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Theoretical insights into bacterial
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Research into understanding bacterial chemotactic systems has become a paradigm
for Systems Biology. Experimental and theoretical researchers have worked hand-
in-hand for over 40 years to understand the intricate behavior driving bacterial
species, in particular how such small creatures, usually not more than 5 μm in
length, detect and respond to small changes in their extracellular environment.
In this review we highlight the importance that theoretical modeling has played
in providing new insight and understanding into bacterial chemotaxis. We begin
with an overview of the bacterial chemotaxis sensory response, before reviewing
the role of theoretical modeling in understanding elements of the system on the
single cell scale and features underpinning multiscale extensions to population
models. © 2012 Wiley Periodicals, Inc.
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BASICS OF BACTERIAL CHEMOTAXIS

Chemotactic bacteria are usually small rod-like
shaped cells with hemispherical ends, on an

average between 2 and 5 μm in length. They use
complex intracellular response systems as they are
too small to sense changes in their biochemical
environment along the length of their body. Of the
estimated many millions of bacterial species which
are assumed to exist in nature,1 less than 100
have been studied in detail. Escherichia coli is the
most widely studied chemotactic bacterium, but other
species studied include Bacillus subtilis, Pseudomonas
aeruginosa, and Rhodobacter sphaeroides.

To detect and respond to their environment,
chemotactic bacteria rely upon three main physiolog-
ical components:
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1. Clustered arrays of membrane spanning methyl
accepting chemotaxis proteins (MCPs). These
receptors are found at the polar ends of
the cell;

2. Rotary molecular motors which drive helical
flagella; and

3. An internal intracellular biochemical signaling
cascade connecting the receptors and flagellar
motors, which also allows the cell to adapt to
varying levels of external stimuli.

While the physiological characteristics of
individual species may vary, for instance, E. coli
rely on a series of flagella to propel them through
their environment whereas R. sphaeroides cells have
only one flagellum, the above described sensory
components are similar in many species (see Figure 1
for an illustration of the differences and similarities
between three examples).

Most bacteria have receptors for both attractants
and repellents, although research has generally
favored the addition or removal of attractants. In
what follows we will discuss the bacterial response
to an attractant gradient unless otherwise indicated.
The overall response process can be considered
as consisting of the following four well-defined
phases.
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FIGURE 1 | A schematic comparison of the intracellular signaling pathways and related components (receptor clusters and flagellar motors) in:
(a) E. coli, (b) B. subtilis, and (c) R. sphaeroides chemotactic bacteria. Each cell may detect an external attractant or repellent gradient by ligand
molecules binding to a receptor cluster (red boxes). These then signal via the intracellular biochemical cascades using a histidine kinase, CheA,
regulating the CheBs which control the adaptation pathways, and CheYs which control the flagellar motor switching (smaller blue boxes on the cell
membrane). CheZ is a phosphatase which dephosphorylates phosphorylated CheY. The complexity of each pathway varies considerably. Although
E. coli and B. subtilis each contain one CheY (the role of CheV is not fully understood in B. subtilis) and multiple flagella, R. sphaeroides requires a
minimum of three CheYs, of a total of six, for chemotaxis. It also comprises cytoplasmic-based receptor clusters which probably sense intracellular
metabolites. The B. subtilis cascade is also augmented by two further proteins CheC and CheD. CheC is involved in a second adaptation pathway by
binding with CheY-P and CheD.2 CheD further acts as a phosphatase for CheY-P.3 In each bacterium CheR is the methyltransferase which works with
CheB to control adaptation.

1. The sensory MCP receptors detect changes in
the concentration of the extracellular ligand
attractant via binding of the ligand to them.

2. Sensory detection of an increase in attractant
leads to the cessation of autophosphorylation of
MCP cytoplasmic bound kinase proteins. This in
turn leads to a reduction in the phosphorylation
levels of intracellular signaling proteins.

3. The change in phosphorylated flagellar motor
signaling proteins, via the signaling cascade, is
detected at the motor leading to a switch in
rotational direction.

4. The sensory receptors adapt to the originally
detected change in step 1 by re-setting the
receptors via the process of methylation which is
controlled via changes in intracellular signaling
proteins specific to adaptation.

