Text S1

Feedback Control

The primary aim of using feedback in a control egstis to reduce the effect of
uncertainties in the system and thus maintain #s&reld output. Consider the block diagram
in Figure S1 which models a plais) in feedback with a controllé#(s). The closed loop
transfer function from inpui(t) to outputy(t) is given by
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whereU(s) andY(s) are the Laplace transforms aft) andy(t) respectively. The objective
here is to obtain a desired output from pl&fs). The plant is typically subject to
uncertainties and un-modelled plant dynamics, windhultimately affect the input-output
transfer functionT(s). The effect of an incremental change in the pR{® on transfer
function T(s) can be quantified by taking the normalized deieaof a change i (s) with
respect to a change R{s):
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whereS(s) is called the Sensitivity function. The feedbaatroller F(s) can be used to
reduce the sensitivity @f(s) to changes in the plaR{s) over a range of frequencies.

Cascade Control

In this section we discuss how a cascade contioérse can achieve improved system
performance. As a simple example demonstratingackscontrol, we consider the system
described in the frequency domain by

_ b~s L(s)+ s(sj a) E(s) + b(s+a)
(s+a)(s+bk,,) +abk,, (sta)(s+bky,) +abk,,

Y(s)

= d(s)
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which is schematically illustrated in Figure S2his system is the linear representation of
Model 1l of the chemotaxis pathway & sphaeroides given in (1) and perturbed with the

additional disturbance signds). We assume tha, b, «, , K, > 0 and thatb >a, which

means that the isolated cytoplasmic cluster respomare quickly to signals than the polar
cluster and has a higher cut-off frequency. A cdsaaontrol architecture involves placing
an ‘internal’ negative feedback of gaiﬁ}2 around the faster module of the system, shown as

the dashed-dotted line in Figure S2 in additioramooutput feedback of gaig . Integral



control guarantees that wheh=0 the levels of signals Che® and CheBP in Figure S2
are restored to zero in the steady state, regardfebe values oé,b,x, andx, .

The cascade control scheme results in a higherwadtid increased damping and better
rejection of disturbanced compared to a simple feedback architecture. Iritiadg high
values of bk, and &, cause the feedback to reduce the magnitude ofehsitivity
function of the system to parametric variations andertainties. The following subsections
will discuss the ways in which cascade control eeds these improvements in system

performance. First, note that the ‘poles’ of thetem, i.e. the values for which the
denominator of the right hand side of (1) is zeatjsfy

(s+a)(s+bk, ) +abk, =0.

From this characteristic equation, we arrive atfthlewing properties.

Higher bandwidth

Comparing the above equation with the standardacheristic equation of a second-order
system,

S+2lws+af =0

where w, is the undamped natural frequency of the systeng asdhe damping factor, gives

a natural frequency aiy, =, /ab(/(22 +K, ) for the system, which increases witb, x,, and
K, . Hence cascade control (having a high ) increases the bandwidth of the system
reducing its settling time and improving its setrpdracking.

Increased damping

Following from the above, the damping ratig of this system is given by
a+bk,
2,Jab(x;,, +&;,)

Z:

. It can easily be shown that far, >0,k, >0 the damping is an

a

increasing function ok, if b>_———.
2k, tK,

Disturbance rejection

From (9, the transfer function from the disturbance sigh&b the outputy is given by
b(s+a)
(s+a)(s+bk, ) +abk,

. Using the Final Value Theorem, the steady-st¢panse to a step

increase in the disturbanced of magnitude d will be a constant signal of



magnitude%. Therefore strengthening the cascade controb@adgain reduces the
Ky, T Ky,

steady-state effect of the disturbaloen the outpuy.

Sensitivity

The cascade control feedback configuration redubes magnitude of the sensitivity
functions of both the overall system and the cwsplic cluster. The two sensitivity

functions can be derived as above. For the isolaeablasmic cluster the sensitivify,, is

S

Sy = —
s+bk,,
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The magnitude of this sensitivity function is redddy having a large feedback gﬁ'y;\.

Similarly, the sensitivity of the transfer functidrom Lto Y to variations in the transfer
function from L to the signal CheBP in Figure S2s given by

(s+a)(s+bF,,)
LY T (s+a)(s+bk,,) +abk,,

As shown in the paper, a high value &f reduces the magnitude & , over most

frequencies.

