are calculated
by ci = VAD � Pi where VAD is the vessel length per tumour cross
section area (in cm/cm2), and Pi is the vessel permeability (in
cm/s) for the respective ion or molecule [16]. In order to ensure
conservation of total quantities of H+, CO2 and HCO�3 during the
vascular exchange process from the tumour to the blood, we mul-
tiply ci by vT, where vT = Vtumour/Vblood, and where Vtumour is the vol-
ume of the tumour and Vblood is the volume of blood. Although
tumour volume varies over time, the timescale of tumour growth
is much slower than the pHe regulation dynamics examined in this
model, and we therefore assume tumour size is constant. Further-
more, the sensitivity analysis in Section 3.4 indicates the system is
not sensitive to this parameter.

The first three equations capture the tumour dynamics, and will
be discussed in turn below.

dBt

dt
¼ k2Ct � k1BtHt

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{chemical reactions

þ c1ðBb � BtÞ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{vascular exchange

: ð2Þ

Eq. (2) describes the bicarbonate dynamics in the tumour. As there
is no direct production or consumption of HCO�3 in the tumour, this
equation only includes chemical reaction terms and vascular ex-
change of HCO�3 between the blood and the tumour, where c1 is
the vessel flux for bicarbonate.

dHt

dt
¼ k2Ct � k1BtHt

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{chemical reactions

þ /1

z}|{tumour production

� c2ðHt � HbÞ
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{vascular exchange

: ð3Þ

Eq. (3) models the tumour H+ concentration. The third term, /1, is
the net production of H+ per unit volume of the tumour through
aerobic glycolysis, implicitly incorporating the fixed contribution
of minor additional non-motile tissue buffering components which
act on a faster timescale than the other reactions detailed. It is
this production term that is generally higher than normal tissue
due to the upregulation of glycolysis in malignant tumours. The
final term is the vascular exchange, where c2 is the vessel flux for
lactate as protons move in association with lactate to maintain
electroneutrality.

dCt

dt
¼ k1BtHt � k2Ct

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{chemical reactions

þ /5

z}|{tumour production

� c3ðCt � CbÞ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{vascular exchange

: ð4Þ

Eq. (4) represents the tumour CO2 dynamics. The third term, /5,
represents the tumour production of CO2 from cellular metabolism.

The last three equations capture the blood dynamics, and will
be presented in turn. Firstly:

dBb

dt
¼ k2Cb � k1BbHb

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{chemical reactions

þ/2Cb � k1Bb

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{kidney filtration

þ h1

z}|{treatment

� c1vTðBb � BtÞ
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{vascular exchange

: ð5Þ

This equation describes the blood HCO�3 . The third and fourth terms
are standard representations used to model the complex process of
renal filtration and reabsorption of bicarbonate [17,18]. The details
of this system can be found in A. Briefly, an increase in blood CO2

results in more conversion of CO2 into HCO�3 and H+ inside the kid-
ney nephrons, elevated levels of acid secretion into the bladder, and
increased absorption of HCO�3 into the bloodstream. If CO2 levels are
stable (through ventilation), then any increases in HCO�3 result in an
increased rate of renal bicarbonate filtration (and subsequent loss in
the urine). Here, /2 is the acid secretion rate, and k1 is the bicarbon-
ate filtration rate. The fifth term, h1, is the bicarbonate treatment
term used in Robey et al. [11] study we examine in the sensitivity
section.
dHb

dt
¼ k2Cb � k1BbHb

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{chemical reactions

þ /3

z}|{body production

þ c2vTðHt � HbÞ
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{vascular exchange

: ð6Þ

Eq. (6) models the blood H+ dynamics. The first two terms in Eq. (6)
represent the bicarbonate buffering reaction kinetics in the blood.
The third term represents the net contribution of protons from
the rest of the body tissues (except for the tumour) after the contri-
bution of non-motile tissue buffers.

dCb

dt
¼ k1BbHb � k2Cb

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{chemical reactions

þ /4

z}|{body production

� k2Cbf ðCbÞ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{ventilation

þ c3vTðCt � CbÞ
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{vascular exchange

:

ð7Þ

Eq. (7) models the blood CO2 concentration. The third term is the
CO2 source from the normal body tissues; here /4 represents the
rate of CO2 entry into the bloodstream from the normal tissue.

The fourth term in Eq. (7) represents the regulation of blood CO2

levels by respiration, where CO2 lost through ventilation is propor-
tional to the product of the ventilation rate, f(Cb), and the CO2 con-
centration. The function for ventilation we use is:

f ðCbÞ ¼
Vmin if f ðCbÞ < Vmin;

VslopeCb � Vintercept if Vmin < f ðCbÞ < Vmax;

Vmax if f ðCbÞ > Vmax:

8><
>: ð8Þ

Note the linearity over a range with minimum and maximum
thresholds [19]. Although the specific form of this term is a simpli-
fication of the complex dynamics surrounding ventilation, it is an
appropriate approximation for the purposes of our model. The
experimental ventilation response to blood CO2 has been well
quantified in both humans and mice and used to derive biological
values for the ventilation parameters [20–22].

The initial conditions are Cb(0) = c0, Ct(0) = c0, Bb(0) = b0, Bt(0) =
b0, Hb(0) = h0, and Ht(0) = h0. We choose c0, b0, and h0 to be the stan-
dard blood values of CO2; HCO�3 , and H+, respectively. This allows a
clear visualisation of H+ and CO2 accumulation in the tumour, and
subsequent depletion of HCO�3 . Furthermore, as tumours can devel-
op in many types of tissue with different metabolic rates, the
baseline tissue values are likely to vary, but as there is only one
steady-state the initial conditions do not affect the long-term
behaviour of the system and are not a focus of this study.

