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a b s t r a c t

The currently accepted interpretation of the clock and wavefront model of somitogenesis is that a

posteriorly moving molecular gradient sequentially slows the rate of clock oscillations, resulting in a

spatial readout of temporal oscillations. However, while molecular components of the clocks and

wavefronts have now been identified in the pre-somitic mesoderm (PSM), there is not yet conclusive

evidence demonstrating that the observed molecular wavefronts act to slow clock oscillations. Here we

present an alternative formulation of the clock and wavefront model in which oscillator coupling,

already known to play a key role in oscillator synchronisation, plays a fundamentally important role in

the slowing of oscillations along the anterior–posterior (AP) axis. Our model has three parameters

which can be determined, in any given species, by the measurement of three quantities: the clock

period in the posterior PSM, somite length and the length of the PSM. A travelling wavefront, which

slows oscillations along the AP axis, is an emergent feature of the model. Using the model we predict:

(a) the distance between moving stripes of gene expression; (b) the number of moving stripes of gene

expression and (c) the oscillator period profile along the AP axis. Predictions regarding the stripe data

are verified using existing zebrafish data. We simulate a range of experimental perturbations and

demonstrate how the model can be used to unambiguously define a reference frame along the AP axis.

Comparing data from zebrafish, chick, mouse and snake, we demonstrate that: (a) variation in

patterning profiles is accounted for by a single nondimensional parameter; the ratio of coupling

strengths; and (b) the period profile along the AP axis is conserved across species. Thus the model is

consistent with the idea that, although the genes involved in pattern propagation in the PSM vary, there

is a conserved patterning mechanism across species.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Somitogenesis is the highly robust process by which the verte-
brate trunk is divided into a series of segments called somites
(Gilbert, 1997). Somite formation, which occurs rhythmically from
the pre-somitic mesoderm (PSM) in a strict anterior–posterior (AP)
sequence, is coincident with PSM growth (Gomez and Pourquié,
2009). As the process of somitogenesis evolves in time, mesenchy-
mal cells in the posterior PSM differentiate into epithelial cells in a
strict spatio-temporal manner (Dequéant and Pourquié, 2008).
Hence, a posteriorly moving wave of differentiation is observed
(see Fig. 1). One of the key challenges in somitogenesis research is to
understand the mechanisms governing the spatio-temporal propa-
gation of this wave of differentiation. Each cell in the PSM has a
segmentation clock whose oscillation frequency is dependent on its
relative position along the AP axis (Dequéant et al., 2006). Oscilla-
tions in the posterior PSM occur at an approximately constant rate

corresponding to the frequency at which somites form (Schröter
et al., 2008) but, as the wave of differentiation moves along the PSM,
the oscillation frequency of a given cell decreases; somite formation
occurs at the spatial position where the oscillations cease. When
oscillating components of the somitogenesis clock are examined
using techniques such as in situ hybridisation (see Fig. 1), stripes of
gene expression, arising as a result of the variable oscillation
frequency along the AP axis, are observed moving anteriorly
(Giudicelli et al., 2007). The number of stripes varies between
species (Gomez et al., 2008).

Numerous genes and proteins that oscillate at the rate at
which somitogenesis proceeds have been identified across a
number of species. In zebrafish, all known oscillating molecules
are downstream regulators of the Notch–Delta signalling pathway
(Dequéant and Pourquié, 2008) and it is thought that delayed
negative feedback (i.e. a given protein inhibits the expression of
its corresponding gene with a delay resulting from transcription
and translation) plays a fundamental role in regulating the
somitogenesis clock (e.g. Monk, 2003; Lewis, 2003; Giudicelli
et al., 2007). One role of Notch–Delta signalling is to synchronise
neighbouring molecular clocks (Horikawa et al., 2006). However,
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perturbations in the Notch–Delta signalling pathway also influ-
ence somite length and oscillation period (Herrgen et al., 2010).

Molecular gradients that travel along the AP axis have been
hypothesised to be manifestations of the wavefront of differentia-
tion (Dubrulle et al., 2001). In zebrafish, Fgf mRNA is produced
only in the posterior PSM. As these molecules have relatively
short protein half-lives, gradients are, therefore, established along
the AP axis that are fixed with respect to the regressing tail of the
embryo. However, a causal relationship between the observed
travelling gradients and regulation of the cellular oscillations has
yet to be established. Detailed quantitative measurements of
somitogenesis at the cellular scale and above have recently been
undertaken. Giudicelli et al. (2007) have measured the distance
between the anteriorly moving stripes of gene expression in
zebrafish, Gomez et al. (2008) have made similar measurements in
snake, as well as measuring the length of the PSM as somitogenesis
progresses; Schröter et al. (2008) have quantified the variation in
somite length and oscillator period as somitogenesis proceeds: the
former is temperature compensated while the latter decreases with
temperature. Herrgen et al. (2010) and Schröter and Oates (2010)
have measured relative variation in somite length and oscillator
period in somitogenesis mutants. These relatively recent data
provide a means of quantitatively testing mathematical models of
somitogenesis, of which there is a relatively long history.

Cooke and Zeeman (1976) proposed a ‘clock and wavefront’
model in which cellular clocks and a moving gradient determined
‘when’ and ‘where’ somites form, respectively. The discovery of
the molecular components of the somitogenesis clock and moving
molecular gradients added significant experimental backing to
this model. Baker et al. (2008) considered partial differential
equation (PDE) models which phenomenologically incorporated
both the travelling wavefront and cellular oscillations. These
models were derived at the cell population scale and aimed to
relate a coarse-grained description of cell–cell communication
mechanisms to the formation of pattern. In recent years, given the
discovery of molecular clocks and gradients, mathematical models
of somitogenesis have focused on capturing the underpinning
molecular mechanisms. For example, Lewis and coworkers (Lewis,

2003; Giudicelli et al., 2007) have developed and parameterised
models of the molecular clock in zebrafish. These models were
applied in a multicellular context by Horikawa et al. (2006), who
considered a 1D chain of somitogenesis oscillators coupled together
via Notch–Delta signalling. By treating oscillator phase as the
dependent variable, Morelli et al. (2009) and Herrgen et al. (2010)
have developed a model of intermediary scale between the phenom-
enological models considered by Cooke and Zeeman (1976) and
Baker et al. (2008), and the molecular model considered by Horikawa
et al. (2006).

