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Understanding how structures (e.g. hair, teeth, feathers,

limbs and pigmentation patterns) arise from the initially

unstructured fertilised egg is one of the key challenges in

developmental biology. Mathematical models enable us

to investigate how certain biochemical and/or bio-

physical processes interact to produce pattern and form.

They provide a unifying theme for spatio-temporal pat-

terning across a vast range of biological applications by

suggesting a set of underlying principles for pattern for-

mation. Such models suggest that patterns and structures

must have certain properties and these predictions

motivate experiments. The results of such experiments

help refinemodelsand lead tomore precisepredictions. In

this way, modelling, combined with experiment, can be a

powerful investigative tool in helping unravel the com-

plexity of morphogenesis (the formation of structure) in

biology.

Introduction

One of the central challenges in development biology is
the understanding of how structure and form arise in the
growing embryo. From a spatially uniform ball of cells
develop the structures we observe and which characterise
the animal kingdom, ranging from spectacular pigmen-
tation patterns to skeletal structures. Although genes
obviously play a role inpatterning, a studyof genetics alone
will not tell us how the physico-chemical properties con-
ferred upon individual cells can lead to orchestrated pat-
terns on length scales much larger than a single cell.
Understanding the latter requires deciphering the effects of
an integration of processes interacting on many scales,
ranging from the intracellular level, at which gene and
protein networks combine to determine cell properties, to
the extracellular level, where cells set up and respond to

signalling cues. The nonlinear and highly complex nature
of these interactions leads to counter-intuitive behaviour
far beyond what we can verbally reason; however,
a mathematical/computational framework is ideal for
understanding the outcome of such interactions. In this
article, we will consider some of the key advances that
mathematical modelling has made in helping us under-
stand how tissue-level behaviours may arise from cell-level
behaviour.

Modelling in Morphogenesis

Morphogenesis is the name given to the process by which
structure arises. The first person to move beyond simply
cataloguing form, by attempting to develop theories for the
generation of them, was D’Arcy Thompson in his classic
work ‘On Growth and Form’ first published in 1917 (see
Thompson, 1992 for an abridged version). Since then, a
numberofmodelling approaches have aimed to address the
underlying physical mechanisms of morphogenesis. For
example, crucial to early development is the coordinated
movement and deformation of tissue. A key process in the
transformation of the spherical egg into an elongated,
bilaterally symmetric vertebrate body axis is convergence-
extension (Keller et al., 1992) by which a tissue narrows
along one axis while extending along another. Early
modelling work in the area includes that of Odell et al.
(1981) who proposed the purse-string model for tissue
folding, and the development of computational cell-based
mechanical models for epithelial cell rearrangement (see,
e.g.Weliky et al., 1991). These models are primarily of cell-
vertex type (see Figure 1 for an illustration). In thesemodels,
cells are represented as polygons and Newton’s Second
Law is applied at the vertices to calculate their movements,
and hence that of the cell, due to the forces experienced at
those points. The models can exhibit tissue folding, thick-
ening, invagination, exogastrulation and intercalation, and
have been shown to capture many of the key aspects of
processes such as gastrulation, neural tube formation and
ventral furrow formation in Drosophila (see Keller et al.,
2003) for a review on the role of biomechanics in mor-
phogenesis, and (Brodland andClausi, 1994).See also: Cell
Migration during Development; Cleavage and Gastrula-
tion in Avian Embryos
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Although cell-vertex models consider the cell to be pol-
ygonal in shape and track the motion of the vertices, either
through considering the balance of forces at the vertices
(Weliky et al., 1991) or by rearranging cells to minimise
total free energy (Honda et al., 2004), the simpler cell-
centre models represent the cells by points where the cen-
tres of the cells are assumed to be attached by springs to
nearest neighbours. The cell centresmove in response to the
elastic forces exerted on them, and their polygonal shape is
then determined by a Voronoi tessellation, that is, the
polygonal shape consisting of the perpendicular bisectors
of the lines of minimum length to nearest cell neighbours
(see, e.g., the application to intestinal crypt organisation in
Meineke et al., 2001).