In order to non-dimensionalise our model, we use the rescaling
s = k2t, b0bt = Bt, c0ct = Ct, h0ht = Ht, b0bb = Bb, c0cb = Cb, and h0hb = Hb

to obtain the system,

dbt

ds
¼ d1ðct � a2bthtÞ þ C1ðbb � btÞ; ð9Þ

dht

ds
¼ d3ðct � a2bthtÞ þU1 � C2ðht � hbÞ; ð10Þ

dct

ds
¼ �ðct � a2bthtÞ þU5 � C3ðct � cbÞ; ð11Þ

dbb

ds
¼ d1ðcb � a2bbhbÞ þU2cb � n1bb þH1 � C1vTðbb � btÞ; ð12Þ

dhb

ds
¼ d3ðcb � a2bbhbÞ þU3 þ C2vTðht � hbÞ; ð13Þ

dcb

ds
¼ �ðcb � a2bbhbÞ þU4 � n3ðcbÞcb þ C3vTðct � cbÞ; ð14Þ

with d1 ¼ c0
b0
; a2 ¼ k1h0b0

k2c0
; C1 ¼ c1

k2
; d3 ¼ c0

h0
; U1 ¼ /1

k2h0
; C2 ¼ c2

k2
; C3 ¼ c3

k2
;

U2 ¼ /2c0
k2b0

; n1 ¼ k1
k2
; H1 ¼ h1

k2b0
; U3 ¼ /3

k2h0
; U4 ¼ /4

k2c0
, and U5 ¼ /5

k2c0
.

Additionally, the non-dimensionalised ventilation function is
now:

n3ðcbÞ ¼
Dmin if n3ðcbÞ < Dmin;

D1cb � D2 if Dmin < n3ðcbÞ < Dmax;

Dmax if n3ðcbÞ > Dmax;

8><
>: ð15Þ

with Dmin ¼ k2
k2

Vmin; D1 ¼ k2
k2

Vslopec0; D2 ¼ k2
k2

Vintercept , and Dmax ¼ k2
k2

Vmax.



Table 2
Mouse and human non-dimensionalised parameter values.

Name Mouse Human

d1 5.0 � 10�2 5.0 � 10�2

C1 2.5 � 10�8 2.5 � 10�8

d3 3.02 � 104 3.02 � 104

U1 7.17 � 10�3 7.17 � 10�3

C2 8.79 � 10�8 8.79 � 10�8

a2 1.0 1.0
U5 6.11 � 10�9 7.63 � 10�9

C3 7.32 � 10�7 7.32 � 10�7

U2 1.13 � 10�7 2.11 � 10�8

n1 1.10 � 10�7 1.90 � 10�8

H1 1.16 � 10�8 9.16 � 10�10

vTC1 2.5 � 10�9 2.5 � 10�9

U3 1.28 � 10�3 1.1 � 10�3

vTC2 8.79 � 10�9 8.79 � 10�9

U4 1.13 � 10�6 9.16 � 10�8

vTC3 7.32 � 10�8 7.32 � 10�8

Dmin 5.23 � 10�7 3.08 � 10�8

D1 1.52 � 10�6 2.03 � 10�6

D2 3.51 � 10�7 1.9 � 10�6

Dmax 2.05 � 10�6 1.54 � 10�6
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The initial conditions become:

cbð0Þ ¼ 1; ctð0Þ ¼ 1; bbð0Þ ¼ 1; btð0Þ ¼ 1; hbð0Þ ¼ 1; and htð0Þ ¼ 1:

ð16Þ

From the calculations detailed in A, the full parameter sets for a
laboratory mouse and human are shown in Table 1. The non-
dimensionalised values for a mouse and human are shown in
Table 2.

2.2. Asymptotic simplification of the model

In this section we will construct a uniformly valid asymptotic
approximation. This analytical solution is used to understand the
general model behaviour and key parameter groupings. It is also
used to perform a sensitivity analysis in Section 3.4 in order to
examine which parameters have a large effect on tumour pHe. Po-
tential treatments are then suggested which relate to the impor-
tant parameters indicated by the sensitivity analysis.

Preliminary numerical simulations, as well as the wide varia-
tion in parameter values spanning several orders of magnitude,
indicate different timescales in our solution. There are three char-
acteristic timescales for our system. The inner, or fastest, is the
timescale on which the reaction dynamics take place (k1 and k2

in Eqs. (2)–(7)). This is on the order of milliseconds. Then, there
is an intermediate timescale where proton production takes place,
on the order of seconds (/1 and /3 in Eqs. (3) and (6)). This inter-
sects with a slower, outer solution which takes into account the
rest of the physiology (kidney filtration, ventilation, etc.), and oc-
curs on the scale of minutes to hours (/2, k1, k2 in Eqs. (5) and
(7)). With this in mind, let us first examine the inner, fast
solution.

2.2.1. Fast timescale dynamics
From our biological knowledge of the system, we know that the

chemical reaction equations occur on the order of nano- to milli-
seconds, and are much faster than the other processes in our sys-
tem. Furthermore, we can see that the parameter d3 is several
orders of magnitude larger than any other, indicating that the ht,b

equations will vary on the fast timescale (which is verified by pro-
ceeding with a standard asymptotic analysis). Thus we anticipate
Table 1
Mouse and human parameter values and sources. Details of the extraction a
Jackson Laboratory are in reference to the Mouse Tumor Biology Database (
Maine. The MTB is a database of laboratory mouse strain measurements of
tumor.informatics.jax.org.