A common feature of models attempting to capture the pattern-
ing of stripes and somite formation along the AP axis is that a
travelling wavefront of differentiation is assumed to exist a priori

(Tiedemann et al., 2007; Giudicelli et al., 2007; Baker et al., 2008;
Morelli et al., 2009; Herrgen et al., 2010). The characteristics of the
wavefront, such as the wave speed and profile, are, therefore, inputs
which are crucial to the properties of the emergent patterning
behaviour of the respective models. While this modelling assump-
tion is validated, to a certain extent, by observations of travelling
molecular gradients of morphogens, such as Fgf and Wnt (Dubrulle
et al., 2001), there is not yet definitive evidence that demonstrates a
causal relationship between the propagation of the wavefronts and
the slowing of cellular oscillations.

1.1. Outline

In this paper we consider a continuum model of a population of
somitogenesis oscillators. We focus solely on building a model
which accounts for the evolution of a prepattern that determines
the positions at which somites form. Our model demonstrates that
oscillator coupling is sufficient to establish the emergent patterns
observed in somitogenesis. Moreover, a travelling wave that slows
cellular oscillations is an emergent property of the model. As the
model is mathematically tractable, we derive expressions for the
velocity of the travelling wavefront and its profile. We parameterise
the model using experimentally known quantities and subsequently
make a number of predictions that are in agreement with available
experimental data. The layout of the paper is as follows: in Section 2

Head  Somites  PSM  Tail

Fig. 1. Top: sequential somite formation in the chick PSM. Image supplied by kind permission of Paul Kulesa, Stowers Institute for Medical Research. Bottom: patterns of

gene expression in the zebrafish PSM illustrated via in situ hybridisation (Giudicelli et al., 2007).
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we develop, analyse and parameterise the model; in Section 3 we
consider numerical solutions of the model and demonstrate an
excellent fit with experimental data; in Section 4 we consider
experimentally motivated perturbations to the model; in Section
5, using snake as a model organism, we demonstrate how our model
can be fitted to in situ stripe expression data and, subsequently,
parameterise the model using snake, chick and mouse data; and,
finally, in Section 6 we conclude with a summary of the main results
in this paper and a comparison of our model with similar models in
the literature.

2. A phase description of a chain of coupled oscillators

This study is based upon the following PDE that describes how
oscillator phase, yðx,tÞ, varies in space, x, and time, t (see sche-
matic in Fig. 2):

@y
@t
¼oþA

@2y
@x2
�B

@y
@x

� �2

: ð1Þ

The parameter o represents the rate of phase progression in the
homogeneous posterior PSM, and the parameters A and B repre-
sent the effects of oscillator coupling arising from cell movement
and/or Notch–Delta signalling (Jiang et al., 2000; Uriu et al.,
2010). The form of Eq. (1) can, in principle, be derived explicitly
from molecular models of coupled oscillators (Kuramoto, 1981).
As we wish to examine the propagation of spatial pattern without
explicitly considering embryo growth or pattern initiation, we
define the spatial domain xA ½�1,1� with x-�1 and x-1

corresponding to the anterior and posterior ends of the embryo,
respectively.

2.1. A discrete model of coupled oscillators

In order to demonstrate how a chain of discrete oscillators can
give rise to the phase Eq. (1), we consider a chain of phase
coupled oscillators (e.g. Murray, 1989) with the dynamics of the
jth oscillator given by

_yj ¼
X

i

½Asinðyi�yjÞþBðcosðyi�yjÞ�1Þ�þo, j¼ 1, . . . ,N, ð2Þ

where the sum is taken over nearest neighbours and N is the
number of oscillators in the system. The sinusoidal coupling is
attractive and synchronising and thus represents Notch–Delta
mediated synchronisation (Riedel-Kruse et al., 2007; Özbudak and
Lewis, 2008) while the cosine coupling is repulsive and desyn-
chronising (i.e. it forces neighbouring oscillators out-of-phase
with one another). It is worth noting that when B¼0 the model
is similar to that proposed by Kuramoto (1981) and oscillators

synchronise with their nearest neighbours. In contrast, if A¼0 the
cosine terms force neighbouring oscillators to be completely out-
of-phase. Thus the cosine term could originate from a type of
coupling similar to that which governs the process of lateral
inhibition. When both A and B are nonzero the steady-state phase
difference between a pair of neighbouring oscillators is the result
of a balance between attractive and repulsive coupling. We note
that the model can be written in Kuramoto form by defining

GðyÞ ¼ AsinyþBðcosy�1Þ, ð3Þ

in which case

_yj ¼
X

i

Gðyi�yjÞþo, j¼ 1, . . . ,N, ð4Þ

and leave it as an open question to determine the molecular
models that yield an appropriate GðyÞ (we refer the reader to
Appendix A for a demonstration of how a molecular model could
yield Eq. (1)). The equivalence of Eqs. (1) and (2) can be demon-
strated by assuming that neighbouring oscillators are close
together in phase, i.e. jyi�yi�1j52p, expanding the sine and
cosine terms and taking the continuum limit (see Appendix B).

2.2. Boundary conditions and model analysis

In the posterior PSM oscillations are synchronous (i.e. the
phase of neighbouring oscillators is spatially homogeneous, see
Fig. 1), hence we impose the boundary condition

@y
@x x-1

¼ 0:

���� ð5Þ

As the oscillation rate tends to zero in the anterior PSM, we
impose the boundary condition

@y
@x x-�1

¼

ffiffiffiffiffi
o
B

r
,

���� ð6Þ

which is the stable steady-state of Eq. (1). We define the initial
condition:

yðx,0Þ ¼ y0ðxÞ: ð7Þ

Upon differentiation of Eq. (1) with respect to the variable x,
and defining

Cðx,tÞ ¼
@y
@x

, ð8Þ

we obtain Burger’s equation for C, i.e. the nonlinear advection–
diffusion equation:

@C
@t
þ2BC

@C
@x
¼ A

@2C
@x2

, ð9Þ

which has applications in a range of fields such as traffic flow
modelling (e.g. Whitham, 1974; Kuramoto, 1981; Ockendon et al.,
2003). This model has a travelling wave solution, and, defining the
travelling wave coordinate y¼ x�Ut, together with the boundary
conditions (5) and (6), the wave velocity is