Although most of the above models were proposed to
describe the movement of cells in sheets, it is important
to point out that cells of different types can sort out due
to differing intrinsic properties, such as surface adhesivity.
This led to the theory of differential adhesion and energy
minimisation (Steinberg, 1963) and has been extended
(Graner and Glazier, 1992) into a Potts-type model which
generalises the hypothesis that cells move to minimise a
certain ‘energy’ function. This has served as the prototype
for many models for which cell shape is important. The
whole area of modelling morphogenesis at the tissue-level

using computational approaches has grown enormously
with the increasing speed of computation (see Further
Reading).Anarea of current research involves determining
which model framework is appropriate for a particular
model application.

Pattern Formation by Local-
activation-lateral-inhibition

Cell fate is determined by complex interactions in which
cells incorporate extracellular cues into their decision-
making. How these extracellular cues are established,
maintained and interpretedhas been, and still is, a source of
controversy and, as such, stimulates enormous research
activity both from theoretical and experimental view-
points. Broadly speaking, there are two classes of model-
ling frameworks: chemical pre-pattern models and cell
movement models.

Chemical pre-pattern models

These models are based on the hypothesis that a spatial
chemical prepattern is generated to which cells respond by
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Figure 1 The model of Weliky and Oster (1990) reproduces the essential features of Fundulus epiboly showing that the forces they hypothesise to act on the

cell vertices are sufficient to produce results of tissue movement and rearrangement consistent with experimental observations. (a) Early stage of epiboly. (b)

Middle stage of epiboly. (c) Late stage of epiboly. (d) End of epiboly. Reproduced with permission from Weliky and Oster (1990). Copyright Palgrave Macmillan.
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differentiating according to the state of their local envir-
onment. In a sense, the chemicals (termed morphogens)
indicate to cells their position in the development field. The
idea of positional information was first proposed by Wol-
pert (1969) who hypothesised that, in the chick limb bud, a
source of chemical at one end of the bud, diffusing towards
a sink at the other end, and sets up a chemical prepattern
in the form of a graded concentration profile which would
specify the different digits depending on a series of
threshold concentrations. This model correctly predicted
the outcome of various grafting experiments.

Although intuitively it is straightforward to imagine how
such amodelwouldwork, in practice, the setting up of such
a gradient, given the restrictions of diffusion coefficients,
uptake rates and production rates, together with robust-
ness in the face of noise and low copy numbers, is highly
nontrivial. Tostevin et al. (2007) show that the latter
problem can be ameliorated by using time averaging of the
chemical concentration, whereas Houchmandzadeh et al.
(2002) show that noise-induced variability in the bicoid
gradient in Drosophila is filtered out downstream. Monk
(1998) shows that the spatial restrictions imposed by a
simple mechanism of gradient formation can be weakened
considerably if the gradient were to be set up by a cell relay
mechanism.

Gradient models have been extensively studied in
Drosophila and the paper by Grimm et al. (2010) compares
and contrasts a number of gradient models proposed for
the patterning of the morphogen bicoid in light of experi-
mental data. A comprehensive overview of morphogen
gradients during development can be found in the review
paper by Rogers and Schier (2011).

A more complex model for pattern formation was pro-
posed byTuring (1952). He considered a system of reacting
and diffusing chemicals and showed that a spatially uni-
form equilibrium state of chemical concentration, stable in
the absence of diffusion, could be driven unstable in the

presence of diffusion, leading to spatial patterning. He
considered these chemicals to be growth hormones andwas
interested in the formation of branching patterns. This
model showed how symmetry breaking could arise in such
systems. The concept of diffusion-driven instability is
highly counter-intuitive as it shows that the interaction of
two stabilising components leads to an instability. This is
an example of emergent behaviour in which the integration
of the parts is arguably more important than the parts
themselves. He generalised his example to the case where
the chemicals (termed morphogens) determined cell fate
through a single threshold.
Turing’s ideas were generalised and fully brought to

the attention of biologists by a landmark paper published
20 years later (Gierer and Meinhardt, 1972). Gierer
and Meinhardt showed that underlying diffusion-driven
instabilitywas the property of short-range activation, long-
range inhibition or local-activation–lateral-inhibition. Of
the two chemical cases, one chemical had to activate pro-
duction of the other which, in turn, inhibited the pro-
duction of the activator. Furthermore, the inhibitor had to
diffuse more quickly than the activator. See Figure 2 for an
illustration of patterns in the Turing model.
Although Turing patterns have been found in chemistry