Name Mouse Human

h0 3.98 � 10�8 3.98 � 10�8

b0 2.4 � 10�2 2.4 � 10�2

c0 1.2 � 10�3 1.2 � 10�3

P1 3.4 � 10�5 3.4 � 10�5

P2 1.2 � 10�4 1.2 � 10�4

P3 1 � 10�3 1 � 10�3

VAD 20 20
vT 0.1 0.01
/1 7.8 � 10�6 7.8 � 10�6

/4 3.7 � 10�5 3 � 10�6

/2 6.16 � 10�2 1.14 � 10�2

/3 1.5 � 10�6 1.2 � 10�6

/5 2 � 10�7 2.5 � 10�7

k1 3 � 10�3 5.2 � 10�4

k2 102 0.042
k2 2.73 � 104 2.73 � 104

k1 3.437 � 1010 3.437 � 1010

Vslope 0.34 1.1 � 103

Vmax 5.5 � 10�4 1
Vmin 1.4 � 10�4 0.02
Vintercept 9.4 � 10�5 1.237
h1 7.6 � 10�6 6 � 10�7
that chemical reactions will dominate the fast dynamics. To pro-
ceed, we define � = 10�3, whereupon Eqs. (2)–(7) rescale to:

dbt

ds ¼ d1ðct �a2bthtÞþ �2Ĉ1ðbb�btÞ; ð17Þ

dht

ds
¼ d3ðct �a2bthtÞþ �Û1� �2Ĉ2ðht �hbÞ; ð18Þ

dct

ds
¼�ðct �a2bthtÞþ �2Û5� �2Ĉ3ðct � cbÞ; ð19Þ

dbb

ds ¼ d1ðcb�a2bbhbÞþ �2Û2cb� �2n̂1bbþ �2Ĥ1� �2Ĉ1vTðbb�btÞ; ð20Þ

dhb

ds ¼ d3ðcb�a2bbhbÞþ �Û3þ �2Ĉ2vTðht �hbÞ; ð21Þ

dcb

ds
¼�ðcb�a2bbhbÞþ �2Û4� �2n̂3ðcbÞcbþ �2Ĉ3vTðct � cbÞ; ð22Þ

where d1 ¼ c0
b0
; a2 ¼ k1h0b0

k2c0
; Ĉ1 ¼ c1

�2k2
; d3 ¼ c0

h0
; Û1 ¼ /1

�k2h0
; Ĉ2 ¼ c2

�2k2
; Ĉ3

¼ c3
�2k2

; Û2 ¼ /2c0
�2k2b0

; n̂1 ¼ k1
�2k2

; Ĥ1 ¼ h1
�2k2b0

; Û3 ¼ /3
�k2h0

; Û4 ¼ /4
�2k2c0

; n̂3ðcbÞ
¼ k2
�2k2

f ðcbÞ.
nd calculation of the parameters can be found in A. All citations of The
MTB), Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor,
phenotypic and genotypic data [56]. The database is located at http://

Units Source (M: mouse, H: Human)

mol/L M: [35,36] H: [18]
mol/L M: [35,36] H: [18]
mol/L M: [35,36] H: [18]
cm/s [16,37]
cm/s [9]
cm/s [38,39]
cm/cm2 [40–42]
– M: [11,43,57] H: [44,43]
mol/L/s fit to [11], within the range from [45,9]
mol/L/s M: [46,35,36] H: [46]
1/s M: [47] H: [17,18]
mol/L/s M: [45,35] H: [45,17]
mol/L/s M: [46,35] H: [46,17]
1/s M: [48,49,59] H: [18,50–52]
1/L M: [53] H: [17,18]
1/s [13–15]
L/mol � s from pKa in [17,54]
L2/mol � s M: [22,58] H: [20,21]
L/s M: [22] H: [20,21]
L/s M: [22] H: [20,21]
L/s M: [22] H: [20,21]
mol/L � s M: [11] H: [11,55]
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The ventilation function becomes:

n̂3ðcbÞ ¼

D̂min if n3ðcbÞ < D̂min;

D̂1cb � D̂2 if D̂min < n̂3ðcbÞ < D̂max;

D̂max if n̂3ðcbÞ > D̂max;

8>>><
>>>: ð23Þ

with D̂min¼ k2
�2k2

Vmin; D̂1¼ k2
�2k2

Vslopec0; D̂2¼ k2
�2k2

Vintercept , and D̂max¼ k2
�2k2

Vmax.
Note that we can decouple the reaction dynamics by making the

following substitution: u1 = bt + d1ct, u2 = bb + d1cb, v1 = ht + d3ct,
v2 = hb + d3cb. With these substitutions, Eqs. (17)–(22) become:

du1

ds
¼ �2Ĉ1 u2 �

d1

d3
v2 þ

d1

d3
hb � u1 þ

d1

d3
v1 �

d1

d3
ht

� �

þ d1�2Û5 � �2 d1

d3
Ĉ3 v1 � ht � v2 þ hbð Þ; ð24Þ
dv1

ds
¼ �Û1 � �2Ĉ2ðht � hbÞ þ d3�2Û5 � �2Ĉ3 v1 � ht � v2 þ hbð Þ;

ð25Þ

dht

ds ¼ v1 � ht � a2htðd3u1 � d1v1 þ d1htÞ þ �Û1 � �2Ĉ2ðht � hbÞ;

ð26Þ
du2

ds
¼ �2Û2

1
d3
ðv2 � hbÞ

� �
� �2n̂1 u2 �

d1

d3
v2 þ

d1

d3
hb

� �
þ �2Ĥ1

� �2Ĉ1vT u2 �
d1

d3
v2 þ

d1

d3
hb � u1 þ

d1

d3
v1 �

d1

d3
ht

� �

þ d1�2Û4 � �2 d1

d3
ðv2 � hbÞn̂3

1
d3
ðv2 � hbÞ

� �

þ �2 d1

d3
Ĉ3vT v1 � ht � v2 þ hbð Þ; ð27Þ

dv2

ds
¼ �Û3 þ �2Ĉ2vTðht � hbÞ þ d3�2Û4

� �2ðv2 � hbÞn̂3
1
d3
ðv2 � hbÞ

� �
þ �2Ĉ3vTðv1 � ht � v2 þ hbÞ; ð28Þ

dhb

ds
¼ v2 � hb � a2hbðd3u2 � d1v2 þ d1hbÞ þ �Û3

þ �2Ĉ2vTðht � hbÞ: ð29Þ

Our new variables v1,2 are not scaled to order 1, in fact, they are
O(d3) = O(104). However, the advantage is that the leading order
equations then simplify on noting the size of v1,2, yielding at lead-
ing order:

du1

ds
¼ dv1

ds
¼ 0; ð30Þ

dht

ds
¼ v1 � ht � a2htðd3u1 � d1v1 þ d1htÞ; ð31Þ

du2

ds ¼
dv2

ds ¼ 0; ð32Þ

dhb

ds
¼ v2 � hb � a2hbðd3u2 � d1v2 þ d1hbÞ: ð33Þ

From these equations, we can see that u1, v1, u2 and v2 are con-
stant, respectively denoted A1, A2, A3, and A4, and hence,

dht

ds
¼ �a2d1h2

t þ ð�1� d3a2A1 þ d1a2A2Þht þ A2; ð34Þ

dhb

ds
¼ �a2d1h2

b þ ð�1� d3a2A3 þ d1a2A4Þhb þ A4: ð35Þ
These equations have one positive, stable steady state given by

