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The effect of sampling rate on observed
statistics in a correlated random walk

G. Rosser, A. G. Fletcher, P. K. Maini and R. E. Baker

Centre for Mathematical Biology, Mathematical Institute, University of Oxford, 24 – 29 St Giles’,
Oxford OX1 3LB, UK

Tracking the movement of individual cells or animals can provide important

information about their motile behaviour, with key examples including

migrating birds, foraging mammals and bacterial chemotaxis. In many exper-

imental protocols, observations are recorded with a fixed sampling interval

and the continuous underlying motion is approximated as a series of discrete

steps. The size of the sampling interval significantly affects the tracking

measurements, the statistics computed from observed trajectories, and the

inferences drawn. Despite the widespread use of tracking data to investigate

motile behaviour, many open questions remain about these effects. We use a

correlated random walk model to study the variation with sampling interval

of two key quantities of interest: apparent speed and angle change. Two

variants of the model are considered, in which reorientations occur instan-

taneously and with a stationary pause, respectively. We employ stochastic

simulations to study the effect of sampling on the distributions of apparent

speeds and angle changes, and present novel mathematical analysis in the

case of rapid sampling. Our investigation elucidates the complex nature of

sampling effects for sampling intervals ranging over many orders of magni-

tude. Results show that inclusion of a stationary phase significantly alters

the observed distributions of both quantities.
1. Introduction
Tracking is a widely used experimental method to probe the movement of living

organisms over a huge range of spatial scales, from bacteria swimming over dis-

tances of tens of micrometres [1], to birds migrating thousands of kilometres [2].

While the details of the experimental protocol vary between different studies, in

the majority of cases the data obtained are similar, namely an ordered list of pos-

ition vectors (observations) sampled at discrete time points that approximates the

continuous-time underlying motion. The time intervals between observations

may have a profound impact on the movement patterns observed and the con-

clusions drawn [3–5]. It is therefore crucial to characterize these effects. We

restrict our attention to cases where the sampling interval between successive

observations is constant, as is the case in many tracking systems, including

global positioning systems [6] and microscopy [1].

Tracking generates large quantities of information about the motion of indi-

viduals and, where sufficiently many tracks are available, populations. These

data may be interrogated in order to extract statistics and test hypotheses specific

to the organism being studied. Examples include the homing behaviour of rock-

fish [7] and oscillations in the dive depths of sharks [8]. To ensure the wide

applicability of the present work, we consider the effect of the sampling rate on

two quantities that are of fundamental interest in many such studies: the apparent

speed of an individual between two consecutive observations and the apparent

angle change (AAC) between three consecutive observations. These quantities

have been used to elucidate the chemotactic response of the bacterium Rhodobacter
sphaeroides [9] and the movement of beetles close to the boundaries of habitats

[10]. Our work also applies to apparent displacement, since for a given sampling

interval this quantity is linearly proportional to the apparent speed.

Any theoretical study of the tracking process requires the specification of a

model of motion. Here, we consider individuals undergoing a correlated
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Table 1. Glossary of notation.

parameter description

t sampling time interval

tR mean time between reorientation events

tS mean duration of a stationary reorientation event

cconst underlying constant run speed

�c mean relative apparent speed (RAS)

sc standard deviation of RASs

sd underlying angular deviation

su apparent angular deviation

r mean cosine of apparent angle changes (AACs)
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random walk (CRW) [11]. Various species move in a manner

well described by a CRW, in the sense that their motility takes

the form of approximately straight line movements inter-

spersed by stochastic reorientations. This includes the ‘run-

and-tumble’ pattern of motility exhibited by many species

of planktonic bacteria [12,13], ovipositing butterflies [14],

foraging bumblebees [15] and the clonal growth of the

plant species Solidago altissima [16]. Correlation is introduced

because turning angles are specified relative to the previous

direction of motion. Turning angles are also commonly

assumed to be independent and identically distributed (iid),

hence the correlation exists between successive positions,

rather than successive angle changes. In many studies, it is

assumed that reorientations occur instantaneously. Here, we

consider both this model and a variant, proposed by Othmer

et al. [13], in which reorientations are concomitant with a

stationary ‘resting’ phase. This is a good description of the

motion of bacteria such as R. sphaeroides that stop swimming

to reorient [9], and elk that pause at foraging sites to feed [17].

