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10.1 INTRODUCTION

Several different types of wave patterns occur in physiology, chemistry and biology.
In many cases such phenomena are modelled by reactive-diffusive parabolic systems (see,
for example, Fisher 1937; Kolmogorov et al. 1937, Winfree 1988; Murray 1989; Swinney &
Krinsky 1992). In many biological and physical situations, dispersal is modelled by a density-
dependent diffusion coefficient, for example, the bacterium Rhizobium diffuses through the
roots of some leguminosae plants according to a nonlinear diffusive law (Lara-Ochoa &
Bustos 1990); nonlinear diffusion has been observed in the dispersion of some insects (Okubo
1980) and small rodents (Meyers & Krebs 1974).

Here, we restrict ourselves to analyzing the problem of the existence of travelling wave
solutions (TWS) in an one-dimensional domain for the special case of a nonlinear diffusion
coefficient which is degenerate at u = 0. That is, we look for a solution u(z,t) = ¢(z — ct)
for equation

Ou 0
ot Oz

where D and g are defined on [0, 1] and:
1. g(0)=g(1)=0,g(u) >0V u € (0,1)

2. g€ C?0, 1] with ¢'(0) > Oand ¢'(1) < 0

[D(u)%] +g(u); (z,t) € R xR*, (10.1)

3. D(0) =0 with D(u) >0V u € (0, 1]
4. D e C?0,1].

with u(z,0) = u%(z), 0<u’(z)<1Vz€eR.
Different types of one-dimensional TWS, for example, fronts, pulses, sharp and
oscillatory, have been reported in the literature (Fife 1979; Sénchez-Gardufio & Maini 1992).
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The problem of the existence of TWS of (10.1) has been studied for a few particular cases by a
number of authors, for example, Aronson (1980); Newman (1980); Murray (1989) and Lara-
Ochoa & Bustos (1990). In this communication we generalize previous analysis. The proof
of our results uses a qualitative approach in which to look for TWS for (10.1) is equivalent to
finding the appropriate parameter space (which includes the speed c) for which there exists a
heteroclinic trajectory of a certain system of ordinary differential equations. The boundary
conditions for the TWS are given by the coordinates of the equilibrium states connected by
the heteroclinic trajectory.

In the following section we only state the results and present some illustrative ex-
amples. Proofs, full details and other examples can be found in Sinchez-Gardufio & Maini
(1992).

10.2 RESULTS AND EXAMPLES

Theorem 1 If the functions D and g in (10.1) satisfy the above conditions and D'(u) >
0V u € [0,1] with D"(0) # 0, then the reaction-diffusion equation (10.1) possesses at most
aTWS u(z,t) = ¢(x — c*t) of sharp type such that for ¢* > 0: ¢(—oc) = 1, ¢(£) = O for
§2¢8 ¢(—00)=0,¢'(")=—5 IR and ¢'(£*t) = 0. Moreover

1. For 0 < ¢ < c¢" there are no TWS

2. For each ¢ > ¢*, (10.1) has a TWS of front type satisfying the boundary conditions:
¢(—o0) = 1 and ¢(+o00) = 0.

An application of this theorem is illustrated in the following example.

Example 1. Here we consider the equation

%—éfx[(? +u2)—}+u(]—u [1T—wu(l —u)], (10.2)
where # > 0. In this case the qualitative behaviour of the solution does not depend on the
value of 3. We illustrate in Figure 10.1 the phase portrait for the case § = 2.0, for which
c¢* =~ 0.98.

Theorem 2 If the functions D and g in equation (10.1) satisfy the conditions 1-4 in the
Introduction, with the further conditions on D, that, D'(0) = 0, D'(u) > 0V u € (0, 1] and
D"(0) > 0, then for each c such that

o sup{ £ 1pOD(6) + 2901, (103)

where p is a continuously differentiable non-negative function in the interval [0, 1] with
p(0) = 0 and p’(0) > 0, there exists a TWS of front type for the equation (10.1) satisfying
the boundary conditions, ¢(—oc) = | and ¢(+o00) = 0. An application of this theorem is
illustrated in example 2.

Example 2. Here we consider the equation

ou 9 [ ,0u
y-Tilr > { ] +u(l — u). (10.4)

Typical phase portraits are illustrated in Figure 10.2.
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Figure 10.1. Phase portraits for example 1 with § = 2.0 for different values of the speed c. (In this
case ¢* =~ 0.98.) (a) ¢ = 0.7, (b) ¢ = 0.98, (c) ¢ = 1.5. For ¢ < ¢~ there is no connection between the
equilibrium points and hence no travelling wave. For ¢ = ¢*, the saddle-saddle connection implies
a travelling wave of sharp type, while for each ¢ > ¢* we have a travelling wave of front type. The
solution for the partial differential equation is shown in (d). The numerically calculated wavespeed is
c* = 0.9797.
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Figure 10.2. Phase portraits for example 2 for different values of the speed ¢. (a) ¢ = 0.5 and (b)
¢ = 2.0. In both cases there exists a connection between the two equilibrium points suggesting the
existence of a travelling wave of front type.
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