~htþ ¼
ð�1� d3a2A1þ d1a2A2Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1� d3a2A1þ d1a2A2Þ2þ4a2d1A2

q
2a2d1

;

ð36Þ

~hbþ ¼
ð�1� d3a2A3þ d1a2A4Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1� d3a2A3þ d1a2A4Þ2þ4a2d1A4

q
2a2d1

:

ð37Þ
Therefore, in our original variables, the solution, which we will

denote as Wfast, follows these equations:

dht

ds
¼ �a2d1h2

t þ ð�1� d3a2A1 þ d1a2A2Þht þ A2; ð38Þ
dhb

ds
¼ �a2d1h2

b þ ð�1� d3a2A3 þ d1a2A4Þhb þ A4; ð39Þ

ct ¼
1
d3
ðA2 � htÞ; ð40Þ

cb ¼
1
d3
ðA4 � hbÞ; ð41Þ

bt ¼ A1 �
d1

d3
A2 þ

d1

d3
ht; ð42Þ

bb ¼ A3 �
d1

d3
A4 þ

d1

d3
hb: ð43Þ

In general, the model dynamics of interest on the intermediate
and slow timescales are insensitive to the timescales of the fast
reactions (providing the fast reactions remain fast). Hence, altering
the specific kinetic parameters (but keeping the pKa, and hence the
ratio of these parameters, equal) does not alter the system behav-
iour on the timescales of interest.

2.2.2. Intermediate timescale dynamics
To examine the intermediate timescale dynamics, let us rescale

time, so s2 = �s. We have, at leading order, again noting that our
variables v1,2 are not scaled to order 1, but instead O(d3) = O(104),

du1

ds2
¼ 0; ð44Þ

dv1

ds2
¼ Û1 þ d3�Û5 � �Ĉ3ðv1 � v2Þ; ð45Þ

0 ¼ �a2d1h2
t þ ð�1� d3a2u1 þ d1a2v1Þht þ v1; ð46Þ

du2

ds2
¼ 0; ð47Þ

dv2

ds2
¼ Û3 þ d3�Û4 � �

D̂1

d3
v2

2 � D̂2v2

 !
þ �Ĉ3vTðv1 � v2Þ; ð48Þ

0 ¼ �a2d1h2
b þ ð�1� d3a2u2 þ d1a2v2Þhb þ v2: ð49Þ

Thus we can see immediately that u1 and u2 are constant as
previously and, respectively, denoted by A1 and A3. Further, ht and
hb are at their slow dynamics steady states, given by Eqs. (36) and
(37).

Hence, we are left with only two ODEs, Eqs. (45) and (48), where
the initial conditions for v1 and v2 are the equilibrium values from
the fast solution, A2 and A4, respectively.

Here we can see that the positive equilibrium solutions are:

~v2 ¼
�d3D̂2 þ d3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2D̂2

2 þ 4� D̂1
d3
ðÛ3 þ d3�Û4 þ vTÛ1 þ d3�Û5vTÞ

q
2�D̂1

;

ð50Þ

~v1 ¼
�d3D̂2þ d3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2D̂2

2þ4� D̂1
d3
ðÛ3þ d3�Û4þvTÛ1þ d3�Û5vTÞ

q
2�D̂1

þ 1

�Ĉ3

Û1þ d3�Û5

� �
; ð51Þ

where standard linear analysis shows this steady state is stable.
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Changing back into our original variables so we can compare
our approximate analytical solution to our numerical simulations,
the solutions (which we will denote as Wintermediate) satisfy these
equations:

htþ ¼
ð�1� d3a2A1þ d1a2v1Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1� d3a2A1þ d1a2v1Þ2þ4a2d1v1

q
2a2d1

;

ð52Þ

hbþ ¼
ð�1� d3a2A3þ d1a2v2Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1� d3a2A3þ d1a2v2Þ2þ4a2d1v2

q
2a2d1

;

ð53Þ

ct ¼
1
d3
ðv1 � htÞ; cb ¼

1
d3
ðv2 � hbÞ; ð54Þ

bt ¼ A1 �
d1

d3
ðv1 � htÞ; bb ¼ A3 �

d1

d3
ðv2 � hbÞ; ð55Þ

where v1 and v2 are determined by the solution to Eqs. (45) and
(48).