U ¼
ffiffiffiffiffiffiffi
oB
p

: ð10Þ

Ahead of the wave (i.e. in the posterior PSM) the solution is

yðx,tÞ �ot, ð11Þ

which corresponds to spatially homogeneous temporal oscilla-
tions (the solution has no dependence on x), while behind the
wave

yðx,tÞ �

ffiffiffiffiffi
o
B

r
x, ð12Þ

roiretsoPAnterior

Fig. 2. A schematic illustration of the phase profile of a one-dimensional chain of

oscillators. Each cell has a spatial coordinate, xk, and a time-dependent phase, yk ,

that is a readout of the underlying somitogenesis clock. Eq. (1) describes how a

continuum description of the phase, yðx,tÞ, evolves in time as a result of molecular

oscillations and oscillator coupling.
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hence the solution is independent of t. Assuming that phase is
determined modulo 2p, a spatial pattern with wavelength

Sexp ¼ 2p
ffiffiffiffiffi
B

o

r
, ð13Þ

corresponding to somite length, is obtained.
Assuming dynamic equilibrium in a reference frame moving

with velocity U relative to the laboratory frame, our model has
one independent variable, y, which is the distance between a
given point and the midpoint of the phase gradient. We obtain the
following results (depicted in Fig. 3): the phase gradient is

CðyÞ ¼
ffiffiffiffiffiffiffiffiffiffi
o=B

p
1þe

ffiffiffiffiffi
oB
p

y=A
, ð14Þ

the angular frequency is

OðyÞ ¼o 1�
1

1þe
ffiffiffiffiffi
oB
p

y=A

� �
, ð15Þ

the oscillation period is

TðyÞ ¼
2p
o ð1þe�ð

ffiffiffiffiffi
oB
p

y=AÞÞ, ð16Þ

and the wavelength of the pattern, defined such that yðyþS=2Þ
�yðy�S=2Þ ¼ 2p, is

SðyÞ ¼ 2p
ffiffiffiffiffi
B

o

r
1þ

A

pB
sinh�1 sinh

pB

A
e
ffiffiffiffiffi
oB
p

y=A

� �� �
: ð17Þ

Eqs. (10)–(17) describe quantities that are experimentally mea-
surable. Moreover, consider a solution to Eq. (9) that is in dynamic
equilibrium (i.e. the wave moves with constant wave speed

U ¼
ffiffiffiffiffiffiffi
oB
p

with oscillation frequency profile given by Eq. (15)):

the time taken for the wave to travel a distance X is X=
ffiffiffiffiffiffiffi
oB
p

.

Letting y¼ X=2�
ffiffiffiffiffiffiffi
oB
p

t in Eq. (15) and integrating with respect to t

for a time X=
ffiffiffiffiffiffiffi
oB
p

, we obtain that the change in phase for a
stationary cell as the wavefront passes over it (assuming the
centre of the wavefront is initially at x¼0) is

Dy¼
X

2

ffiffiffiffiffi
o
B

r
: ð18Þ

In order to determine the phase lag induced by the travelling
wavefront, we subtract Eq. (18) from the phase change undergone

by a freely oscillating cell (i.e. X
ffiffiffiffiffiffiffiffiffiffi
o=B

p
) and divide by 2p to obtain

that the number of moving stripes observable in a region of width
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Fig. 3. Model variables (Eqs. (14)–(17)) plotted in the travelling wave reference frame. y¼0 corresponds to the centre of the phase gradient and y increases posteriorly.

(a) The phase gradient, CðyÞ, (b) the oscillation frequency, OðyÞ, (c) the oscillation period, T(y), and (d) the pattern wavelength, S(y), plotted against y. ðo,A,BÞ ¼

ð0:23,2:22,0:21Þ.
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X centred at the midpoint of the phase gradient is given by

Ns ¼
X

4p

ffiffiffiffiffi
o
B

r
¼

X

2Sexp
: ð19Þ

2.3. Parameter estimation

We use data from zebrafish (Giudicelli et al., 2007) in order to
initially parameterise the model. At T¼30 1C the oscillation period
in the posterior PSM, Texp, is 30 min. Therefore, using Eq. (11) we
obtain

o¼ 2p
Texp

: ð20Þ

We assume that the somite length, Sexp, is approximately six cell
diameters (c.d.) at the seven somite stage (Schröter et al. (2008)
measure 53 mm while Gomez et al. (2008) measured 75 mm). As one
somite forms for every clock cycle in the PSM we assume that the
wave speed is given by Sexp=Texp. Hence substitution into Eq. (10)
leads to

B¼
S2

exp

2pTexp
: ð21Þ

In order to determine the parameter A we use Eq. (14) to determine
the length scale over which the wavefront varies. Making a linear
approximation to the gradient at y¼0, where dC=dy takes its
maximal value of o=4A (see schematic in Fig. 4), we find that the
length scale, Lexp, over which the phase gradient varies is given by

Lexp ¼
4Affiffiffiffiffiffiffi
oB
p : ð22Þ

Given an experimental measurement of the length scale of the
phase gradient, Eq. (22) can be rearranged to yield

A¼
LexpSexp

4Texp
: ð23Þ

In the Giudicelli et al. (2007) study, the PSM length, LPSM, is
defined to be the distance from the tail end of the notochord to
the anterior end of the PSM and is measured to be eight times the
somite length, i.e. LPSM ¼ 8Sexp. Using LPSM as an approximation to
the length scale of the phase gradient and defining unit length to
be one cell diameter, we approximate that ðTexp,Sexp,LexpÞ ¼

ð30 mins,6 c:d:,48 c:d:Þ for zebrafish somitogenesis at the 7–15
somite stage at T¼30 1C (Giudicelli et al., 2007), in which case our
model parameters take the values ðo,A,BÞ ¼ ð0:21,2:40,0:19Þ.

