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Feedback Control 

The primary aim of using feedback in a control system is to reduce the effect of 
uncertainties in the system and thus maintain the desired output. Consider the block diagram 
in Figure S1 which models a plant P(s) in feedback with a controller F(s). The closed loop 
transfer function from input u(t)  to output y(t) is given by 
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where U(s) and Y(s) are the Laplace transforms of u(t) and y(t) respectively. The objective 
here is to obtain a desired output from plant P(s). The plant is typically subject to 
uncertainties and un-modelled plant dynamics, which will ultimately affect the input-output 
transfer function T(s). The effect of an incremental change in the plant P(s) on transfer 
function T(s) can be quantified by taking the normalized derivative of a change in T(s) with 
respect to a change in P(s): 
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where S(s) is called the Sensitivity function.  The feedback controller F(s) can be used to 
reduce the sensitivity of T(s) to changes in the plant P(s) over a range of frequencies.   

 

Cascade Control 

In this section we discuss how a cascade control scheme can achieve improved system 
performance. As a simple example demonstrating cascade control, we consider the system 
described in the frequency domain by 

which is schematically illustrated in Figure S2.  This system is the linear representation of 
Model III of the chemotaxis pathway of R. sphaeroides given in (1) and perturbed with the 

additional disturbance signal d(s). We assume that 
2 22 2,  ,  ,  0a b κ κ >%  and that >b a , which 

means that the isolated cytoplasmic cluster responds more quickly to signals than the polar 
cluster and has a higher cut-off frequency. A cascade control architecture involves placing 

an ‘internal’ negative feedback of gain 
22

~κ around the faster module of the system, shown as 

the dashed-dotted line in Figure S2 in addition to an output feedback of gain
22κ . Integral 
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control guarantees that when 0=d  the levels of signals CheB1-P and CheB2-P in Figure S2 

are restored to zero in the steady state, regardless of the values of 
22,, κba and 

22
~κ . 

The cascade control scheme results in a higher bandwidth, increased damping and better 
rejection of disturbances d compared to a simple feedback architecture. In addition, high 

values of 
22,κb and 

22
~κ  cause the feedback to reduce the magnitude of the sensitivity 

function of the system to parametric variations and uncertainties. The following subsections 
will discuss the ways in which cascade control achieves these improvements in system 
performance.  First, note that the ‘poles’ of the system, i.e. the values for which the 
denominator of the right hand side of  (1) is zero, satisfy 

2 22 2( )( )κ κ+ + +%s a s b ab =0. 

From this characteristic equation, we arrive at the following properties. 
 

Higher bandwidth 

Comparing the above equation with the standard characteristic equation of a second-order 
system, 

2 22 0ζω ω+ + =n ns s   

where ωn is the undamped natural frequency of the system andζ is the damping factor, gives 

a natural frequency of 
2 22 2( )ω κ κ= + %n ab  for the system, which increases with 

22,, κba and 

22
~κ . Hence cascade control (having a high 

22
~κ ) increases the bandwidth of the system 

reducing its settling time and improving its set-point tracking. 

Increased damping 

Following from the above, the damping ratio ζ  of this system is given by 
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Disturbance rejection 

From  (1), the transfer function from the disturbance signal d to the output y is given by 
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. Using the Final Value Theorem, the steady-state response to a step 

increase in the disturbance d of magnitude d̂  will be a constant signal of 



magnitude
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.  Therefore strengthening the cascade control feedback gain reduces the 

steady-state effect of the disturbance d on the output y. 

Sensitivity 

The cascade control feedback configuration reduces the magnitude of the sensitivity 
functions of both the overall system and the cytoplasmic cluster. The two sensitivity 

functions can be derived as above. For the isolated cytoplasmic cluster the sensitivity cytS is 
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The magnitude of this sensitivity function is reduced by having a large feedback gain
22

~κ . 

Similarly, the sensitivity of the transfer function from %L to Y to variations in the transfer 

function from %L to the signal CheB2-P in Figure S2 is given by 
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As shown in the paper, a high value of 
22κ  reduces the magnitude of 

YL
S →~ over most 

frequencies. 