2.2.3. Slow timescale dynamics
The final, slow timescale, is where the physiological responses

such as ventilation and kidney excretion take effect. To examine
the slow dynamics, let us rescale time, defining s3 = �2s. Once again
we note that v1,2 are O(d3) = O(104), hence we consider each term
in turn when approximating to leading order. Thus we have at
leading order,

du1

ds3
¼ Ĉ1 u2 �

d1

d3
v2 � u1 þ

d1

d3
v1

� �
þ d1Û5 � Ĉ3

d1

d3
ðv1 � v2Þ; ð56Þ

0 ¼ Û1 þ d3�Û5 � �Ĉ3ðv1 � v2Þ; ð57Þ

0 ¼ �a2d1h2
t þ ð�1� d3a2u1 þ d1a2v1Þht þ v1; ð58Þ

du2

ds3
¼ Û2

d3
v2 � n̂1 u2 �

d1

d3
v2

� �
þ Ĥ1

� Ĉ1vT u2 �
d1

d3
v2 � u1 þ

d1

d3
v1

� �
þ d1Û4 �

d1D̂1

d2
3

v2
2

þ d1D̂2

d3
v2 þ Ĉ3vT

d1

d3
ðv1 � v2Þ; ð59Þ

0 ¼ Û3 þ d3�Û4 � �
D̂1

d3
v2

2 � D̂2v2

 !
þ �Ĉ3vTðv1 � v2Þ; ð60Þ

0 ¼ �a2d1h2
b þ ð�1� d3a2u2 þ d1a2v2Þhb þ v2: ð61Þ

The initial conditions are the intermediate timescale equilib-
rium values for u1,2 (denoted A1 and A3). As these equations are lin-
ear in u1 and u2, they can be solved explicitly. The equilibrium
values, which are both positive with our parameters, are

~u2 ¼
1
n̂1

Û2

d3
v2þ

n̂1d1

d3
v2þ Ĥ1þ d1vTÛ5þ d1Û4�

d1D̂1

d2
3

v2
2þ

d1D̂2

d3
v2

 !
;

ð62Þ

~u1 ¼ ~u2 �
d1

d3
v2 þ

d1

d3
v1 þ

1

Ĉ1

d1Û4 �
d1Ĉ3

d3
½v1 � v2�

 !
: ð63Þ

Standard linear analysis shows that this equilibrium point is a
linearly stable node.
Changing back into our original variables in order to calculate
and compare our approximate analytical solution to our numerical
solution, the slow solutions (which we will denote as Wslow), follow
these equations,

ht¼
ð�1�d3a2u1þd1a2v1Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1�d3a2u1þd1a2v1Þ2þ4a2d1v1

q
2a2d1

;

ð64Þ
hb¼
ð�1�d3a2u2þd1a2v2Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1�d3a2u2þd1a2v2Þ2þ4a2d1v2

q
2a2d1

;

ð65Þ

ct ¼
1
d3
ðv1 � htÞ; ð66Þ

cb ¼
1
d3
ðv2 � hbÞ; ð67Þ

bt ¼ u1 �
d1

d3
ðv1 � htÞ; ð68Þ

bb ¼ u2 �
d1

d3
ðv2 � hbÞ; ð69Þ

where v1,2 and ht,b are defined by the algebraic Eqs. (57), (58), (60)
and (61) and u1,2 are the solutions to the ODEs in Eqs. (56) and (59).
The explicit large time asymptote, steady state, solutions can be
readily found, yielding the steady state solutions in our original
variables:

~ht ¼
ð�1�d3a2~u1þd1a2v1Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1�d3a2~u1þd1a2v1Þ2þ4a2d1v1

q
2a2d1

;

ð70Þ
~hb¼
ð�1�d3a2~u2þd1a2v2Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1�d3a2~u2þd1a2v2Þ2þ4a2d1v2

q
2a2d1

;

ð71Þ

~ct ¼
1
d3
ðv1 � ~htÞ; ð72Þ

~cb ¼
1
d3
ðv2 � ~hbÞ; ð73Þ

~bt ¼ ~u1 �
d1

d3
ðv1 � ~htÞ; ð74Þ

~bb ¼ ~u2 �
d1

d3
ðv2 � ~hbÞ; ð75Þ

where v1 and v2 are the steady state solutions from the intermediate
timescale in Eq. (50) and (51), respectively. Also, ~u1 and ~u2 are the
steady state solutions of Eqs. (56) and (59).

By extracting the leading order terms with our chosen parame-
ters, we find,

~ht ¼
d3D̂2
D̂1
þ Û1
�Ĉ3

� �
d3a2

Û2D̂2
n̂1D̂1
� d1Û1

Ĉ1d3�

� �þ O
1
d3

� �
: ð76Þ

From Eq. (76) we can see that to leading order, ~ht is proportional
to n̂1 and inversely proportional to a2; Ĉ3; Ĉ1, and Û2. Therefore,
lowering the glomerular filtration rate (n1) will lower H+ levels in
the tumour. Conversely, raising the acid secretion rate (U2), carbon
dioxide vessel permeability (C3), or bicarbonate vessel permeability
(C1) will lower tumour H+. This expression can tell us about how
groups of parameters affect the long time steady-state, and allows
us to identify the most important ones. However, quantification of



Fig. 2. Simulations of Eqs. (9)–(14) for human blood (solid line) and tumour (line
with squares) values of pHe (top left), HCO�3 (top right), CO2 (bottom left), and H+

(bottom right) levels, with no metabolic or respiratory disorder, and no bicarbonate
treatment. Note the blood pHe remains at 7.4, with normal levels of HCO�3 and CO2.
By contrast, the tumour has a lowered pHe to 7.0, with elevated CO2 and low HCO�3
levels. The numerical simulations are run with initial conditions (16) and
parameters as in Table 1 but with h1 = 0. Note that s of 109 corresponds to a
dimensional time of approximately 10 h.

N.K. Martin et al. / Mathematical Biosciences 230 (2011) 1–11 7
the relative importance with this expression is difficult, so we will
proceed with a formal sensitivity analysis in Section 3.4 after we
construct the uniformly valid solution.

2.2.4. Uniformly valid solution
It is now straightforward to construct an approximate uni-

formly valid solution using our fast, intermediate, and slow solu-
tions from above. This uniform solution has the form:

Wuniform ¼Wfast þWintermediate þWslow � ~Wfast � ~Wintermediate; ð77Þ

where ~Wfast;intermediate are the quasi-steady state solutions to the Wfast

and Wintermediate equations, respectively.