The final phase returns the system to its initial
pre-stimulus state leaving it free to detect further

changes in the extracellular ligand concentration.
The time taken for each phase to occur varies
considerably; ligand detection is of the order of
milliseconds, intracellular signaling to the flagellar
motors is of the order of hundreds of milliseconds
and adaptation can vary anywhere between tens to
hundreds of seconds, dependent on the strength of the
stimulus.

This sensory process allows the bacteria to con-
trol their flagella and therefore how they move through
their environment. For instance, when the approxi-
mately 4–6 flagella located in the membrane of an
E. coli cell rotate clockwise (CW) they fly apart caus-
ing the cell to re-orientate (a tumble) in a new random
direction. However, when rotated counter-clockwise
(CCW) all of the flagella come together in a single
bundle propelling the cell forward in one direction
for an extended period of time (a run) as shown
in Figure 2. In the absence of an attractant gradi-
ent an E. coli cell will utilise a combination of these
short runs and tumbles to move randomly through its
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FIGURE 2 | In a uniform environment Escherichia coli alternates
between runs, where all the flagella rotate counter-clockwise as a
bundle, and tumbles, where some switch to clockwise rotation and the
bundle falls apart. When going up an attractant gradient the period
between switching increases, when going down a gradient it decreases.

environment. Upon detection of an attractant gradient
the duration of the runs is extended, at the expense
of a reduction in the number of tumbles, causing net
motion in the direction of the attractant gradient. It
is this latter response which is commonly referred
to as chemotactic cell motion or chemotaxis for
short.

Why is bacterial chemotaxis a paradigm for Sys-
tems Biology? The field, unlike many other areas of cell
or molecular biology, benefits from nearly 40 years of
quantifying specific aspects of the signal transduction
pathway within E. coli. Until more recent years this
has been the chosen bacterium of study for many
researchers. For instance, much of the signal trans-
duction kinetics within E. coli has been quantified,
concentrations of all of the signaling proteins are
known, and details regarding protein diffusion are
available, as detailed in Table 1. With such a wealth
of data one would assume that many of the ques-
tions regarding bacterial behavior and signaling can
be answered without recourse to theoretical model-
ing. On the contrary, the complexity of the signaling
systems, the various temporal and spatial scales over
which components of the bacteria (receptors, intra-
cellular signaling cascade, and motor) operate, the
interactions both within and between these compo-
nents plus the experimental restrictions on being able
to observe internal processes dynamically in vivo,
means theoretical modeling is necessary to overcome
experimental limitations and provide new insights
and predictions regarding bacterial function and
behavior.

TABLE 1 An Overview of the Known Protein Kinetic, Concentration,
and Diffusion Parameters for the Escherichia coli Chemotaxis Signaling
Cascade

Description Value References

Autophosphorylation of CheA 34s−1 4,5

Phosphotransfer from CheAP
to CheY

1 × 108(Ms)−1 6

CheYP dephosphorylation
by CheZ

1.6 × 106(Ms)−1 7,8

CheYP natural dephosphorylation 8.5 × 10−2s−1 9,10

CheYP intracellular diffusion
coefficient

10 μm2s−1 11,12

Total∗ average CheA concentration
in a cell.

7.9 μM 7

Total average CheY concentration
in a cell

9.7 μM 7

Total average CheB concentration
in a cell

0.28 μM 7

Total average CheZ concentration
in a cell

3.8 μM 7

The availability of such data makes the system very attractive to theoretical
modelers who are able to apply quantitative modeling techniques to further
understand specific aspects of the signaling system and the overall bacterial
response.
∗Sum of total unphosphorylated and phosphorylated protein.

THEORETICAL MODELS
OF BACTERIAL CHEMOTAXIS

A considerable range of theoretical models focusing
on different aspects of the bacterial chemotactic
system have been developed over the last 40 years.
The interested reader may wish to consult the more
detailed reviews of Refs 13 and 14 for further details.

