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Macroscopic limits of individual-based models for motile cell populations with volume exclusion
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Partial differential equation models are ubiquitous in studies of motile cell populations, giving a phenomenolog-
ical description of events which can be analyzed and simulated using a wide range of existing tools. However, these
models are seldom derived from individual cell behaviors and so it is difficult to accurately include biological
hypotheses on this spatial scale. Moreover, studies which do attempt to link individual- and population-level
behavior generally employ lattice-based frameworks in which the artifacts of lattice choice at the population level
are unclear. In this work we derive limiting population-level descriptions of a motile cell population from an
off-lattice, individual-based model (IBM) and investigate the effects of volume exclusion on the population-level
dynamics. While motility with excluded volume in on-lattice IBMs can be accurately described by Fickian
diffusion, we demonstrate that this is not the case off lattice. We show that the balance between two key
parameters in the IBM (the distance moved in one step and the radius of an individual) determines whether
volume exclusion results in enhanced or slowed diffusion. The magnitude of this effect is shown to increase with
the number of cells and the rate of their movement. The method we describe is extendable to higher-dimensional
and more complex systems and thereby provides a framework for deriving biologically realistic, continuum
descriptions of motile populations.
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I. INTRODUCTION

The movement of discrete individuals plays an important
role in many different systems, from the rearrangement of cells
during embryonic development [1–3] to the emergency evac-
uation of crowds [4]. Continuum limits of these systems can
be derived from lattice-based cellular automaton models, thus
validating the widespread use of partial differential equations
(PDEs) to model diffusion, chemotaxis, etc. [5–12]. Moreover,
exclusion processes [10–17], where at most one cell occupies
each lattice site, naturally encode volume exclusion, which
may be fundamental, particularly where population pressure
is hypothesized as a mechanism for invasion. However, the
dangers of lattice artifacts [11,18] and a restricted ability to
accurately describe physical processes suggests that off-lattice
approaches are more appropriate. Until now their use has been
limited, as both analytical and numerical exploration is more
involved, particularly when the finite volume of individuals is
included [19].

Here we derive a continuum limit of an off-lattice
individual-based model (IBM) with volume exclusion. We
show that while an on-lattice random walk with exclusion
may be well-described by linear diffusion, this is not true
off lattice. The distance an individual moves and the space it
occupies together determine the deviation from simple Fickian
diffusion. We demonstrate the accuracy of our new description,
for a broad range of parameter values, using averaged
realizations of the underlying IBM. Our method is applicable
to a wide range of interaction mechanisms and in higher spatial
dimensions, enabling the systematic derivation of PDE models
from a description of the underlying individual behaviors.

A. Model description

We consider a one-dimensional domain with boundaries at
BL and BR . Each individual is defined by a position x and oc-
cupies an interval (x − R,x + R), where R is the analog of cell

radius in two dimensions. Individuals move by hopping with
rate α a distance d > 0 to the left or right. An attempted move
is aborted if it requires moving through any point that is already
occupied by another individual. For example, a move to the
right from position x is aborted if there is another cell center in
the interval [x + 2R,x + d + 2R). The abortion of attempted
moves is a distinguishing factor from the modeling of inani-
mate particles, which is also well studied [20]. Here, we make
the biologically realistic assumption that individuals are able to
“sense” the presence of others by using filopodia, for example.
If an individual attempts to move out of the domain, it is re-
flected back from the boundary, so that the cell center remains
in the domain. The model is shown schematically in Fig. 1.

II. DERIVATION OF CONTINUUM EQUATIONS

Let Ci(x,t) be the probability density function (pdf) for the
ith cell center position at time t . For �t � 1,

Ci(x,t + �t)

= Ci(x,t)

{
1 − α�t + α�t

2

[
P i

L(x,t) + P i
R(x,t)

]}

+Ci(x − d,t)
α�t

2

[
1 − P i

R(x − d,t)
]

+Ci(x + d,t)
α�t

2

[
1 − P i

L(x + d,t)
] + O(�t2), (1)

where P i
L(x,t) and P i

R(x,t) are the probabilities of a cell, other
than cell i, being present in the regions (x − d,x] and [x,x +
d), respectively:

P i
R(x,t) =

∑
j �=i

∫ 2R+d

2R

Cj (x + x̄,t)dx̄; (2)

P i
L(x,t) =

∑
j �=i

∫ −2R

−2R−d

Cj (x + x̄,t)dx̄. (3)
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FIG. 1. Schematic view of the IBM, showing individuals in
one spatial dimension. Each individual is represented by its center
point, x, and occupies a region around this point, (x − R,x + R).
Individuals move with rate α, a distance d to the left or right.