2.2.5. Sensitivity analysis
It is important to identify how sensitive the system is to the

chosen parameter values. Most importantly, we would like to be
able to predict treatments targeting the parameters that have the
most pronounced effect on raising tumour pHe. In particular, we
are most interested in the parameters which have the greatest ef-
fect in lowering the steady state tumour pHe, as well as how the
treatment term can affect the pHe of the tumour and the blood.
Also, as parameter variations exist naturally between patients, if
the system is particularly sensitive to a given parameter it would
be important to highlight this system behaviour. As noted, the pre-
viously derived analytical approximation can tell us about how
groups of parameters affect the long time steady-state, but it is dif-
ficult to quantify the relative importance of each individual param-
eter contribution. Hence, analytical sensitivity values can provide
this added information.

One way of examining the effect of a parameter, p, on one of our
steady state variables, V, is to calculate a sensitivity coefficient.
This can be defined as

SV ;p ¼
p
V
@V
@p

: ð78Þ

The calculation of this sensitivity coefficient, S, tells us what ef-
fect a percentage change in the parameter, p, has on the variable, V.
If jSj > 1, a percent change in p produces a larger percent change in
V, and thus p has a strong effect on V.

The analytical value of the sensitivity coefficient was calculated
in Maple, and the parameter values were then substituted to ob-
tain the numerical value.

2.2.6. Description of numerical methods
The model Eqs. (9)–(14) were solved using the Matlab stiff ODE

solver ode15s, a variable order multistep solver. A stiff solver is
necessary due to the multiple timescales in this system, with rapid
transient movement of the reaction kinetics, and then slowly vary-
ing long transients. Initial conditions were used as in (16) and
parameters from Table 1. The simulations were run until
s = 1 � 1010 to ensure steady state is reached.

3. Results

3.1. Model validation: comparison of respiratory/metabolic disorders
to observed blood pHe

In this section we present a set of numerical simulations of Eqs.
(9)–(14) to confirm that the model produces qualitatively and
quantitatively reasonable and accurate results.

In order to confirm that the mathematical model correctly sim-
ulates blood pHe, we examine the accuracy of the model in a vari-
ety of clinical situations which we can compare to data. In the
unperturbed system, the blood pHe equilibrates at the normal
blood value of 7.4 (see Fig. 2), with blood carbon dioxide and bicar-
bonate concentrations also at their normal values (non-dimen-
sionalised to 1).

Four disordered states are then simulated: respiratory alkalosis,
metabolic alkalosis, respiratory acidosis, and metabolic alkalosis. In
our simulations, the respiratory disorders are induced by fixing the
ventilation rate, n3(cb), at higher or lower values than normal,
thereby changing the blood CO2 levels. Metabolic disorders are in-
duced by altering the blood HCO�3 levels by the addition or removal
of bicarbonate (h1). These results are shown in Figs. 3 and 4. For the
respiratory disturbance scenarios, in agreement with experiments
which induce patients to hyperventilate or hypoventilate, the ven-
tilation rate is fixed and varied to produce either acidosis or alka-
losis. Initially, change in ventilation rate causes a change in blood
CO2, which immediately alters the HCO�3 and H+ levels. After a
few hours the effects of the renal compensation are visible, with
the amount of reabsorbed bicarbonate changing to compensate
and push the pHe back to normal. Both of these simulated disor-
ders match the correct clinically predicted pHe and compensation
timescale [17]. Simulations of metabolic disorders (acidosis or
alkalosis) as a result of persistent administration of bicarbonate
(due to bicarbonate loading) or loss of bicarbonate (for example,
through vomiting) predict no respiratory compensation, hence
blood pHe levels do not return to normal.

To compare our results more rigorously with clinical data on
acid/base disturbances, a standard buffer curve of the blood pHe
is constructed. This is accomplished by inducing a respiratory or
metabolic disturbance into the model (as described above), and
tracking blood pHe prior to renal compensation. Although in these
simulations we are primarily interested in the blood dynamics, the
full coupled model is simulated (blood and tumour). This is reason-
able as the tumour of our simulated size has a negligible effect on
blood dynamics (results not shown, but the model sensitivity is
calculated in Section 3.4).

The simulated results and clinical buffer curves for humans are
shown in Fig. 5. The mathematical model performs well, particu-
larly in predicting the response to metabolic disorders, and also
in our range of interest (a normal blood of pHe 7.35–7.45). For



Fig. 4. Simulated metabolic disorders in humans. Results are shown for induced
metabolic acidosis (top panels) and induced metabolic alkalosis (bottom panels).
Elevations (reductions) in blood pHe result in subsequent increases (decreases) in
tumour pHe. Additionally, acidification of the bloodstream can cause substantial
reductions in tumour pHe, potentially to toxic levels for tumour cells. In this
simulation, Eqs. (9)–(14) are solved with initial conditions (16) and parameters as
in Table 1 except with h1 = �5 � 10�6 in metabolic acidosis and h1 = 4 � 10�6 in
metabolic alkalosis.

Fig. 3. Simulated respiratory disorders in humans. Induced respiratory acidosis (top
panels) and induced respiratory alkalosis (bottom panels). In both situations, there
is an initial blood pHe alteration due to the respiratory disturbance. However, after
a few hours, the effect of renal compensation is visible, pushing the pHe back to
normal and resulting in altered bicarbonate and carbon dioxide levels. In this
simulation, Eqs. (9)–(14) are solved with initial conditions (16) and parameters as
in Table 1 except the change in n3(cb) (n3(cb) = 7.7 � 10�8 for respiratory acidosis,
n3(cb) = 2.3 � 10�7 for respiratory alkalosis), and with h1 = 0. Note that s of 109

corresponds to a dimensional time of �10 h.
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example, the pHe changes caused by altering the amount of bicar-
bonate in the blood (for example, by changing h1 as is done in the
simulations, or by impaired renal function which could affect U2 or
n1) are shown by the squares in Fig. 5. The resulting curve follows a
contour line of constant pCO2 at 40 mm Hg, the normal level, as
tight regulation of ventilation prevents any change in CO2 levels.
As this model is primarily interested in the effect of adding bicar-
bonate in this way, the accuracy of the simulations is encouraging.