On the single cell scale theoretical models have
focused on: (1) explaining gain at the receptor clusters
upon ligand binding via co-operativity of the recep-
tors; (2) describing various ways in which adaptation
can be achieved by specific parts of the bacterial sys-
tem; (3) modeling the intracellular signaling cascade;
(4) elucidating aspects of the interplay between gain,
adaptation, and signaling; (5) understanding flagel-
lar motor activation and function; and (6) elucidating
the role of cell-fluid dynamical interactions on cell
motility, especially at surfaces. The contribution of
theoretical modeling to each of these areas is reviewed
in the following sections.

Theoretical approaches have ranged from the
use of continuous deterministic methods such as
ordinary differential equations15–20 and partial dif-
ferential equations21,22 to statistical mechanics,23–25

discrete stochastic models26–29 as well as combined
approaches.30 In the early days many models on
the single cell scale were developed with limited
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experimental data to confirm their findings. The mod-
els made theoretical predictions on how the internal
machinery of the bacteria might operate to achieve the
observed experimental behavior, thus providing impe-
tus for experimental research into particular aspects
of the bacterial system.

As time has progressed and experimental knowl-
edge has grown, the results of developed models are
now compared with experimental findings to either
test the model’s ability to reproduce experimental
findings,23,30 or provide insight into how the system
may operate,31 without recourse to a large number
of experiments. In this sense theoretical modeling and
experimental work have progressed hand-in-hand in
developing our understanding of bacterial chemotactic
species.

Although the vast majority of theoretical models
have been developed in the context of E. coli,
work in recent years has also begun to focus on
examining signaling processes in B. subtilis32 and
R. sphaeroides.31,33,34

RECEPTOR MODELING, GAIN,
AND ADAPTATION

The ability of a bacterium to sense its biochemical
environment across five orders of variation in back-
ground concentration and initiate the intracellular
signaling cascade when it detects a gradient consisting
of as little as five ligand molecules, brings together two
important aspects of the bacterial system: (1) the abil-
ity to detect extracellular changes (and amplify them
in the case of quantitatively small changes in ligand
concentration) which initiate the signaling cascade
(gain); and (2) the ability to return the sensory system
to its pre-stimulus configuration (adaptation). While
they can be considered in their own right, both aspects
are closely interwoven. Theoretical models formulated
to answer questions regarding how bacterial cells can
achieve gain across varying concentration gradients
have incorporated details of receptor signaling and
adaptation in an attempt to answer this question.

Work in the 1970s and 1980s in the field of
receptor signaling focused on explaining adaptation
through simple models of receptor–ligand binding.
Ordinary differential equation models were often used
to model the respective dynamics and understand how
the interactions between the receptor states and ligand
binding could lead to exact adaptation (the cell’s abil-
ity to return exactly to its pre-stimulus levels of the
intracellular signaling proteins).16,17,35,36 These the-
oretical models played an important role; little was
known about the proteins which regulated the recep-
tor and adaptation system and thus modeling was

able to provide insight into known mechanisms and
whether they alone could provide the basis for the
observed adaptation and gain. In the case of adapta-
tion these approaches were relatively successful, but
would later be updated to incorporate further experi-
mental details as they emerged. The ability to identify
possible mechanisms for gain remained elusive.

Considerable theoretical work was undertaken
in the 1990s by Dennis Bray and colleagues in model-
ing receptors and their ability to initiate gain. Models
of the intracellular signaling network which included
simple receptor signaling had been unable to explain
gain within the system.37 This work focused initially
on modeling the formation of receptor clusters,38

specifically the receptors and the receptor-related
kinase CheA, but later shifted to understanding the
role that receptor clustering may play in gain. Follow-
ing experimental evidence regarding the possibility of
receptors operating in clusters, developed a now sem-
inal piece of modeling work to Bray and colleagues39

show that clustering rather than individual receptor
signaling could greatly influence gain. From this fol-
lowed a series of receptor-based models utilizing the
well-known Ising model to understand the role of
clustering.40–44

In recent years the focus of theoretical modeling
in understanding signaling has shifted to detailed
models which include receptors and their ability to
cluster (see Figure 3), the role of the adaptation
proteins CheR and CheB and receptor methylation. Of
particular note has been the work of authors who have
developed energy-based Monod Wyman Changeux
(MWC) models from statistical physics which consider
the effect of varying the receptor cluster size on both
gain and adaptation.23,24,45 Model results are in good
agreement with findings and the clustering mechanism