For now we assume d < 4R so that at most one individual may
be present in the intervals considered above. In this derivation,
we are making the usual moment-closure approximation, that
the probability of two cells, i and j , being at x and y,
respectively, is Ci(x,t)Cj (y,t), the product of the individual
probabilities [21–23]. This assumes independence between
the two cells and is generally a valid assumption for on-lattice
models, particularly in higher spatial dimensions and in the
absence of mechanisms, such as proliferation, which enhance
correlations between adjacent sites [5]. If 2R + d is small
compared to the length scale on which C changes then we can
expand P i

L(x,t) and P i
R(x,t) in a Taylor series to obtain

P i
R(x,t) =

∑
j �=i

{
dCj + d

2
(4R + d)

∂Cj

∂x
+ d

6
(12R2

+ 6Rd + d3)
∂2Cj

∂x2
+ O[(2R + d)4]

}
, (4)

P i
L(x,t) =

∑
j �=i

{
dCj − d

2
(4R + d)

∂Cj

∂x
+ d

6
(12R2

+ 6Rd + d3)
∂2Cj

∂x2
+ O[(2R + d)4]

}
. (5)

Taking the limit as �t → 0, we find that

∂Ci

∂t
= αd2

2

∂2Ci

∂x2
+ αd2

2
(4R − d)

∂

∂x

(
Ci

∑
j �=i

∂Cj

∂x

)

+ αd2

2
O[(R + d)2]. (6)

If the initial conditions are the same for all cells (i.e., each
cell has an initial position chosen at random from the same
distribution), Ci(x,t) = Cj (x,t) ∀ i,j . Hence, C = ∑N

i=1 Ci ,
the average total cell density, satisfies

∂C

∂t
= αd2

2

∂

∂x

{[
1 + (4R − d)

(N − 1)

N
C

]
∂C

∂x

}

+ αd2

2

(N − 1)

N
O[(R + d)2], (7)

where N is the number of cells in the domain. Taking the limit
as d → 0,

∂C

∂t
= α̂

∂

∂x

{[
1 + 4R

(N − 1)

N
C

]
∂C

∂x

}
+ (N − 1)

N
O(R2),

(8)

with α̂ = limd→0 αd2/2 held constant [24]. Note that in
Eqs. (7) and (8) 4RC may be of order 1, since C is in the range

[0,1/(2R)]. Hence, the second term in the expansion may be
highly important in correctly modeling cell movement.

A. Initial and boundary conditions

The condition that individuals must begin with the same
initial distribution may seem restrictive but this is not the case;
we only consider the average distribution of cells over multiple
realizations, in a similar way to [10,26]. Appropriate boundary
conditions must be considered carefully, since the center of a
cell cannot be within a distance R of the boundary. In essence,
we have no-flux conditions at BL + R and BR − R, where BL

and BR are the left and right boundaries, respectively. This
neglects effects close to the boundary, where P i

L and P i
R may

be different compared to the interior of the domain, and for
now we simply choose a domain large enough to ensure cells
do not reach the boundaries.

B. Limiting equations

Equation (8) gives the limiting continuum model for finite-
sized individuals moving with diffusivity α̂. To examine the
accuracy of our derived equations under different parameter
regimes, however, simulations of the IBM must be carried
out with d > 0, and so it may be more appropriate to use
Eq. (7). In this case, if [1 + (4R − d)(N − 1)/N C(x,t)] < 0
initially for any x, then Eq. (7) is ill posed, whereas Eq. (8) is
well posed for all possible initial conditions. This reflects the
assumption in Eqs. (2) and (3) that there can be at most one
cell in the interval [x + 2R,x + 2R + d), which is not satisfied
if d � 4R. However, when d � 4R, Eqs. (2) and (3) are
still valid first-order approximations for Ci � 1 since, using
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FIG. 2. (Color online) Comparison between the IBM and the con-
tinuum models with d > 0 [Eq. (7)] and as d → 0 [Eq. (8)], plotted
at t = 0, 200, and 600 for x ∈ [0,65]. The solution to the diffusion
equation is also shown for comparison. Realizations of the IBM were
performed using the Gillespie algorithm [25]. Sixty cells were placed
at regular intervals in the middle of the domain, with the leftmost cell
given an initial position drawn from the normal distribution N (25,1).
For the PDEs we used a finite difference method with initial conditions
determined by the average initial distribution from simulations, lin-
early interpolated onto a mesh with spacing dx = 0.05. Parameters:
α = 2.222, R = 0.1, and d = 0.15, giving α̂ = 0.025.
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FIG. 3. (Color online) Comparison between the IBM and the
continuum model with d > 0 [Eq. (7)], plotted at t = 0,300,600
for x ∈ [0,65]. The solution to the diffusion equation is also shown
for comparison. Realizations of the IBM were performed using the
Gillespie algorithm [25]. Two groups of 30 cells were placed at regular
intervals giving a density of 80%. The leftmost cells in the first and
second groups are given an initial position drawn from N (16,1)
and N (38,1), respectively. For the PDEs we used a finite difference
method with initial conditions determined by the average initial
distribution from simulations, linearly interpolated onto a mesh with
spacing dx = 0.1. Parameters: α = 0.8, R = 0.15, and d = 0.25,
giving α̂ = 0.025.