We note that in the classic interpretation of Cooke and
Zeeman’s clock and wavefront model the somite length is related

to the clock period by

Sexp ¼ vTexp, ð24Þ

where v is the constant wavespeed of the travelling wavefront. In
our model the wavespeed is a function of the oscillation fre-
quency, o, and the coupling parameter B. After substitution using
Eq. (10) we find that

Sexp ¼
ffiffiffiffiffiffiffiffiffi
2pB
p ffiffiffiffiffiffiffiffi

Texp

q
: ð25Þ

This result has important biological implications: (a) the somite
length scales with the square root of the clock period; and
(b) knowledge of how a perturbation alters oscillator period is
insufficient to describe the effect on somite length (e.g. if an
experimental perturbation increases the oscillation frequency by
a certain factor but also increases the coupling parameter B by the
same factor then somite length remains constant).

3. Model validation and predictions

In this section we examine numerical solutions of Eq. (1)
together with boundary conditions (5) and (6) and compare them
with experimental data (where available). In Fig. 5(a)–(c) sinðyÞ is
plotted against x at a series of times1. The initial conditions are
taken to be the steady-state phase gradient given by Eq. (14). For
large x the solution oscillates in time, y¼ot, while for small x the
solution is time independent but takes the form y¼

ffiffiffiffiffiffiffiffiffiffi
o=B

p
x (see

Fig. 5(d)). The nature of the travelling wave can be clearly seen in
Fig. 5(e) and (f), where the phase gradient and pattern wavelength
are plotted against x at increasing times. As expected, the travelling
wave moves with velocity U ¼

ffiffiffiffiffiffiffi
oB
p

and the wavelength of the
pattern, corresponding to somite length, is six cell diameters.

Giudicelli et al. (2007) have measured the distance between the
anteriorly moving stripes of gene expression (e.g. see Fig. 1) and in
Fig. 6(a) we demonstrate good agreement between their data and
the expression for the wavelength defined in Eq. (17) with the
parameters as chosen in Section 2.3. Whilst this satisfactory fit
suggests that LPSM is a good approximation to the length scale of the
phase gradient, we can formalise this argument by performing a
least squares fit of Eq. (17) to the stripe expression data. In order to
do this we must rescale our model such that LPSM is unit length, in
which case the expression for the stripe wavelength is given by

SðyÞ

Sexp
¼ 1þ

c1LPSM

2Sexp
sinh�1 sinh

2Sexp

c1LPSM
e4ðy�c2Þ=c1

� �
, ð26Þ

where c1 ¼ Lexp=LPSM and c2 ¼ y0=LPSM . For the Giudicelli et al. (2007)
zebrafish data we obtain that fc1,c2g¼f1:08,�0:2g, i.e. Lexp is
approximately 10% greater than the measurement LPSM used in the
Giudicelli et al. (2007) study and the centre of the phase gradient
lies approximately one somite length anterior to the centre point of
their reference frame. We note that the quality of the fit could be
improved via inclusion of more data points anterior to the origin in
the Giudicelli et al. (2007) coordinate system (see the posterior bias
of the data points relative to the centre of the phase gradient).

A calculation of the number of stripes of gene expression in the
range ½�Lexp=2,Lexp=2� using Eq. (19) predicts that Ns¼4. In other
words, the phase of a cell at position �Lexp=2 relative to the centre
of the travelling wave lags the oscillations in the posterior PSM by
approximately four cycles owing to the decreased frequency rate
induced by the posteriorly moving wavefront. In order to derive a
simple relationship between the stripe expression and period
profiles, we use the approximation sinhðxÞ � sinh�1

ðxÞ � x, which

0

y

y

ω/B

L exp

Ψ( )

Fig. 4. A schematic illustration of how the length scale of the phase gradient is

defined. The phase gradient attains its maximum of C¼
ffiffiffiffiffiffiffiffiffiffi
o=B

p
anteriorly and its

minimum C¼ 0 posteriorly. The straight dot-dashed line represents a linear

approximation to the phase gradient at the origin, from which the length scale is

determined.

1 sinyðxÞ rather than yðxÞ is plotted, as the range of the former function is

defined on the domain [�1,1] which can be qualitatively compared with

concentration profiles from in situ staining experiments (Morelli et al., 2009).
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is reasonable for jxjo1, in Eq. (17) and obtain that

SðyÞ � 2p
ffiffiffiffiffi
B

o

r
ð1þe

ffiffiffiffiffi
oB
p

y=AÞ: ð27Þ

This is valid so long as pB=Ao1 and yoA=
ffiffiffiffiffiffiffi
oB
p

lnð1=sinhðpB=AÞÞ

¼ 16:5. As pB=A¼ 0:24 the first approximation holds as result of
the greater strength of attractive coupling, while the second
approximation holds only in the anterior 3=4 of the posterior PSM.
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Fig. 5. Plots of the numerical solution of Eqs. (1)–(6). (a)–(c) sinðyÞ plotted against x at t ¼ f0,20,40gmin. (d) sinðyÞ plotted against x and t (black –1, white 1). (e) The phase

gradient, Cðx,tÞ, plotted against x at t¼ f0,20,40,60,80,100gmin. The arrow indicates the direction of travel of the wavefront. (f) The pattern wavelength, Sðx,tÞ, plotted against x

at t ¼ f0,20,40,60,80,100gmin. Ahead of the wave (large x, small t) the phase increases at rate o but is spatially constant. Behind the wave (large t, small x) the pattern oscillates

in space with wavelength Sexp but is constant in time. x, the spatial coordinate in the laboratory frame, increases posteriorly. Parameter values: ðo,A,BÞ ¼ ð0:21,2:40,0:19Þ.
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(a) Rescaled wavelength, SðyÞ=Sexp plotted against rescaled spatial coordinate, y=Lexp . Solid line: Eq. (17) with parameters estimated using zebrafish data (Giudicelli et al.,

2007); dashed line: least squares fit using Eq. (26); dot-dashed line: least squares estimate using Eq. (27). (b) Prediction of rescaled oscillation period, TðyÞ=Texp ,

(see Eq. (16)) plotted against rescaled spatial coordinate, y=Lexp .
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Combining Eqs. (16) and (27) we deduce that the oscillation
period is related to the stripe wavelength data (Fig. 1) via the
relationship

TðyÞ

Texp
¼ e�4y=Lexp

SðyÞ

Sexp
: ð28Þ

This expression can be compared with the expression

TðyÞ

Texp
¼

1

1þ
y

Lexp
�

1

2

� �
SðyÞ

Sexp

, ð29Þ

derived by Giudicelli et al. (2007), which has been used to infer
temporal information regarding the clock from the spatial stripe
pattern. We note that both expressions predict that the clock period
varies inversely with the stripe wavelength, i.e. in the spatially
homogeneous posterior PSM oscillation periods are minimised,
while in the spatially patterned anterior PSM the oscillation periods
become large. A key difference between the models is that Eq. (29)
predicts that the clock period tends to infinity at y¼�Lexp=2 while
Eq. (28) predicts an exponential increase in clock period.