N ≤
paD [L]t

([L]/([L] + KD
off ))([L]/([L] + KD

on))

FIGURE 3 | Upper: Trimers of receptor dimers cluster as viewed
from above (after Ref 48). The homodimers (indicated by circles of the
same color) interact with other dimers to form a cluster of heterotrimers
of homodimers. Lower: The statistical mechanically derived inequality49

describes the theoretical maximum cluster size N of trimers of dimers as
a function of the ligand diffusion rate D, the average receptor size a,
the average diffusion ligand time τ , the ligand concentration L , and the
receptor–ligand binding affinities K on

D and K off
D (note the superscripts do

not denote a mathematical power). Fitting of such relationships to
experimental data has allowed predictions to be made as to how cluster
size varies amongst receptor types and under different experimental
conditions.
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has been able to explain gain over a wide range of
background concentrations. In addition, recent work
by Shimizu and colleagues46 has used FRET data along
with a combined ODE–MWC modeling approach47

to show the importance of dynamic feedback between
the receptor clusters and adaptation signaling process
in driving the cellular response to temporally varying
attractant gradients. A similar model which captures
more details of the intracellular signaling cascade in
E. coli and shows good agreement with experimental
data has been developed by Endres and colleagues.30

SPATIOTEMPORAL PROTEIN
LOCALIZATION

With increased understanding of the spatial co-
localization of proteins to specific parts of the cell,50

there has been a small, but growing amount of
work which has focused on the effect this has
on chemosensory activity. The interested reader is
directed toward the review in Ref 51 on reaction
diffusion systems in intracellular signaling systems for
a more detailed discussion on the topic in cell systems.

Lipkow and colleagues showed in 2005 how a
spatially explicit model of intracellular signaling pro-
teins could be used to predict the probable location
of the phosphatase CheZ within E. coli.28 Using a
discrete stochastic model of protein diffusion within
an E. coli cell, they were able to vary the CheZ con-
centration throughout the cell to compare the effect of
it being evenly distributed between the polar clusters
and cytoplasm of the cell to being located at the poles.
In respect of the former, simulation results showed
that the variation in phosphorylated CheY would
be too large within the cell to allow it to respond
appropriately to external signaling; given the random
location of flagella along the cell surface, disparate lev-
els of phosphorylated CheY would mean some flagella
would rotate CW and others CCW and thus the cell
would never chemotax. In contrast the localization of
CheZ to the polar clusters means dephosphorylation
of phosphorylated CheY does not occur along the
length of the cell as it diffuses and thus the concentra-
tion level is relatively constant along the cell length.
This work promoted experimental investigation of
CheZ,52 confirming the theoretical predictions. Rao
and colleagues undertook similar work in a study of
how phosphatase localization affects spatial gradients
of CheY in E. coli and B. subtilis.21 They adopted
a continuum approach using a system of reaction
diffusion equations to show CheY levels are rela-
tively spatially constant in both bacteria, although the
phosphatase is located at the polar clusters in E. coli,
but at the flagellar motors in B. subtilis.

More recently Tindall and colleagues22 have elu-
cidated how complex formation of signaling proteins
in E. coli is important for ensuring appropriate lev-
els of phosphorylated and unphosphorylated CheY
are maintained throughout the cell cytoplasm. By
using a continuum partial differential approach they
showed how complex formation varies with CheZ
content within the cell and how this affects the total
amount of free and bound CheY in the cell and at the
polar clusters. Their results were verified against the
experimental findings of Ref 53.

Relevant to bacterial cell division, a number
of authors54–56 have focused on the oscillating Min
system. Here a number of reaction diffusion type
models have been developed to elucidate the impor-
tance of reaction and diffusion in defining a spatially
oscillating pattern of Min proteins which allows the
cell to divide.