In the case of Model III of the R. sphaeroides chemotaxis pathway given in the paper, it was 
shown in Figure 8 that there is a relatively high gain from signals input at the cytoplasmic 
cluster to the flagellar output of the model. If Model III is accurate, this would suggest that 
signals input to the cytoplasmic cluster have a significant effect on the chemotaxis 
pathway’s output and therefore need to be tightly controlled.  Furthermore, the output of the 
cytoplasmic cluster needs to be insensitive to parametric variations in order to accurately 
convey signals sensed at its inputs to the flagellar motors.  The CheB2-P feedback that 

demethylates active cytoplasmic cluster receptors has an analogous role to the
22κ% feedback 

above, reducing the magnitude of the sensitivity function of the cytoplasmic cluster. In this 
way, uncertainties and parametric changes have a reduced effect on the system’s flagellar 
output. 

Example - High performance aircraft pitch autopilot 

To illustrate an application of cascade control we shall look at an example of pitch control 
for a high performance aircraft, adapted from [1]. Figure S3 is a block diagram of the jet 
aircraft’s short-period longitudinal behaviour. Output Y is the aircraft’s pitch and R is a 

reference signal. With 0=rS , the response of the system is very oscillatory, and its damping 

ratio decreases further when aS  is increased. Moreover, a relatively small increase in the 

gain aS of 3.84 is enough to cause instability. The damping and gain margin can be increased 

through placing a feedback loop of gainrS  as illustrated by the dashed line in Figure S3. 



This can be accomplished using a rate gyro. By setting 1.98=rS the damping ratio is 

increased and the system will remain stable for a gain aS  of up to 24.6. For further details, 

see [1]. 

Example - Heat Exchanger 

To further demonstrate the disturbance rejection properties of cascade control, we shall 
consider a heat exchanger example. The role of the heat exchanger is to transfer heat from 
steam to an effluent. The temperature set-point of the effluent is fixed in the temperature 
controller module of Figure S4 and the aim of the control system is to maintain the effluent 
temperature at this set point. 

Without cascade control, the temperature controller measures the effluent temperature and 
sets a reference flow rate for the flow controller to follow. The flow controller then controls 
the opening of a valve that sets the flow rate. However, upstream pressure disturbances may 
cause the steam flow rate to change abruptly. This disturbance will only be corrected for 
once the change in steam flow affects the temperature of effluent, which may be a slow 
process. 

Cascade control involves taking a measurement of the steam flow rate and feeding this 
measurement into the flow controller (shown in the dashed line in Figure S4). If the flow 
rate is then found to have deviated from the reference flow rate set by the temperature 
controller, the flow controller itself corrects the flow rate by opening or closing the flow 
valve as necessary. This corrective measure is a more rapid way of maintaining the required 
flow rate than via the temperature feedback alone. 

Block diagram representations of this system (including set-point r and disturbance signals 
d) with and without cascade control are shown in Figure S5 and Figure S6. The parameter 
values are 0.2,  30,  10.= = =a b k Note that the flow controller, around which we have the 

cascade control feedback, is much faster than the temperature controller.  Figure S7 

illustrates the response to a step change in the set-point temperature 10=r  (at 50 seconds) 

and a step output disturbance 10=d  (at 250 seconds) for the system with and without 
cascade control.  

Cascade control therefore results in a less oscillatory response and one that more rapidly 
rejects disturbances than a system without this control scheme. 

 

References 

[1] Blakelock, JH (1991), Automatic Control of Aircraft and Missiles, 2nd edition. Wiley- 
Interscience, pp. 62-111. 



s

 

P(s)

F(s)

U(s) Y(s)

 

Figure S1: Simple feedback system for plant P(s) and feedback controller F(s). 
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Figure S2: Linear system representation of Model III with a cascade control feedback 

(dashed-dotted line). Ligand inputs to the two signalling clusters are L and %L  and signal d is 

a disturbance signal. The parameters 
2 22 2, , ,κ κ%a b are positive with >b a . 
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Figure S3: Block diagram of aircraft pitch dynamics. Cascade control manifests in the 
dashed line. Laplace domain signals R(s) and Y(s) are the reference input and system output 

respectively. aS and rS are constants and 
1

s
 denotes an integrator in the Laplace domain. 
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Figure S4: Schematic of a heat exchanger. Cascade control involves feeding a measurement 
of the flow rate into the flow controller (dashed line). 
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Figure S5: Heat exchanger system with cascade control: dashed feedback of gain k gives 
improved performance. Signals r and y are the reference input and system output 
respectively. Signal d is an output disturbance. Parameters a, b, k denote constant gains. 
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Figure S6: Heat exchanger system without cascade control. Signals r and y are the reference 
input and system output respectively. Signal d is an output disturbance. Parameters a and b 
denote constant gains. 
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Figure S7: Heat exchanger response to set-point change and disturbance, with cascade 
control (solid line) and without (dashed line). 

 

 

 