4. Experimental perturbations

We now test our model against a series of experiments in
which oscillator coupling, somite size and the rate at which
somitogenesis proceeds are perturbed.

4.1. Transplant of ‘out-of-phase’ cells

In order to demonstrate the synchronous effects of coupling
between oscillators in the PSM, Horikawa et al. (2006), using
zebrafish as a model organism, isolated a group of cells from a
wild-type donor embryo and transplanted them into the posterior
PSM of a host embryo. Within three oscillation cycles the
explanted cells, which were originally out-of-phase with the host
cells, had completely synchronised with those in the host PSM.

In order to investigate this phenomenon, we compare two
numerical solutions of our model which had different initial
conditions: the first solution has initial conditions that are in
dynamic equilibrium (phase gradient given by Eq. (14)), while the
second solution is a perturbation of the first: a small patch of cells
are initially out-of-phase with the bulk posterior PSM. The
numerical results in Fig. 7(b), in which the difference between
perturbed and unperturbed solutions is plotted against x and t,
are in qualitative agreement with the experimental findings of
Horikawa et al. (2006): the introduced cells resynchronise with
the posterior PSM with no effect on somite length (see Fig. 7(a)).

4.2. Transplant of cells overexpressing Delta ligands

Horikawa et al. (2006) performed a further set of experiments in
which a small number of cells that had been treated with Her
morpholinos were transplanted into one side of a host PSM. As Her
negatively regulates Delta transcription, Horikawa et al. (2006)
argue that these cells should express high levels of Delta ligands
and, therefore, transplantation into a host embryo should result in
modified oscillations in the host cells. They found that somites
which formed adjacent to the transplanted cells were smaller than
those in the control experiment. Moreover, all somites that formed
posterior to the transplanted cells were shifted anteriorly relative to
the control side of the embryo. From these experimental results
Horikawa et al. (2006) concluded that Notch–Delta signalling
influences somite length and spatial position.

As it is not clear from the experimental study which of the
parameters A, B or o are modified by the overexpression of Notch
ligands, here we suppose that the perturbation decreases the para-
meter ratio B=o in the region xA ½126,136� (see Fig. 8). Accordingly,
at x� 130 we observe a local decrease in pattern wavelength
(corresponding to somite length). Moreover, in the region posterior
to the varying parameter (where the parameter ratio B=o takes the
wild-type value), the pattern wavelength increases and subsequent
somite lengths return to normal. However, as observed experimen-
tally, the somite pattern is shifted anteriorly along the AP axis (see
Fig. 8(b)). We note that the effect of perturbing the parameter A on
the phase gradient is transient and, therefore, not observable given
the experimental protocol. Hence we have not considered whether or
not A is modified in the Horikawa et al. (2006) explant experiment.

In our model framework a spatially localised increase in the
parameter ratio B=o, corresponding to downregulation of Notch
ligand expression on the cell surface, will result in the formation
of larger somites and a corresponding phase lag in the perturbed
side of the embryo (see numerical simulation in Fig. 9). We note
that Herrgen et al. (2010) have recently shown that mutants for
Delta ligands and Notch receptors have increased somite lengths
and oscillator periods, which is consistent with the idea that
activation of the Notch pathway decreases the parameter o.

4.3. Temperature compensation

Schröter et al. (2008) have demonstrated that the rate at which
somitogenesis proceeds increases with temperature while somite
length is temperature independent. In order for these observa-
tions to be consistent with Cooke and Zeeman’s ‘clock and
wavefront’ model, the velocity of the travelling wavefront must
be temperature dependent.
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Fig. 7. Dissipation of a phase perturbation introduced at ðx,tÞ ¼ ð145,0Þ. (a) siny plotted against x and t. (b) The perturbation plotted against x and t.

P.J. Murray et al. / Journal of Theoretical Biology 283 (2011) 227–238 233



Author's personal copy

In our model framework, temperature compensation of somite
length arises naturally upon the assumption that each of the
parameters o, A and B scale similarly with temperature, T, such
that

o¼o0hðTlÞ, A¼ A0hðTlÞ, B¼ B0hðTlÞ, ð30Þ

where h is some scaling function and l a scaling parameter.
Substituting the scaling relationships in Eq. (30) into Eq. (10), we
find that the wave speed

U ¼
ffiffiffiffiffiffiffi
oB
p

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðTlÞ2

q
phðTlÞ, ð31Þ

scales proportionally with hðTlÞ . However, recalling from Eq. (13),
the somite length behind the wavefront is given by

S0 ¼ 2p
ffiffiffiffiffi
B

o

r
, ð32Þ

which is independent of T. As the clock oscillation rate scales
approximately linearly with temperature (Schröter et al., 2008),
we assume that the parameters A and B have a similar scaling.
Hence, as the environmental temperature increases, individual
somitogenesis clocks oscillate at a faster rate but the wave speed
also increases such that somite length remains fixed. A similar
argument applied to Eq. (19) suggests that the number of moving
stripes observed along the AP axis should also be temperature
independent.