(Ouyang and Swinney, 1991) conclusive evidence of a
Turing model remains elusive in the context of develop-
mental biology as the unequivocal identification of a Tur-
ing morphogen pair remains elusive. This should not
detract from the paradigm-shifting effect this model has
had in developmental biology, as illustrated by the enor-
mous number of applications of the model. For example,
Sick et al. (2006) provide circumstantial evidence that the
proteins Wnt and Dkk act as a Turing pair in hair follicle
patterning in mouse. Garfinkel et al. (2004) propose that a
Turing mechanism underlies vascular mesenchymal cell
self-organisation during development, and they identify
the morphogens involved. Newman and Bhat (2007)

0.7

1.2

1.7

0.6

0.7

0.8

−1.0

0.0

1.0

0.6

0.7

2.0

0.5

0.7

0.9

0.7

1.2

1.7

0.6

0.7

0.8

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

(a) (b) (c) (d) (e)

(f) (h)(g) (i) (j)

Figure 2 An illustration of the vast variety of spatial patterns arising in the Turing model (Chang et al., 2009). Reproduced with permission from Chang

et al. (2009). Copyright UBC Press. (a), (b) A typical pattern in chemical concentration. (c)–(e) The skin patterns that may arise from the chemical pattern in

(a), (b). (f)–(h) More complex examples of patterns that may arise from the Turing model. (i), (j) The interaction of two Turing patterns. Colours indicate

different concentration levels.
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review in-depth the patterning principle underlying this
modelling approach in the context of limb development,
identifying transforming growth factor beta and fibroblast
growth factors as possible morphogens. Turing models are
also notoriously sensitive to small perturbations in initial
conditions or domain geometry (Bard and Lauder, 1974;
Bunow et al., 1980) making them impractical for appli-
cations in which robust patterning is observed. However, it
has been shown that domain growth can significantly
enhance the robustness of patterning in a Turing model
(Crampin et al., 1999).

A spectacular application of the Turing model is to
pigmentation patterning in angelfish (Kondo and Asai,
1995). In this case, insertion of stripes on the fish as it grows
preserves the wavelength of the pattern, consistent with a
Turing-typemodel. In order to try tomake the linkbetween
patterning at the tissue-level and genetic information
within cells, Kondo and his colleagues recognised that the
parameters in the Turing-type model (e.g. production/
degradation rates, interaction parameters) encode lower-
scale biological information. They have therefore carried
out detailed genetic manipulations to compare results
with the Turing model (Nakamasu et al., 2009) in order
to identify links between model parameters and gene
expression.

Turing-type models have also been proposed to account
for the patterning of pair-rule genes in Drosophila. How-
ever, experimental results contradicted model predictions.
In this case, it turns out that a cascade of complicated
gradient-type processes interacts to produce patterning
(Akam, 1989). This requires one to move away from the
simple two-chemical system to a much large system of
equations. Mathematical modelling in this area has been
predictive and resulted in greatly enhanced understanding
of the system (see Shimmi et al., 2005), incorporating
Boolean models in which interactions are considered sim-
ply as promoting or inhibiting (i.e. the strength of the
interaction is ignored) as well as the above differential
equation approaches (von Dassow et al., 2000; Albert and
Othmer, 2003).

Cell movement models

These models postulate that cells move in response to
chemical/mechanical cues and, in certain regions of par-
ameter space, formaggregates. The cells in these aggregates
then differentiate accordingly. For example, the Keller–
Segel model (Keller and Segel, 1970) considers how cells
may respond to chemicals (termed chemoattractants) by
moving up chemical gradients (the process of chemotaxis).
Keller and Segel showed that this system gave rise to a rich
variety of patterning behaviour and applied it to aggre-
gationpatterns in bacterial populations. This type ofmodel
has been used to account for reptilian patterning, either as
spatial patterns in snakes (Murray andMyerscough, 1991)
or propagating patterns in crocodiles (Murray et al., 1990).

