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A number of models for pattern formation and regulation are based on the hypothesis
that a diffusible morphogen supplies positional information that can be interpreted by cells.
Such models fall into two main classes: those in which pattern arises from distributed sources
and/or sinks of the morphogens, and those which can spontaneously produce pattern via the
interaction of reaction and transport. In source—sink models, specialized cells maintain the
concentration of the morphogen at fixed levels, and given a suitable distribution of sources and
sinks, a tissue can be proportioned into any number of cell types with a threshold interpretation
mechanism. However, the spatial pattern established is strongly dependent on the distances
between the sources and sinks, and additional hypotheses must be invoked to ensure that the
pattern is invariant under changes in the scale of the system. This is most easily seen in a
one-dimensional system with a source at one end and a sink at the other. If the ends are held at
cp and ¢; respectively, then the morphogen distribution is given by ¢(z) = (e1 —co)(2/ L) + co,
and so the flux through the system must vary as 1/L. Thus the homeostatic mechanism that
maintains the boundary concentrations at fixed levels must be able to vary the production or
consumption of morphogen over a wide range.

Turing models (Turing 1952) are an example of systems in which the pattern can
arise spontaneously. These involve two or more morphogens that react together and diffuse
throughout the system. In Turing’s analysis no cells are distinguished a priori; all cells can
produce or degrade the morphogens. Moreover, Turing only considered periodic systems or
closed surfaces, in which case no boundary conditions are needed. More generally, we call
any system of reaction-diffusion equations for which the boundary conditions are of the same
type for all species, and such that the elliptic system which governs the steady state admits a
constant solution, a Turing system. For an appropriate choice of parameters, it is well known
that a spatially-homogeneous stationary state of a Turing system can become unstable with
respect to small non—uniform disturbances. Such instabilities, which Turing called symmetry—
breaking because the homogeneous locally-isotropic stationary state becomes unstable and
therefore physically inaccessible, can lead to either a spatially non—uniform stationary state
or to more complicated dynamical behavior. Such transitions from uniform stationary states
to spatially— and/or temporally-ordered states might in turn lead, via an unspecified ‘inter-
pretation’ mechanism, to spatially—ordered differentiation. For mathematical simplicity most
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analyses of Turing models deal with instabilities of uniform stationary states, since NuMmericy
analysis is generally required for more general reference states. However, Turing himgejs
recognized the biological unreality of this in stating that ‘most of an organism, most of the
time is developing from one pattern to another, rather than from homogeneity into a pattery’

Reaction diffusion systems have been proposed to account for spatial pattern formatiop
in several other biological systems and in chemical systems, but in many of these cageg
experimental evidence is lacking. Recently, however, Turing-type structures have been foupq
in the chlorite-iodide-malonic acid reaction (Castets ef al. 1990; Ouyang & Swinney 1991,
Aside from the difficulty of identifying morphogens and the reactions in which they participate
in a biological context, there are several general properties of Turing systems that limit thej;
applicability. |

e The spatial patterns in a Turing system typically arise via an instability, and thus the
parameters must be tightly controlled to obtain the onset of the instability at the desireq
point in parameter space. In particular, for a given kinetic mechanism, the diffusion
coefficients must have the proper relative magnitudes.

¢ Because the instabilities result from the interaction of reaction and diffusion, the patterng
that arise are sensitive to the overall scale of the system. As a result, it is difficult tg
obtain the degree of scale-invariance that is observed in various biological systems,
However, modifications of Turing’s model can circumvent this difficulty (Othmer &
Pate 1980).

o Frequently there are multiple stable solutions that coexist in a Turing system, which
raises the problem of pattern selection. Generally tight control of the initial conditions
is needed to select the desired pattern.

We have analyzed the spatial pattern formation properties of atwo-component reaction-
diffusion system in one-dimension, in which the two species are subject to different boundary
conditions (Dillon et al. 1993). For example, one species may be subject to Neumann con-
ditions, whereas the other species may satisfy Dirichlet conditions. We refer to these as
non-scalar boundary conditions. We have concentrated on a simplified version of a model
for glycolysis, which is obtained from a biochemical model in the limiting case in which the
enzymes are far from saturation (Ashkenazi & Othmer 1978). The governing equations are

Uy = vuee + f — ku — wv?, v = vévee + ku + uv? — v, (21.1)

where u((,t) and v((,t) are nondimensionalised chemical concentrations at position ¢ and
time t; v = D /wL? § = Dy/ Dy, where D; and D, are the diffusion coefficients of u and
v respectively, w™! is a typical reaction time scale and L a measure of the domain length;
¢ €[0,1], and 3 and & are parameters that we set to 1.0 and 0.001, respectively.

The time evolution system is analysed by a combination of linear analysis, which is
non-trivial for the case of non-scalar boundary conditions, bifurcation analysis and numerical
integration. The steady state system is analysed using the numerical package AUTO (Doedel
1981). In particular, we consider the properties of solutions as the length scale L is varied.
We find that for non-scalar boundary conditions, qualitatively new phenomena arise. For
example, stable, non-uniform solutions exist for small values of L. It is well known that for
Turing systems all solutions converge to a spatially uniform solution for sufficiently small
L (Othmer 1977).

Furthermore, patterns are less sensitive to both the length parameter and the initial
conditions. In particular, for certain combinations of boundary conditions we find smooth
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Figure 21.1. Comparison of steady states of the modified glycolysis model for (a) scalar bound-
ary conditions and (b) homogeneous Neumann conditions on « and zero Dirichlet conditions on v
(cf: Dillon et al. 1993).
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transitions between different spatial patterns, and these transitions do not involve bifurcations,
For example, we find a transition from 1 to 2 to 3 stable pattern elements in a one-parameter
family parameterized by the length. This type of transition is similar to that observed in
skeletal development in the tetrapod limb. Moreover, these solutions are apparently the
only stable solutions. By contrast, for Turing systems a tortuous path in parameter space
would be required, because different stable patterns may coexist under certain conditions (see
Figure 21.1). In this analysis we have used the domain length L as the bifurcation parameter.
However, as this parameter occurs in the model equations as the non-dimensional grouping
that involves diffusion coefficients and reaction rate, the sequence of transitions illustrated in
Figure 21.1(b) could be generated by changes in the diffusion coefficients. For instance, it is
known that the gap junction permeability of cells can be modulated by other species (Mehta
et al. 1989; Briimmer ef al. 1991), and such changes would be reflected in the diffusion
coefficients in the continuum model used here (Othmer 1983). This is incorporated in the
model described by Dillon and Othmer elsewhere in this volume.

Note that our model solutions capture neither the anterior-posterior spatial asymmetries
observed in the skeletal elements of the limb nor their temporal sequence of development
along this axis. Recently, Benson ef al. (1992) have shown that a spatially varying diffusion
coefficient can produce such spatial asymmetry. The temporal sequence of pattern formation
may be due to cells responding to the spatial pattern in a time-specific fashion.

Imposing non-scalar boundary conditions also results in pattern formation occurring
over a larger ratio of diffusion coefficients, thereby enlarging the parameter domain over
which certain patterns exist and hence lowering pattern sensitivity to small changes in the
environment.

Clearly, therefore, boundary conditions have a marked affect on the patterns exhibited
by reaction-diffusion models in one-dimension. We would expect this effect to be even more
pronounced in two- and three- dimensions, where one has an even wider choice of different
types of boundary conditions.
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