moment-closure assumptions:

P i
R(x,t) =

∫ 2R+d

2R

{
1 −

∏
j �=i

[1 − Cj (x + x̄,t)]

}
dx̄,

=
∫ 2R+d

2R

[ ∑
j �=i

Cj (x + x̄,t)

−
∑

k �=j �=i

Cj (x + x̄,t)Ck(x + x̄,t) + O
(
C3

j

) ]
dx̄.

It is interesting to consider the case where [1 + (4R − d)(N −
1)/N C(x,t)] < 0, since a diffusion equation with a diffusion
coefficient that can become negative for sufficiently high
cell densities is often used to model cellular aggregation.
Aggregation then gives rise to cell clustering [27,28], and there
is evidence that this may indeed occur in some biological sit-
uations, such as in glioma cell invasion [17,29–32]. However,
aggregation is difficult to assess in one dimension: Cells cannot
move past each other in our model so that clusters tend to form
regardless of the sign of [1 + (4R − d)(N − 1)/N C(x,t)].
Hence, a full consideration of clustering requires extension of
the model to two or three dimensions and, as such, is beyond
the scope of this paper.

III. RESULTS

Figures 2 and 3 demonstrate the very good agreement
between averaged realizations of the IBM and our derived
models. In particular, there is a much better correspondence
with either Eqs. (7) or (8) than with the linear diffusion
equation. Thus, we emphasize the dangers of naively using
linear diffusion to model motility in crowded situations.

The differences between Eqs. (7) and (8) become more
apparent when we consider the case where R = 0, so that
the cells are point particles; that is, they have no volume. In
the case where d → 0, taking R = 0 reduces Eq. (8) to the
diffusion equation. In Eq. (7), however, we do not recover the
diffusion equation since cells cannot move past each other, a
form of contact inhibition.

A. Exploring parameter space

As the number of cells, N , or the space occupied by
an individual cell, 2R, increases, the domain becomes more
crowded. In this case C(x,t) will also, in general, increase,
since

∫
C dx = N [note that, while Ci is a probability density

function, C(x,t) is not]. Hence, the excluded volume term in
Eqs. (7) and (8) exerts more influence relative to the linear
diffusion term. For fixed d, however, the difference between
Eq. (7) and the linear diffusion equation is minimal when
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FIG. 4. Comparison of the varying importance of the exclusion term in Eq. (7). (a) Plot of
∫ BR

BL
|C − CD|dx/(BR − BL), where CD is the

solution to the diffusion equation, as R and N change, with d = 0.15. (b) Plot of
∫ BR

BL
|S − CD|dx/(BR − BL), where CD is the solution to the

diffusion equation and S is the averaged simulation results, as R and d change. In each case, α = 2.222, ten cells were placed on the interval
[−40,40], with initial positions drawn from the normal distribution N (0,3).
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FIG. 5. (Color online) Comparison between the IBM and the
continuum models with d ∼ N (0,σ 2) [Eq. (11)] and as σ → 0
[Eq. (8)], plotted at t = 0, 200, and 600 for x ∈ [0,65]. The solution
to the diffusion equation is also shown for comparison. Realizations
of the IBM were performed using the Gillespie algorithm [25]. Sixty
cells were placed at regular intervals in the middle of the domain,
with the leftmost cell given an initial condition drawn from the normal
distributionN (25,1). For the PDEs we used a finite difference method
with initial positions determined by the average initial distribution
from simulations, linearly interpolated onto a mesh with spacing
dx = 0.05. Parameters: α = 2.222, R = 0.1, and σ = 0.1.

R = d/4, so that as R decreases through this value, the
importance of the exclusion effects increases again [Fig. 4(b)].