5. Applying the model to other species

We now describe how our model can be: (a) used to unam-
biguously define a travelling reference frame in the PSM; (b) fitted
to data from other species; and (c) used to explain variation in
stripe expression profiles across different species.
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Fig. 8. Simulation of Notch-ligand expressing cell implant experiment. In the range xA ½126,136� the parameter ratio B=o is decreased by a factor of ten. (a) siny plotted

against x and t (black –1, white 1). The dashed ellipse highlights the spatial region (x�130) in which the pattern wavelength is locally decreased. (b) siny plotted against x

at t¼900: dashed line (unperturbed solution), solid line (perturbed solution).
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5.1. Parameter fitting to insitu stripe expression data

There is disparity in the literature as to how the length of the
posterior PSM is defined across species (see schematic diagram in
Fig. 10). Anteriorly, the position of the last formed somite has
been used to define the origin of a moving coordinate system
(Gomez et al., 2008), while, posteriorly, the posterior tip of the
PSM (Gomez et al., 2008) or the position of the notochord
(Giudicelli et al., 2007) have been used to define unit length.
Using in situ stripe expression data our model can unambiguously
solve this problem. Consider the data presented in Fig. 11. Using a
least squares fitting algorithm we fit Eq. (26) to the stripe
expression data and obtain estimates for the somite length, the
centre of the phase gradient, yc, and the length scale of the phase
gradient. For example, using the snake data from Gomez et al.
(2008) we obtain that Lexp ¼ 0:64LPSM with yc ¼�0:23LPSM , where
LPSM is unit length in the experiment, i.e. the length scale of the
phase gradient is approximately two thirds the length of the PSM
while the centre of the phase gradient is 0:23LPSM anterior to the
centre of the coordinate system used in the experiment. Again we

note the posterior bias of the data points relative to the centre of
the phase gradient. Applying such a measurement technique to
stripe expression data as somitogenesis proceeds would allow
quantification of how Lexp varies throughout somitogenesis.

5.2. Comparing species

In Table 1 we present measurements of Lexp, Texp and Sexp taken
from zebrafish, corn snake, chick and mouse (Gomez et al., 2008)
and the corresponding values of the model parameters A, B and o.
Our model suggests that the variation in PSM patterns found
across different species is due to different ratios of the coupling
parameters A and B. For example, the strength of repulsive
coupling in snake is relatively much less than in zebrafish, thus
in snake we expect to observe a longer PSM and smaller somites.
This argument becomes clearer upon nondimensionalising the
model as follows:

x̂ ¼
x

Lexp
, t̂ ¼

t

Texp
: ð33Þ

With these substitutions, Eq. (1) takes the form

@y
@t̂
¼ g @

2y

@x̂
2
�16g2 @y

@x̂

� �2

þ1, ð34Þ

where the nondimensional parameter g¼ Sexp=4Lexp ¼ pB=8A, i.e.

the ratio of the somite length to the length scale of the phase
gradient. With this rescaling the clock period and PSM length are
normalised across species and variation in patterning across
species arises through variation in the parameter g. Thus in snake
the wave moves relatively slower than in zebrafish (wavespeed ¼
4g) yielding smaller somites.

With the given dimensional scalings, the period of oscillation
along the moving wavefront (derived in dimensional units in
Eq. (16)) is given in nondimensional form by the expression

TðyÞ ¼ 1þe�4y: ð35Þ

Note that this expression is independent of g, implying that the
nondimensional period profile remains constant (even as g varies
across species (see Table 1)). The expression in Eq. (35) has
previously been plotted in Fig. 6(b) (T(y) is rescaled with Texp

and y is rescaled with Lexp) but the analysis in this section predicts
that data from other species (when nondimensionalised appro-
priately) should also lie upon the predicted exponential curve.

The number of stripes moving along the posterior PSM, defined
in Eq. (19), can be rewritten as

Ns ¼
1

8g
: ð36Þ

Fig. 10. A schematic diagram comparing different measurements of length scales

in the PSM. Top: in snake, Gomez et al. (2008) use the anterior boundary of the

Mesogenin1/Mesp0 expression domain (hatched) to define the determination

wavefront and the distance from the last formed somite to the posterior tip, LPSM,

of the embryo to define the length scale of the PSM. In zebrafish, Giudicelli et al.

(2007) use the distance from the last formed somite to the tail end of the

notochord, Ln

PSM , to define the length scale of the PSM. Bottom: stripe expression

data together with Eq. (26) can be used to determine the length scale of the phase

gradient, Lexp, and its centre point, yc.
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Fig. 11. The distance between stripes of Lunatic Fringe expression plotted along

the AP axis (markers). Data taken from snake (Gomez et al., 2008). Fitting Eq. (26)

(solid line) we find that Lexp ¼ 0.64, yc ¼�0:23.

Table 1
A table comparing experimental measurements and model parameters across

different species. Data taken from Gomez et al. (2008).

Snake Mouse Chick Zebrafish Unit

Sexp 4.8 11.5 15.0 7.5 c.d.

Texp 100 120 90 30 min

LPSM 99.4 63.9 78.9 68.0 c.d.

Lexp
a 70.2 45.1 55.7 48.0 c.d.

o 0.06 0.05 0.07 0.21 min�1

A 0.83 1.08 2.31 2.99 c.d.2 min�1

B 0.03 0.17 0.40 0.30 c.d.2 min�1

g¼ pB=8A 0.02 0.06 0.07 0.04 Nondim

Ns 7.3 2.0 1.9 3.2 Nondim

a In the absence of experimental measurement of Lexp we have assumed that

the scaling relationship between LPSM and Lexp is the same in chick and mouse as it

is in zebrafish.
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Note that for zebrafish g¼ 0:04, hence we obtain � 3 stripes
moving along a displacement of 20 cell diameters on either side of
the moving wavefront. In Table 1 we present predictions for the
number of moving stripes observed in chick, mouse and snake.

6. Discussion

In 1976, Cooke and Zeeman proposed a clock and wavefront
theory of somite formation which was remarkably insightful
given the available knowledge at the time. In the meantime, the
core components of their model, clocks with anteriorly decreasing
frequencies and a posteriorly moving travelling wavefront, have
been identified experimentally. However, a number of key issues
remain unsolved, such as the identification of a core oscillator and
of a causal molecular link between the observed molecular
gradients and the slowing of clock oscillations.

In this paper we present a clock and wavefront mechanism of
patterning for somite formation that is consistent with the Cooke
and Zeeman model: a travelling wavefront slows clock oscilla-
tions, one somite is formed for each clock cycle and somites have
rostro-caudal polarity. However, the clock and wavefront are not
separate entities but, rather, the wavefront is a gradient in clock
phase.