MODELING THE BACTERIAL
FLAGELLAR MOTOR

The bacterial flagellar motor is a complex rotary
nanomachine, composed of around 20 protein com-
ponents (none greater than 100 kDa in size), driven
by ion flow across the cytoplasmic membrane of a
cell and of the order of nanometers in diameter;
motors are capable of rotating at hundreds of Hertz
enabling the bacterium to propel itself through its
extracellular environment.57–59 A schematic repre-
sentation of the E. coli flagellar motor is shown in
Figure 4. While much is known about flagellar con-
struction, less is known about their motor function. A
number of theoretical approaches have been adopted
to help answer questions in the area, in particu-
lar the relationship between motor frequency and
torque, how torque is generated by the proton motive
interaction between the electrostatic proton flow and
the motor and the interaction between cytoplasmic
motor driving, proteins and the motor. We briefly
highlight a few of these areas here. The reader is
directed toward the reviews of Refs 60 and 61 for
more detailed overviews of theoretical modeling work
undertaken in this area.

Mathematical models have generally considered
how ion flow through the motor or motor driving
protein binding affects function. Examples of the
former include a study by Meister and colleagues62

who used physical arguments to derive relationships
between the motor turning frequency and the flow
of ions through the motor and showed that the
flagellar rotation (at zero load) was limited by the
association and disassociation of the proton ions.
Elston and Oster63 used a Markov chain model
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FIGURE 4 | (a) The components of an E. coli bacterial motor. (b) The concept of conformational spread. In the upper figure none of the
32 proteins in the C-ring of the bacteria are activated. Over time, some of the proteins may become activated (gray-colored circles) through stochastic
fluctuations or signaling. The theorized connectivity amongst the proteins leads to a spread of this activity (middle figure) which can either increase
(lower figure) or decrease, back to the original state (upper figure).

of proton occupancy of the motor, modeled using
differential equations, to develop an electromechanical
model. The transition rates between the proton
occupancy states were dependent upon the proton
diffusion and angular position of the rotor, the
latter described by the solution of a stochastic
Langevin equation incorporating the local effects
of motor load, load torque on the rotor, and any
associated Brownian noise from interactions with
the extracellular environment. Parameterized with
experimental data from the literature, this detailed
model was able to reproduce many experimental
findings and showed that the number, depth, and
spacing of the proton potential wells as well as
the stator’s dimensions and dielectric constants are
critical in determining the size of the torque generated.
Most recently Xing et al.64 have shown how a
similar approach can be used to derive a single
Markov–Fokker–Planck dynamic equation which
accounts for the motor rotor load and orientation.
They utilize the model to elucidate certain features
of the torque–frequency curve, in particular its rapid
decrease at high rotational rates and the relationship
between stator number and torque at high frequency.

In the case of interactions between flagellar
motors and their cytoplasmic switch driving protein
CheY, a discrete stochastic model has been developed
to understand how the random binding of CheY-P

proteins to the motor-binding protein FliM leads to
the motor switching from either a CCW rotation
to CW or vice-versa.65 The authors used a Monte
Carlo approach to show that once a critical number
of FliM-binding sites are occupied by CheY-P the
conformational stator ring is able to flip from one state
direction to the other dependent upon the assumed
coupling strength between the FliM proteins in the
ring (see Figure 4(b)).The concept of this form of
co-operativity within the flagellar motor has recently
been tested experimentally,66 with good agreement
between theory and experiment.

EVOLUTION IN BACTERIA

How bacteria have evolved to exhibit such complex
behavior as the run-and-tumble process, including
their internal machinery which facilitates this, has
been the subject of a recent growing area of research
in bacterial chemotaxis. As noted by Soyer,67 two
approaches are being taken. The first is the analysis
of genomic sequences to understand the relationship
between various bacterial species in terms of their
phylogeny. Such bioinformatic approaches have
identified a common core of chemosensory proteins,
usually encoded in ordered operons, across most
motile species, and also suggested evolutionary routes
for the development of motors from transport systems.
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The second approach involves developing simulation
models of bacteria, which, under certain rules of
evolution, acquire various characteristics, such as the
run-and-tumble process. By altering the rules, one is
able to observe their effect on ‘evolution’ thus allowing
mechanisms to be inferred. One such example
is the work of Nicolau and colleagues (Personal
communication) who showed that the run-and-tumble
process can be obtained by a set of simple optimization
rules. Similar approaches have been adopted by other
authors and the reader here is directed to the brief
review in Ref 67 for further details.