Alternatively, the pHe changes caused by altering the CO2

levels by fixing the ventilation rate, n3(cb) (clinically induced via
rebreathing CO2 or hyperventilating), follow the triangles in
Fig. 5. As shown in the previous section, respiratory disturbances
immediately alter blood pHe and bicarbonate levels. Eventually,
renal compensation occurs (both clinically and in our simulation),
which is not shown in this figure as the in vivo studies were per-
formed on a short timescale before compensation could occur.
Again, the model performs well, despite the approximations to
the CO2/ventilation term, falling well within the 95% confidence
limits of the data within the biological pHe range we are examining
(7.35–7.45). Only at very low pHe is there a deviation from the pre-
dicted buffer line, which is acceptable particularly as the model is
developed specifically to examine metabolic alkalosis (possibly in-
duced by the bicarbonate treatment), not acidosis.
3.2. Model prediction: effect of respiratory/metabolic disorders on
tumour pHe

Simulations of respiratory and metabolic disorders indicate that
these disordered states can cause significant changes in tumor pHe.
The model predicts tumor pHe is elevated (greater than 7.1 from a
normal tumor pHe of 7.0) during the conditions of respiratory aci-
dosis and metabolic alkalosis. During states of respiratory alkalosis
and metabolic acidosis, tumor pHe can be lowered to potentially
toxic levels for tumour cells (less than 6.5 from a normal tumor
pHe of 7.0).
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ig. 6. Comparison of the numerical (black dashed line) and uniform analytical
pproximation (red line) in the (a) blood and (b) tumour in an untreated human.
he uniform analytical solution is calculated from Eq. (77). The numerical solution
simulated with Eqs. (9)–(14). All numerical and analytical solutions are calculated
ith initial conditions (16) and parameters from Table 1 but with h1 = 0. (For
terpretation of the references to colours in this figure legend, the reader is

eferred to the web version of this paper.)

Fig. 5. Human buffer curve comparison between in vitro, in vivo, and calculated
with our model. Blue lines represent in vitro curves of blood containing varying
amounts of haemoglobin. Dark black lines are the in vivo observed ranges in values
for a normal human. Red squares and triangles represent calculated values when
Eqs. (9)–(14) are solved with initial conditions (16) and parameters as in Table 1 but
with varying f3 to simulate impaired ventilation, and varying h1 to simulate
ingestion or loss of bicarbonate. Red squares represent inducing a metabolic
disturbance by varying HCO�3 (h1) with a constant pCO2 level (40 mm Hg). The
accuracy of the mathematical model, particularly with regards to metabolic
alkalosis, is encouraging. Red triangles represent the effect of varying CO2 through
disordered ventilation. These data points were obtained by fixing ventilation rate,
f3, at several values, running the simulations as in Fig. 3, and taking the blood CO2,
HCO�3 , and pHe values prior to renal compensation consistent with experiments.
Although this model does not focus on respiratory disturbances, it still provides a
good fit to data in this region, particularly in the region of interest where blood pHe
is in the normal and safe region of 7.35–7.45. In vitro and in vivo data adapted with
permission from The University of Chicago Press (Figures 17 and 18 in [18]). (For
interpretation of the references to colours in this figure legend, the reader is
referred to the web version of this paper.)
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3.3. Comparison of numerical solutions and asymptotic
approximations

Fig. 6 shows the uniform solution, Eq. (77), plotted against the
numerical simulation, and agreement is excellent. The numerical
solution is simulated with Eqs. (9)–(14). For the purposes of this
comparison, the numerical and analytical solutions are calculated
with initial conditions (16) and parameters from Table 2 but with
H1 = 0.

3.4. Modelling therapy: sensitivity analysis

The full results of the sensitivity analysis are presented in,
Appendix Table 3.B, which displays the sensitivity of all the vari-
ables to each of the parameters for both mice and humans in the
untreated and treated cases. The results are similar for both cases.
The human and mouse tumour H+ sensitivity coefficients with the
largest effect on tumour pHe (selected by an absolute value greater
than 1) are shown in Fig. 7. In both humans and mice, the sensitiv-
ity coefficients indicate that the most important parameters affect-
ing the tumour pHe are those involved with renal function:
bicarbonate clearance and reabsorption. Targeting these processes
not only raises the tumour pHe, but also increases the bicarbonate
therapy efficacy (simulations not shown).

Other key parameters which most significantly affect tumour
pHe are Û1, which incorporates the tumour proton production rate,
and the pKa parameter â2. In humans, the ventilation parameters
(D̂1 and D̂2) are predicted to be very important, but less so in the
mouse. Treatments which target renal parameters (n̂1 and Û2),
however, also have a strong effect on the blood pHe (see B).
F
a
T
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As shown in the previous section, the sensitivity analysis con-
firms that none of the variables are sensitive to the parameter rep-
resenting vascular exchange of the protons between tumour and
blood, Ĉ2. This suggests that the majority of the removal of protons
from the tumour is accomplished via CO2 evacuation, and not di-
rect movement of free protons. This is reasonable because despite
the high proton production of tissues, the actual concentration of
free protons in the tissue is very small (several orders of magnitude
lower than the respective buffering components). Therefore, by far
the majority (ca. ratio of 1 in 105) of protons will exit the tumour
attached to a buffer.

Unsurprisingly, the parameter incorporating the kinetics of
the bicarbonate reaction, â2, is shown as important in this anal-
ysis, as altering the ratio of the forward to back reactions (and,
therefore, the pKa of the reaction), will strongly alter the effect
of the buffer.