A key conclusion from our study is that a minimal number of
processes, i.e. attractive and repulsive oscillator coupling, are
sufficient to explain a wide number of experimental observations
in the somitogenesis system. We highlight that, while there is
experimental evidence for synchronising coupling during somi-
togenesis, we are speculating as to the presence of repulsive
oscillator coupling. However, we note that one possible source of
repulsive coupling could be related to Notch-mediated lateral
inhibition, thus the oscillator coupling in our model could be
thought to originate from a combination of the synchronising and
lateral-inhibiting components of the Notch–Delta signalling path-
way. A further caveat that must be attached to our model is that
we have treated the propagation of the phase gradient as being an
autonomous process, while, in reality, the axis elongation, mole-
cular gradient and phase gradient velocities must be coupled (e.g.

it has been observed that perturbations to the Fgf and Wnt
gradients can influence clock oscillation patterns (e.g. Dubrulle
et al., 2001; Gibb et al., 2009). We expect that coupling between
the phase and molecular gradients could be introduced into our
model by allowing the parameters A, B and o to be functions of
the molecular gradients but have not addressed this issue in the
current study.

From a biological perspective, this study proposes that there
need not be an, as yet elusive, molecular connection coupling the
observed travelling molecular gradients to the slowing of clock
oscillations. Rather, the slowing of oscillations may be a function
of nonlinear cell–cell coupling, perhaps mediated via nonlinear
interactions in the Notch–Delta signalling network. Moreover,
variation in the cell–cell coupling networks (i.e. in the relative
strengths of linear and nonlinear coupling) can explain the
variation in PSM patterns observed in different species. In order
to validate this hypothesis, we use the model to make a number
of quantitative predictions, namely the pattern wavelength pro-
files and the number of moving stripes of gene expression along the
AP axis, which we have subsequently verified using published
experimental data. Furthermore, we predict the form of the oscilla-
tion period profile along the AP axis and that both period and stripe
wavelength profiles along the AP axis are, given appropriate rescal-
ing, conserved amongst vertebrate species.

The pattern wavelength profile along the AP axis represents a
key prediction of our model (which we have validated using
zebrafish in situ expression profiles). Moreover, using snake in situ

expression profiles, we have demonstrated how the model can be
fitted in order to unambiguously define a reference frame along
the AP axis. As a result of embryo length variability and the
dependency of PSM length on somite stage (Gomez et al., 2008;
Schröter et al., 2008), published stripe expression data are
typically plotted against a rescaled PSM length. We note that
our model could be fitted to more fine-grained data (i.e. non-
rescaled stripe expression data from different somite stages) in
order to define the length scale of the phase gradient as somito-
genesis proceeds. It would be intriguing to compare such a
measurement with the measurements of the PSM length consid-
ered by Gomez et al. (2008) and Schröter et al. (2008), in order to
investigate how the length scale and location of the phase
gradient varies with the changing length scale of the PSM.
We also note that while we have assumed an infinitely long,
one-dimensional spatial domain in order to derive analytic
expressions for quantities such as the stripe expression profile,
qualitative and many quantitative features of the model remain
unchanged upon the inclusion of more biologically realistic
geometries (data not shown). Moreover, the emergent patterns
described in this study are unchanged upon replacement of the
anterior boundary condition @y=@y¼

ffiffiffiffiffiffiffiffiffiffi
o=B

p
with a Dirichlet con-

dition in which y assumes a fixed value. This latter boundary
condition may be more appealing from a biological perspective as
it requires that cells at the anterior boundary do not oscillate,
rather than the specification of a spatial gradient.

We have demonstrated that our model is in qualitative agree-
ment with the resynchronisation experiments conducted by
Horikawa et al. (2006) but note that a quantitative comparison
between our model and data from resynchronisation experiments
would allow independent measurement of the coupling parameters
A and B, thereby either supporting or refuting our hypothesis that
oscillator coupling plays a key role in the propagation of the phase
gradient along the AP axis. We have also shown that our model is
consistent with the Horikawa et al. (2006) experiment in which
locally increased surface expression of Delta ligands modifies both
somite size and the position of the wavefront. In a future study we
will quantitatively analyse perturbed phenotypes by combining the
phase description developed in this paper with a description of cell
movement in the PSM.

One of the key predictions of our model is that the velocity of
the phase gradient is determined by the expression v¼

ffiffiffiffiffiffiffi
oB
p

,
hence somite length is proportional to the square root of the clock
period. This prediction appears at first sight to be in direct
contradiction with recent experiments in the Hes6 mutant
(Schröter and Oates, 2010), where the velocity of the wavefront
was measured to be the same as in the wild-type embryo while
the somite length and somitogenesis period both increased by a
factor of 1.07, data that are consistent with the classical relation-
ship S¼vT. How can our model be reconciled with these observa-
tions? If we suppose that the Hes6 mutation decreases o by a
factor of 1.07 and increases B by the same factor (i.e. the Hes6
mutation affects oscillator coupling as well as frequency) then our
model yields the observed changes in somitogenesis period and
somite length. Moreover, the phase gradient velocity is the same
as in the wild-type case. One might then argue that the classical
model is favourable as it can explain the data in a simpler
manner. However, in a recent study Herrgen et al. (2010) have
measured the somite lengths and somitogenesis periods in a
range of Notch–Delta mutants. Intriguingly, the wavefront velo-
city is measured to be unchanged in the mutant embryos while,
unlike the Hes6 mutant, the somite lengths and period change by
nonconstant factors. Hence, the classical interpretation of Cooke
and Zeeman’s model cannot explain the Notch–Delta mutant
observations. This topic will be investigated further in a future
publication.
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It remains to be discovered how the phase Eq. (1) can be
derived from biologically plausible models of coupled somitogen-
esis clocks. In general, Eq. (1) can be derived from systems of
molecular oscillators in the limit of weak coupling (Kuramoto,
1981). However, it is not clear a priori what types of molecular
models can be coarse-grained such that Eq. (1) can be used to
describe patterning in the molecular oscillations. In this study we
have considered a toy model of coupled cellular oscillators (a l�o
system) as the model parameters have clear meaning in the phase
description (e.g. the parameter P represents strength of attraction
to the limit cycle). Our results hint at some properties that more
complex oscillators should possess in order that the phase
description considered in this paper is a valid description of
oscillation patterning: (a) nonlinear cell–cell coupling is required
to slow oscillations along the AP axis; and (b) strong limit cycle
attraction is required in the uncoupled model such that cell–cell
coupling serves to slow the rate of oscillation without the
oscillator moving away from the limit cycle.