INTERACTIONS WITH THE
EXTRACELLULAR PHYSICAL
ENVIRONMENT

Classical mechanisms for prokaryotic chemotaxis are
governed by the interaction between intracellular sig-
naling and the regulation of external rotating flagella
for a swimming cell, which immediately couples
the chemotactic system to the surrounding physical
environment. For an individual bacterium far from
surfaces, the latter couplings are not particularly
important. However, flagellated bacteria may strongly
influence the trajectories of nearby cells68 and, in dense
populations, induce extensive collective effects,69,70

capable of altering the chemotactic gradient. Further-
more, for cell swimming via a single flagellum, or
flagellar bundle, the presence of a surface will typi-
cally induce curved swimming trajectories simply by
hydrodynamical interactions,71–73 again altering the
chemotactic response. Hence, the feedback between
hydrodynamics and chemotaxis is especially impor-
tant in numerous contexts, such as population behav-
ior and biofilm seeding, in turn motivating extensive
modeling of bacterial swimming fluid dynamics.

There is an extensive array of techniques used
for the study of microbial motility fluid dynamics, as
surveyed in Refs 74 and 75. The easiest to implement,
but the least flexible and accurate, is resistive force
theory, as first used by Gray and Hancock,76 and
applied to helical flagella in numerous studies, for
instance Refs 77, 78, and 72. This approach gives a
relationship between the velocity and angular velocity
on the one hand and the viscous drag force and
torque on the other for the flagellum, though only to
logarithmic accuracy in the flagellum slenderness and
with the entirely legitimate assumption that inertial
effects are negligible. In conjunction with analogous
relationships for the cell body, one can predict,
for example, numerous kinematic relations, such as
swimming trajectories in terms of flagella movements,

which have been validated using observations of
swimming eukaryotes (See Ref 79 for example).

In particular, for monotrichous bacteria or cells
with flagellar bundles, resistive force theory can relate
total motor torques to swimming velocities. These
calculations can be readily extracted from the work
by Lauga and colleagues72 given a spherical cell body;
this study also includes approximations accounting
for the influence of a nearby surface, thus highlighting
the extensive increase in complexity for resistive force
theory calculations in the presence of a surface.
Furthermore, resistive force theory is not applicable
for swimmers in close proximity and more generally
the limitations in its applicability are highlighted in
detailed numerical studies.80,81

Hence, more accurate and general methodolo-
gies have been developed. A fast and easily imple-
mented numerical method captures the flagellum
dynamics via slender body theory (e.g., Refs 81,82),
often in combination with boundary element meth-
ods for the cell body mechanics (e.g., Ref 83). While
a significant improvement is observed on resistive
force theory, slender body theory is still an approx-
imation and high flagellar rotation rates significantly
reduce its accuracy for prokaryotes compared to
eukaryotic flagellar beating.84 However, an array of
direct numerical simulation techniques are also avail-
able with no such limitations, as briefly reviewed in
Ref 85. In particular regularized Stokeslet, immersed
boundary and boundary element methods have been
implemented for bacteria, though such techniques are
more time consuming and computationally intensive
to implement.68,86–92

These studies confirm that nearby bacte-
ria influence each other’s trajectories simply by
hydrodynamics68,91 demonstrating that physical inter-
actions are important, and also complex, for swim-
ming bacteria. In addition, detailed simulations of
bacterial behavior near surfaces highlight a sensitivity
to cell geometry to the extent that significant variations
would be expected within single species populations of
cells. Indeed, changes in the morphology of the E. coli
cell body, resulting in different surface swimming
trajectories, have been exploited for fractionation
according to cell age.93 Such subtleties emphasize
the complexities in developing a modeling frame-
work for understanding and predicting geometrically
constrained chemotactic behaviors, as swimming tra-
jectories are fundamentally altered by surface interac-
tions. A further difficulty arises in scaling individual
behaviors to the population level, while incorporat-
ing fluid dynamical effects; in particular although
simulations exploring very small numbers of geo-
metrically accurate swimmers have been considered,
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these models cannot be scaled to population levels.
Nonetheless, the fluid dynamics associated with large
numbers of idealized swimmers has been investigated,
typically modeling cells as dipoles of point forces,
representing a net flagellar propulsion force cou-
pled with a concomitant cell body drag force (e.g.,
Refs 94,95). Simulations of chemotactic cells have
also been recently considered in this manner, studying
when homogeneous cell suspensions destabilize.96