In the case of Model Il of thB. sphaeroides chemotaxis pathway given in the paper, it was
shown in Figure 8 that there is a relatively higtingfrom signals input at the cytoplasmic
cluster to the flagellar output of the model. If 8&b Il is accurate, this would suggest that
signals input to the cytoplasmic cluster have anigant effect on the chemotaxis
pathway’s output and therefore need to be tightiytiolled. Furthermore, the output of the
cytoplasmic cluster needs to be insensitive tomatac variations in order to accurately
convey signals sensed at its inputs to the flageflators. The CheBP feedback that

demethylates active cytoplasmic cluster receptassdn analogous role to bﬁgfeedback

above, reducing the magnitude of the sensitivitycfion of the cytoplasmic cluster. In this
way, uncertainties and parametric changes havelucee effect on the system’s flagellar
output.

Example - High performance aircraft pitch autopilot

To illustrate an application of cascade controlskall look at an example of pitch control
for a high performance aircraft, adapted from Higure S3 is a block diagram of the jet
aircraft’'s short-period longitudinal behaviour. @ut Y is the aircraft’'s pitch an®R is a
reference signal. Wit§, =0, the response of the system is very oscillatang, its damping

ratio decreases further whe®), is increased. Moreover, a relatively small incesas the
gainS, of 3.84 is enough to cause instability. The damingd gain margin can be increased
through placing a feedback loop of g&nas illustrated by the dashed line in Figure S3.



This can be accomplished using a rate gyro. Byinget§ =1.98the damping ratio is
increased and the system will remain stable foaia &, of up to 24.6. For further details,
see [1].

Example - Heat Exchanger

To further demonstrate the disturbance rejecticop@rties of cascade control, we shall
consider a heat exchanger example. The role ohéla¢ exchanger is to transfer heat from
steam to an effluent. The temperature set-poirthefeffluent is fixed in the temperature
controller module of Figure S4 and the aim of tbatml system is to maintain the effluent
temperature at this set point.

Without cascade control, the temperature contrafieasures the effluent temperature and
sets a reference flow rate for the flow controttefollow. The flow controller then controls
the opening of a valve that sets the flow rate. E\av, upstream pressure disturbances may
cause the steam flow rate to change abruptly. @ilsturbance will only be corrected for
once the change in steam flow affects the temperatti effluent, which may be a slow
process.

Cascade control involves taking a measurement efsteam flow rate and feeding this
measurement into the flow controller (shown in tashed line in Figure S4). If the flow
rate is then found to have deviated from the reiegeflow rate set by the temperature
controller, the flow controller itself corrects tiflew rate by opening or closing the flow
valve as necessary. This corrective measure isra rapid way of maintaining the required
flow rate than via the temperature feedback alone.

Block diagram representations of this system (idiclg set-point and disturbance signals
d) with and without cascade control are shown inuFegS5 and Figure S6. The parameter
values area=0.2, b= 30,k = 1CNote that the flow controller, around which we hdkie
cascade control feedback, is much faster than ¢nepérature controller. Figure S7
illustrates the response to a step change in thposet temperaturg =10 (at 50 seconds)
and a step output disturbanek=10 (at 250 seconds) for the system with and without
cascade control.

Cascade control therefore results in a less otmijlaresponse and one that more rapidly
rejects disturbances than a system without thisrabscheme.
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Figure S1: Simple feedback system for plafd) and feedback controllé&i(s).
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Figure S2: Linear system representation of Modekith a cascade control feedback
(dashed-dotted line). Ligand inputs to the two alting clusters aré and L and signatl is
a disturbance signal. The parametays, Ky, ,/?22 are positive with >a.
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Figure S3: Block diagram of aircraft pitch dynami€siscade control manifests in the
dashed line. Laplace domain sign@(s) andY(s) are the reference input and system output

respectively.S, andS, are constants ané denotes an integrator in the Laplace domain.
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Figure S4: Schematic of a heat exchanger. Cas@admtinvolves feeding a measurement
of the flow rate into the flow controller (dasheas).

Figure S5: Heat exchanger system with cascadealod&rshed feedback of gairgives
improved performance. Signalandy are the reference input and system output
respectively. Signal is an output disturbance. Parameters, k denote constant gains.

Figure S6: Heat exchanger system without cascadteotoSignals andy are the reference
input and system output respectively. Sigth&d an output disturbance. Parametesndb
denote constant gains.
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Figure S7: Heat exchanger response to set-poimgehand disturbance, with cascade
control (solid line) and without (dashed line).