We note also that the error of our continuum approximations
depends sensitively, and nonlinearly, on R, d, and N . For
example, as N increases from a few individuals to many,
crowding effects become more important due to the factor
of (N − 1)/N , but at the same time the error also increases.
Note that as N → ∞, we may use (N − 1)/N ≈ 1. Counter-
intuitively, decreasing the jump distance, d, can increase the
effects of volume exclusion if R > d/4, since the correction
to the diffusion equation is multiplied by (4R − d). This
represents the two opposing effects of exclusion: Individuals

move less often, but a higher proportion of these moves will be
into unoccupied areas. As the distance moved increases past
d = 4R, the higher bias towards empty spaces is counteracted
by the cessation of movement. This effect can be seen when
we compare the difference between results from averaged
realizations and the simple diffusion equation [Fig. 4(a)].
Different movement mechanisms may not give rise to this
effect. For example, if instead of aborting the attempted
movement the cell moved next to the obstructing cell, then
this effect may be reduced.

B. Extending to normally distributed distance moved

We may easily extend our method to consider variable jump
distances. With the pdf of d given by f (ud ), for ud ∈ R, we
have

∂Ci

∂t
= α

∫ ∞

−∞
f (ud )

[
−ud

∂Ci

∂x
+ u2

d

2

∂2Ci

∂x2

]
dud

+α
∑
j �=i

∫ ∞

0

[
f (ud )

(
Ci(x,t)

∫ 2R+ud

2R

Cj (x + x̄,t)dx̄

−Ci(x − ud,t)
∫ 2R

2R−ud

Cj (x + x̄,t)dx̄

)

+ f (−ud )

(
Ci(x,t)

∫ −2R

−2R−ud

Cj (x + x̄,t)dx̄

−Ci(x + ud,t)
∫ −2R+ud

−2R

Cj (x + x̄,t)dx̄

)]
dud.

If the jump direction is unbiased, f (ud ) = f (−ud ),

∂Ci

∂t
= α〈d2〉

2

∂2Ci

∂x2
+ α(N − 1)

(
2R〈d2〉

−
∫ ∞

0
f (ud )u3

ddud

)
∂

∂x

(
Ci

∑
j �=i

∂Cj

∂x

)
. (9)
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FIG. 6. Comparison of the error between the IBM and the continuum model with (a) fixed jump distance, d , [Eq. (8)] and (b) d ∼ N (0,σ ),
[Eq. (11)]. In each case, α = 2.222, ten cells were placed in the interval [−40,40], with initial positions drawn from the normal distribution
N (0,3).
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For example, if d ∼ N (0,σ 2),
∫ ∞

0 f (ud )u3
ddud = σ 3√2/π

and 〈d2〉 = σ 2, so that

∂Ci

∂t
= ασ 2

2

∂2Ci

∂x2
+ α

(
2Rσ 2−σ 3

√
2

π

)
∂

∂x

⎛
⎝Ci

∑
j �=i

∂Cj

∂x

⎞
⎠ .

(10)

As before, if the initial distribution is the same for all Ci , then
C = ∑N

i=1 Ci satisfies

∂C

∂t
= ασ 2

2

∂2C

∂x2
+ ασ 2

2

N − 1

N

(
4R − 2σ

√
2

π

)
∂

∂x

(
C

∂C

∂x

)
.

(11)

Numerical solutions of this model also compare well with
averaged realizations of the IBM (Fig. 5) for a range of σ ,
R, and α. Since the assumption that individuals do not try to
move further than 4R in a jump is less often violated, even for
large σ and small R, the error between averaged realizations
and Eq. (11) is smaller than with constant d (Fig. 6). This
model is closer to the classic depiction of Brownian dynamics,
with [19,33] or without [24] hard core exclusion effects. Note
that taking σ → 0 with ασ 2/2 held constant gives Eq. (8).

IV. CONCLUSIONS

In summary, we have developed a simple, yet effective,
method for deriving macroscopic equations from off-lattice
IBMs with excluded volume effects. This method may be
extended naturally to higher spatial dimensions and more
complicated mechanisms of movement and, as such, provides
a natural framework for multiscale modeling of motile pop-
ulations. Our models accurately predict the average behavior
of our IBMs for arbitrary initial conditions and a range of
parameter values. We have demonstrated the errors arising
from a naive choice of linear diffusion, and shown how
an informed choice can be made about whether a motile
population requires detailed consideration beyond Fickian
diffusion. Counterintuitively, we have shown that increasing
the size of cells does not necessarily lead to a larger deviation
from diffusion due to exclusion effects. Instead, the magnitude
of the effect of exclusion depends on the relative sizes of cell
jumps and radius. Our results suggest that modeling of a large
number of finite-sized individuals requires consideration of
the exclusion effects in order to accurately capture population-
level behavior.
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