However, whether the use of point force dipole
models can accurately assess cell dynamics remains
to be considered in detail and is unexplored in the
context of how the flagellated motility of dense bac-
terial populations influences the velocity field. In con-
trast, the subtleties observed in geometrically accurate
simulations of surface swimmers92 strongly indicate
that idealized swimmers models near surfaces or in
confined regions are likely to require more refined
representations than dipolar forces within modeling
frameworks. Incorporating such features within pop-
ulation models is already recognized as a fundamental
area for multiscale modeling research97 and critical for
understanding the dynamical interplay of chemotaxis
and hydrodynamics at the population level.

FROM THE SINGLE CELL
TO POPULATION SCALE

The interaction of flagellated hydrodynamics and
chemotaxis is one example of the fact that whilst
understanding bacteria at the single cell level is neces-
sary for an elucidation of how large numbers of cells
will behave, it is not sufficient. The ‘linking’ of single
cell to population behavior is an important challenge

across many areas of Systems Biology research and one
where progress is required for insight gained at the sin-
gle cell level to be applied in understanding real-world
problems at the higher population scale (see Figure 5).

In the context of classical bacterial chemotaxis
studies, efforts have been ongoing for over 30 years
to link the two scales. The main focus of such work,
initially, was how macroscopically measured variables
such as diffusion rates could be linked to measurable
individual cell properties, such as cell speed and
turning angle. In 1977, Segel linked the diffusion and
chemotactic coefficients of a spatiotemporal model
of a bacterial chemotactic population (the now well-
known Keller–Segel formulation) with microscopic
variables describing the average cell velocity, the rates
at which the bacteria moved between states describing
their spatial position, and receptor–ligand occupancy.
Such work has led to a steady number of publications
since that have attempted to link microscopic
(individual) and macroscopic (population) behavior.98

Of particular note is the study by Alt99 who
incorporated details of the cell turning angle and mean
speed into a stochastic description, and the subsequent
work by Rivero and colleagues100 who looked at
the connection between cell speed, run persistence
time, and ligand–receptor occupancy. Considerable
comparisons and analysis of these and associated
models have been undertaken in Refs 101–105.

More recent work includes that of Refs 106
and 107, 108. The former formulated and used sim-
ple descriptions of excitation and adaptation in a
Monte Carlo simulation of a bacterial population to
show how coarse-graining of the resultant population
behavior could be used to decrease computational time

Single cell

Population

Intracellular signaling cascade

Hydrodynamics

Modeling environmental conditions
(nutrient, fluid quorum sensing, etc.)

Continuum descriptions (Partial
differential equations).

Discrete deterministic and stochastic
simulations

Receptor signaling and gain

Flagellar motors

FIGURE 5 | A summary of the main components of bacterial chemotactic species which have been modeled on the single cell and population
scale. For an understanding of how individual-based processes (e.g., intracellular signaling cascades) affect the overall population scale behavior links
between the two scales are required.
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in determining the population behavior. The latter uti-
lized analytical techniques to move from the individual
cell description of excitation and adaptation formu-
lated in Ref 106 to a partial differential equation
description of a bacterial population’s spatiotemporal
dynamics. de Gennes109 and Clark and Grant110 have
considered how response functions reflecting the run-
and-tumble process on the single cell scale can lead
to variation in population behavior in the presence
of a chemoattractant. In particular Clark and Grant
demonstrated that optimizing the individual bacterial
response does not lead to optimized population aggre-
gation at high chemoattractant concentrations. More
recently Celani and Vergassola111 have shown how
bacterial chemotaxis is a maxmin strategy in complex
multiple stimuli environments; chemotactic bacteria
will always try to maximize their response to even low
minimal chemoattractant concentrations. Their work
utilizes model simulations and experimentation and
results are discussed in the context of game theory
and evolution.