Chemotaxis models have been very successful in their
application topattern formation in the cellular slimemould

Dictyostelium discoideum (Dd), which serves as an
important paradigm for developmental processes in higher
organisms. In this case the chemoattractant cyclic AMP
(cAMP) forms complex spiral patterns to which the Dd
amoebae respond by a streaming motion, leading to
aggregations and eventual formation of a fruiting body
(Höfer et al., 1995). Manymathematical models have been
proposed to describe this behaviour. They differ in the
details of the signal transduction pathway and inmodelling
cells. Some opt for a continuum approach whereas others
choose a cell-based approach. All are shown to capture in
detail experimental observations and show that the change
in wavelength of cAMP with wave number may be an
emergent phenomenon instead of requiring changes in
biochemistry. Central to all these models is the idea of an
excitable system coupled to an adaptive chemotactic
response, suggesting that these may be the primary mech-
anisms of the observed biological behaviour. See also:
Bacterial Chemotaxis; Dictyostelium: Cell Sorting and
Patterning
The Oster–Murray–Harris model (Oster et al., 1983)

investigates the mechanical interaction of cells with the
extracellular matrix (ECM) and shows that the forces cells
exert on the ECM can destablise the spatially uniform
steady state and lead to patterns of cell aggregation. This
model considers movement up adhesive gradients (hapto-
taxis) and has been applied to skeletal patterning in the
limb bud and feather germ formation in chick (see Figure 3).

Mathematical structure

From a mathematical point of view all the above models
are represented by partial differential equations: in the case
of gradient models this is typically a single nonlinear
parabolic equation, in the case of Turing-type models a
coupled system of nonlinear parabolic equations; for
chemotactic models a mixture of parabolic–hyperbolic
equations; the mechanochemical models are of parabolic–
hyperbolic–elliptic type. There is another class of models
that are of integro–partial–differential equation type. For
example, the neuronal models for pattern formation, first
proposed to describe visual hallucinations (Ermentrout
and Cowan, 1979), and then adapted and applied to pat-
terning in sea shells (Ermentrout et al., 1986), represent
neuronal coupling through an integral equation. Mean-
while the model of Armstrong et al. (2006) uses an integral
formulation for cell–cell adhesion with applications to the
differential adhesion hypothesis and somitogenesis.

Model properties

Apart from the gradient models, these models are all self-
organising, in that the patterns arise due to the intrinsic
dynamics, rather than due to externally imposed hetero-
geneity (as in the gradient models). The patterns are
therefore examples of emergent phenomena. Despite being
based on very different biology, these models behave in a
surprisingly similar manner. They are based on the general
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patterning principle of short-range-activation, long-range-
inhibition, (or local-activation–lateral-inhibition) and
patterns are typically, in one spatial dimension, undulating
peaks and troughs, whereas in two spatial dimensions they
are stripes, spots and labyrinthine patterns (Maini et al.,
1997). They can also exhibit wave behaviour. Although
mathematical analysis can be carried out in certain special
cases, in general these models are mathematically intract-
able and have to be solved using computational techniques.
An enormous amount of research has gone into categor-
ising the properties of these models.

As a consequence of these models, although being
based on very different biological hypotheses, having
the same underlying general patterning principle of local-
activation–lateral-inhibition they make common predic-
tions. For example, they predict that pattern complexity
will increase with domain size, thus, for example, it is more
likely for a spotted animal to have a striped tail than a
striped animal have a spotted tail.