The sensitivity of the system with respect to the parameters
used for its non-dimensionalisation (for example, d1 and d3) is
not considered, as these parameters do not have a natural biolog-
ical interpretation. Hence, as initial conditions in the non-dimen-



Fig. 7. Tumour H+ ðĥtÞ sensitivity coefficients ðSht ; pÞ with respect to parameter (p)
with an absolute value greater than 1 for a treated human (black) and mouse (blue).
The human tumour pHe is most sensitive to tumour proton production (U2), renal
function parameters (n1 and U1), ventilation parameters (D1 and D2), and pKa (a2). By
comparison, the mouse is less sensitive to the parameters in general, and in particular
much less sensitive to the ventilation parameters (D1 andD2). These coefficients were
calculated with bicarbonate treatment, values as in Table 1. A table of all the
sensitivity coefficients can be found in B. (For interpretation of the references to
colours in this figure legend, the reader is referred to the web version of this paper.)
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sional system they do not effect the steady state values of the
variables.
4. Discussion and conclusion

This paper presents a systemic blood and tumour buffering
model, which is parameterised with both mouse and human data
sets. The model accurately simulates blood pHe in normal and
acid/base disordered states. The simulations indicate that respira-
tory acidosis and metabolic alkalosis elevate tumor pHe. Con-
versely, respiratory alkalosis and metabolic acidosis lower tumor
pHe to potentially toxic levels. These predictions confirm the
hypothesis that inducing metabolic alkalosis through the chronic
administration of buffers such as sodium bicarbonate can elevate
tumour pHe to normal levels, which has been verified through
in vivo experiments [11]. This normalisation of tumour pHe could
help promote the survival and functions of the normal cells, reduc-
ing the tumour’s ability to invade. Furthermore, inducing metabolic
acidosis is predicted to reduce tumour pHe from the already acidic
level, potentially to levels which could be toxic to the tumour cells.
Several experimental studies have shown that patients with meta-
static renal cancer benefit from cytoreductive nephrectomy [23–
25]. Our model supports the speculation by Gatenby and Gawlinski
[4] that the observed benefits are a consequence of potential meta-
bolic acidosis caused from the kidney removal, which could lower
tumour pHe to levels toxic to the tumour cells.

In order to identify promising proton reducing targets which
could prevent tumour acidity and normalise tumour pHe, a sensi-
tivity analysis of the model was performed and indicates that the
tumour pHe is most sensitive to tumour proton production and
kidney filtration/reabsorption of bicarbonate. For example, the
model predicts that decreasing glomerular filtration rate (GFR)
leads to a rise in baseline levels of bicarbonate, and any treatment
will not be filtered out as effectively. Similarly, the model predicts
increasing the renal acid secretion rate would raise bicarbonate
levels and significantly increase tumour pHe. However, as treat-
ments targeting these parameters also have a significant effect
on blood pHe, any therapy used to adjust kidney function should
be undertaken with extreme caution.
On the other hand, altering tumour proton production, Û1, has a
significant effect on tumour pHe, but virtually no effect on blood
pHe, and therefore should be considered a safe option. Any poten-
tial therapy which could decrease proton production (such as
through inhibiting glycolysis) could be used in combination with
bicarbonate to an enhanced effect. Ongoing studies by our research
group are currently exploring these possibilities.

There are several important extensions to this model which
would improve the accuracy of the predictions. First, more detailed
modelling of the contribution of other intrinsic buffering compo-
nents would strengthen the quantitative predictions of the model.
The incorporation of these static tissue buffers would not alter the
regulation examined in this model, but do contribute to the overall
buffering capacity of the tumour. We have assumed a constant buf-
fering contribution from intrinsic buffers, implicitly included in the
proton production term. However, it is likely that the intrinsic buf-
fering capacity of the tumour is pH dependent, and thus would be
an important model extension to examine. Currently, the model will
most likely overestimate the effect of bicarbonate treatment on both
the blood and the tissue. Nevertheless, comparing our mathematical
model to in vivo data indicates this model performs well alone.

Secondly, the predictions in this model are based on the
assumption that the tumours in humans will have the same vascu-
larity as in mice, which is not necessarily valid in all cases. How-
ever, the cell lines used in the mice were human breast cancer
cells, thus it is reasonable to assume the cell lines will produce
the same amount of pro-angiogenic signals and therefore initiate
similar vasculature. Still, the stromal responses might differ in each
situation, which highlights the difficulties of using animal models
(even with human cell lines) in therapy experimentation. Addition-
ally, vascular heterogeneity within a single tumour will result in
variable buffer delivery across the tumour, which will be important
to study with advances in functional vessel imaging.

Thirdly, the effects of systemic alkalosis on respiration is con-
troversial, and we have neglected the effect of H+ on ventilation
rate for several reasons. Firstly, isolated changes in H+ are mainly
sensed by the peripheral chemoreceptors [26], which only con-
tribute a small amount to ventilation. Secondly, respiratory com-
pensation to metabolic alkalosis is controversial [27–29]. Early
studies indicated that there was little to no respiratory compen-
sation in humans and dogs [27,28]. Later studies have shown
that in some human cases there is respiratory compensation,
although the magnitude of compensation is highly variable, and
in all cases limited [30]. Even in cases of severe metabolic alka-
losis, it is extremely rare to see respiratory compensation raising
pCO2 levels above 55 mm Hg from the normal 40 mm Hg [31,32].
There is no concrete evidence surrounding murine respiratory
compensation. However, respiratory compensation to metabolic
alkalosis is present in some humans. As our model system is sen-
sitive to the ventilation term, the refinement of this term is
worth further consideration.

Experimental studies undertaken by our group are currently
examining the presence (or absence) of respiratory compensation
in mice, which will hopefully elucidate the variability, timing,
and extent of this compensation should it occur. These and other
experimental results will be used to refine and develop the current
model, which can further aid in developing safe and effective anti-
tumour therapies.

Despite the many possible extensions, our simplified model
accurately predicts acid–base regulation in the blood and tumour,
and can be used to suggest the most promising parameters and
processes to target in order to reduce tumour acidity and prolong
survival. Novel therapies utilising exogenous buffers or other com-
binations can be built on this basic framework for future study. Fi-
nally, this model could be linked to other cellular models of
tumour growth [33,34], and subcellular models of tumour metab-
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olism to provide a multiscale model linking pHe regulation with
tumour invasion.
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