Bray and colleagues have developed a number
of computational models which allow single cell
properties, for instance details of the signaling cascade,
to be incorporated into models and thus enable us to
understand the effect that variations in these processes
have on the population behavior. The E. solo model
from Bray and colleagues 112 includes a description of
the intracellular signaling cascade with each individual
bacterium having up to four flagella in a two spatial
dimension attractant gradient. The in silico bacteria
are subjected to uniform attractant gradients of
aspartate which can be adjusted during the simulations
and measurements of the tumbling frequency, turn
angle, and adaptation time of the population can be
recorded. The analysis of pre-defined fixed attractant
gradients for mutant and wild-type bacteria without
flagella was also considered in the paper; this model
referred to as E. pluribus. In particular, these studies
were used to show the effect of adaptation and
individual cell susceptibility to attractant binding on
bacterial aggregation, for instance, how cells do not
necessarily accumulate in regions of highest attractant
concentration because of adaptation.

Of further relevance to this area is the mathemat-
ical modeling work which has focused on reproducing
many of the patterns observed in the culturing of
bacterial cells in the laboratory.113–116 Such work
has often used the well-known Keller–Segel model117

to understand how bacterial cell and nutrient diffu-
sion and the interactions between them drive pat-
tern formation in bacterial cell cultures.118–120 Fur-
ther discussion on this work is outside the scope
of this review, but the interested reader should

consult the review provided in Ref 108 for further
information.

SUMMARY AND CONCLUSIONS
The combined efforts of theoretical modelers and
experimentalists in advancing understanding of the
bacterial chemotaxis system, means the field is an
excellent example of Systems Biology research ‘in
action’. The regular publication of articles where
combined theoretical and experimental work has led
to new insights or the publication of purely theoretical
or experimental work, where one has informed the
other, have created a benchmark for other areas of
cell biology. If the iterative process of theoretical
model development, experimental testing, and the use
of theoretical predictions in informing the particular
system, or problem being studied, can be applied in
other biological contexts at the single and multicell
level, then Systems Biology will be sure to make
contributions to important scientific questions in the
short and longer term.

The field itself is developing in a range of areas
as this review has highlighted. Given much that is now
known in the context of E. coli chemotaxis, although
there is still much more to be understood, there has
been a growing trend in recent years for developing
similar understanding in other bacterial chemotactic
species. Again such work is backed by a number
of years of quantitative experimentation which the
field of bacterial chemotaxis is able to provide. Thus,
the field is ripe for the continued development of
new theoretical models, such as those outlined in
this review, but is also positioned to take advantage
of advances in molecular and cellular biology. For
instance the recent development of techniques for
tracking single molecules within cells121 will provide
new challenges for theoreticians in modeling single
cell phenomena in crowded cell environments.

Recent theoretical work also includes the
elucidation of possible signaling cascades within
R. sphaeroides by Hamadeh and colleagues33 who
have focused on theoretically inferring the form
of intracellular signaling networks from flagellar
rotational data. The theoretical networks can then be
tested experimentally to either validate or invalidate
them. The ability of bacterial cells to respond
to the same multiplicative variation in attractant
concentration (e.g., 0.1–0.01 mM and 1–10 mM
both represent a 10-fold change in concentration)
without any variation in their internal response was
theoretically predicted by Shoval and colleagues122 in
2010 and recently shown experimentally in Ref 123.

One of the great challenges for not only the
field of bacterial chemotaxis modeling, but that of
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the application of theoretical models to many areas
of Systems Biology (and indeed associated areas such
as physiology), is overcoming computational time in
linking models of lower cellular length scale behavior
with that of the tissue or in the case of bacteria and
biofilm scale. To provide in silico predictions on the
many cell (∼108) biofilm scale is extremely costly in
terms of time for many computational models which

have included detail of the cellular signaling pro-
cesses. The increase in further computing power will
go some way in helping with this problem, but the-
oreticians must also consider ways in which links,
both spatially and temporally, can be made between
the discrete cellular and continuum many cell scales if
progress in applying knowledge at the single cell scale
to real-world problems is to be made.
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