Thesemechanism-independent predictions domean that
it can be difficult to distinguish between models. However,
the double-anterior limb experiments of Wolpert and
Hornbruch (1990) do allow one to distinguish between pre-
pattern and cell movement models. In these experiments, a
donor anterior limb is combined with a host anterior limb
to create a limb of size similar to that of a normal limb. All
the above models predict that, as the domain size does not
change in these experiments, the complexity of pattern
should not change. That is, a single humerus should form.
However, the experiments show that two humeri appear.
This contradicts a straightforward application of all the
above models. However, the parameters in these models
(growth/decay/reaction/diffusion rates) arise from pro-
cesses occurring at lower scales and the properties of these
models have been analysed mainly for the case where these
are constant. In reality, this is highly unlikely, as they are
liable to vary in space and time. For example, if one makes

the very reasonable hypothesis that the diffusion-coeffi-
cients vary across the limb (due e.g. to a variation in gap
junction permeability) then the resultant modified Turing-
type model is entirely consistent with the results of the
double anterior limb experiments (Maini et al., 1992).
These results are harder to reconcile with a pure cell
movement model.
Both the reaction–diffusion-type models and integro–

partial differential equation models have been applied to
the pigmentation patterns on sea dwellingmollusks.Again,
both models produce the same patterns. However, recent
research suggests that the patterns most likely arise as the
result of neurosecretory processes, favouring the integro–
partial differential equation model (Boettiger et al., 2009).

Different Modelling Mechanisms

A different model approach assumes that cells can exist in
two different states, with noise or external cues able to
cause a switch between them. This is known as a bistable
model and one of the most famous examples is the clock-
and-wavefront model (Cooke and Zeeman, 1976). It was
proposed to account for the spatio-temporal pattern of
somites, aggregates of cells that form in a propagating
sequence from head to tail and give rise to the segmented
nature of our body axis. The model postulates that a wave
of competence to form somites sweeps along the anterio-
posterior axis of the embryo and interacts with a cell-
intrinsic oscillator to ‘parcel’ cells up into somites. There is
now a good deal of experimental evidence in favour to
support this model, with both the clock and gradient
identified at the molecular level (Dubrulle et al., 2001;
Palmeirim et al., 1997). Several models for aspects of
somite formation have been proposed – see Baker et al.
(2008) for a review.

C St29 St32 St35

Mid

pERK

Figure 3 Patterns for feather buds forming on the skin of a chick embryo (Lin et al., 2009). This sequence of experimental snapshots illustrates the

sequential formation of feather buds (top row) and more detailed views (bottom row). Reproduced from Lin et al. (2009). Copyright (2009) with permission

from Elsevier.
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The above models generally consider pattern formation
on a length scale greater than that of a cell and therefore
cannot account for pattern-forming processes that act
intrinsically on a cell scale. The most well known of such
patterning mechanisms is the membrane-bound notch–
delta signalling system (Collier et al., 1996). This gives rise
to fine-grained patterns that are on the level of a single cell.
The resultantmodels tend to be of differential-discrete type
and have been analysed in great detail (Webb and Owen,
2004).

Finally, we have detailed the above models largely in the
context of patterning at a single scale but have alluded to
the fact that pattern formation inmany biological contexts
is a multiscale process, occurring as a result of the inte-
gration of processes taking place onmany spatio-temporal
scales. The aforementioned models combine the discrete
cell-based approaches with the continuum-level chemical
description. For example,morphogen dynamics, operating
at a spatial level, are represented by a system of continuum
reaction–diffusion type equations but cells are represented
by discrete units, responding to and altering the morpho-
gen patterns (Dallon and Othmer, 1997).

Evolution

The similarities in pattern-forming properties of many of
the abovemodelsmean that it can be difficult to distinguish
experimentally between them. On the other hand, they
suggest that certain properties should appear from this
general class of models that are actually independent of the
fine (or even not so fine) details of the biology. One of these
is the idea of developmental constraints (see Figure 4). For
example, Turing’s diffusion-driven instability applied to
animal coat markings suggests that we should be more
likely to observe an animal with a spotted body and striped
tail than the converse. This has implications for evolution.
For example, Oster et al. (1988) noticed that the variations
exhibited by salamander Ambystoma mexicanum limbs

when treated with mitotic inhibitors (which decreased the
domain size of the budding limb leading to a loss of digits,
precisely as predicted by the local-activation–lateral-
inhibition mechanism) were very similar to the digit
patterns observed in the salamanderProteus anquinus. This
suggests that Ambystoma and Proteus share common
developmental mechanisms with implications for their
evolutionary tree.
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