We note that Morelli et al. (2009) have considered a phase
description of PSM oscillators in which coupling is represented by
a diffusion term and a travelling wave in oscillation frequency is
imposed. Our model can be thought of as an extension of this
framework, in that by considering higher order oscillator cou-
pling, the travelling wave oscillator frequency profile becomes an
emergent model property.

Finally, we propose that the parameters A and B, which represent
the strengths of linear and quadratic coupling, could be indepen-
dently measured using quantitative analysis of resynchronisation
experiments. Independent experimental measurements of these
coupling strengths, and their variation across different species,
would provide a clear means to validate/refute the mechanism for
the clock and wavefront model hypothesised in this study.
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Appendix A. Deriving the continuum model

A.1. A molecular model of coupled oscillators

In order to demonstrate how a chain of underlying oscillators
can lead to the phase Eq. (1), we consider a chain of l�o
oscillators with the uncoupled dynamics of the kth oscillator
given by

_uk ¼ovkþPukð1�u2
k�v2

k Þ,

_vk ¼�oukþPvkð1�u2
k�v2

k Þ, ðA:1Þ

where the parameter o is the oscillation frequency and the
parameter P represents the strength of attraction of the limit
cycle. Making the coordinate transformation

uk ¼ rkcosyk,

vk ¼ rksinyk, ðA:2Þ

Eqs. (A.1) transform to

_rk ¼ Prkð1�rkÞ,

_yk ¼o, ðA:3Þ

which have long time periodic solution

_yk ¼o, ðA:4Þ

rk ¼ 1: ðA:5Þ

Introducing linear and quadratic coupling terms, of strengths A

and B, respectively, into Eqs. (A.1), we obtain

_uk ¼ovkþPukð1�u2
k�v2

k Þþ
~Aðuk�1�2ukþukþ1Þ

� ~Bvkððukþ1�ukÞ
2
þðvk�1�vkÞ

2
Þ,

_vk ¼�oukþPvkð1�u2
k�v2

k Þþ
~Aðvk�1�2vkþvkþ1Þ

� ~Bukððukþ1�ukÞ
2
þðvk�1�vkÞ

2
Þ, ðA:6Þ

Making the coordinate transformation (A.2) and considering the
system in the limit of Pb ~A, this model transforms to a discretised
version of Eq. (1):

dyk

dt
¼oþ ~Aðyk�1�2ykþykþ1Þ�

~B

2
ððyk�yk�1Þ

2
þðyk�ykþ1Þ

2
Þ: ðA:7Þ

The radial dynamics are approximately

rk � 1: ðA:8Þ

Eq. (A.7) describes how the phase of the kth oscillator is updated
as a result of interactions with its nearest neighbours. In order to
take the continuum limit of this system we assume that the
coupling parameters ~A and ~B scale with the variable 1=ðDkÞ2 such
that

A¼ ~ADk2, B¼ ~BDk2: ðA:9Þ

Thus Eq. (A.7) can be written in the form

dyk

dt
¼oþA

yk�Dk�2ykþykþDk

Dk2

� �

�
B

2

yk�yk�Dk

Dk

� �2

þ
yk�ykþDk

Dk

� �2
 !

: ðA:10Þ

We assume that the limit

lim
Dk-0

ykþ1�yk

Dk
, ðA:11Þ

exists and is well defined, and define the partial derivative

@y
@k
¼ lim

Dk-0

ykþ1�yk

Dk
, ðA:12Þ

such that unit length is related to oscillator index via the relation-
ship

Dk¼ dDx, ðA:13Þ

where the parameter d represents one cell diameter. Hence the
discrete Eq. (A.10) transforms to the continuum Eq. (1). As
oscillator phase is defined modulo 2p we place a further restric-
tion on the validity of the model:

@y
@k

op: ðA:14Þ

The continuum model can only be a valid description of oscillator
dynamics so long as neighbouring oscillators are separated in
phase by no more than p.
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Appendix B. A phase description of a system of coupled
oscillators in one spatial dimension

B.1. The limit of the discrete phase model

Consider a 1D chain of identical oscillators with the phase
dynamics of the ith oscillator given by the ODE

dyk

dt
¼oþ

X
j

ðAsinðyj�ykÞþBðcosðyj�ykÞÞ�1Þ, ðB:1Þ

where o is the angular frequency and A and B are coupling
strength parameters (which we assume to be positive). Making
the approximation that neighbouring oscillators are close together
in phase such that

jyk�yk�1j51, ðB:2Þ

jyk�ykþ1j51, ðB:3Þ

then expanding out the cos and sin terms in Eq. (B.1) yields

dyk

dt
¼oþAðyk�1�2ykþykþ1Þ

þB 1�
ðyk�1�ykÞ

2

2
þ . . . þ1�

ðykþ1�ykÞ
2

2
þ . . .

 !
�2B,

ðB:4Þ

¼oþAðyk�1�2ykþykþ1Þ�
B

2
ððyk�1�ykÞ

2
þðykþ1�ykÞ

2
ÞþOðDy3

Þ:

ðB:5Þ

Now assuming that the coupling strengths A and B scale such
that A¼ Â=Dk2 and B¼ B̂=Dk2 we obtain

dyk

dt
¼oþ Â

ðyk�1�2ykþykþ1Þ

Dk2

�
B̂

2Dk2
ððyk�1�ykÞ

2
þykþ1�ykÞ

2
ÞþOðDy3

Þ: ðB:6Þ

Making the assumption that a finite difference approximation of
first order derivatives is given by

@y
@k
�

ykþ1�yk

Dk
, ðB:7Þ

or

@y
@k
�

yk�yk�1

Dk
, ðB:8Þ

then taking the continuum limit of Eqs. (B.6) for 15Dk5N gives

@y
@t
¼oþ Â

@2y
@k2
�

B̂

2

@y
@k

� �2

þ
@y
@k

� �2
 !

ðB:9Þ

@y
@t
¼oþ Â

@2y
@k2
�B̂

@y
@k

2

: ðB:10Þ
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