The effect of sampling rate on observed tracks is a complex

problem that has, to date, received relatively little research

attention. An important study performed by Kareiva &

Shigesada [14] considers a CRW with variable speed, deriving

an exact expression for the mean squared displacement (MSD)

after a specified number of steps, in terms of the mean cosine of

angle changes, mean step length and mean squared step

length. This work was extended by McCulloch & Cain [18],

who derive an approximate expression for the mean displace-

ment. Bovet & Benhamou [15] study a CRW with fixed step

lengths between observations. In order to make tracks compa-

tible with this description a spatial rediscretization is required,

leading to variable time intervals between observation points.

The authors obtain an empirical expression for the variation of

angular standard deviation with step length.

While the above studies consider the effect of number of

steps or step length (spatial rediscretization), in the present

work we are concerned with the effect of sampling rate

(temporal rediscretization). In the first study to consider

this problem, Hill [19] rediscretizes tracks with a variable

sampling interval and makes the ad hoc assumption that

the mean and standard deviation of apparent speeds vary lin-

early with the size of this interval. More recently, Codling &

Hill [12] have analysed the effect of the sampling rate on a

CRW, repeating the analysis of Bovet and Benhamou with a

temporal rediscretization of tracks. The authors use simulated

tracks to find empirical expressions for the variation of the

standard deviation of AACs, and the mean and standard

deviation of apparent speeds. They demonstrate that Hill

and Häder’s assumption of a linear relationship between

these properties and the sampling interval is only valid for

a limited range of sampling intervals.
1.1. Aims and outline
In this study, we address several of the open problems in

this field. In §3, we obtain the stationary distributions of

the apparent speeds and AACs for the run-only model in the

limit of large sampling intervals. In §4, we extend the work

of Codling & Hill [12], by computing numerically the full

distribution of these quantities, rather than the first two

moments, thus fully characterizing their complex dependence

on the sampling interval. We also consider a modified model,

in which reorientations are accompanied by a stationary phase.
This has, to our knowledge, not previously been investigated.

In §5, we present a novel analytic approach to describe the

apparent speed and AAC distributions for the run-only

model in the limit of rapid sampling.
2. Models and methods
A summary of all mathematical notation used in this work is

given in table 1. In this study, we investigate the effect of the

fixed sampling interval, denoted by t, on the observations

made from a tracking experiment of an individual moving

with a constant speed, cconst, in a two-dimensional unbiased

CRW. Reorientation events occur as a Poisson process with

constant mean inter-arrival time tR. Following Codling &

Hill [12], we consider the non-dimensional ratio t/tR,

which represents the mean number of reorientations in a

sampling interval. We examine two variants of the model,

proposed by Othmer et al. [13]: (i) the ‘run-only’ model, in

which reorientation events occur instantaneously and (ii) the

‘run-and-stop’ model, in which reorientations take a finite

time, during which the individual is stationary. In the run-

and-stop model, the individual also leaves the stationary

phase as a Poisson process, with mean inter-arrival time tS.

Figure 1 shows a simulated run-only track (see §2.1 for details).

Between consecutive reorientation events, an individual covers

a random straight-line distance L, which is distributed expo-

nentially with mean cconsttR. During a reorientation event,

an individual turns through an angle F [ ½�p;p�, a random

variable with a probability density function (pdf) given by

fF(f). We assume that the angle changes are iid and indepen-

dent of the running distance, L. In the run-and-stop model, we

also assume that angle changes occur independently of the

duration of the reorientation phase.

In §§4 and 5, we assume the underlying angle changes F

are drawn from the Von Mises (VM) distribution, a com-

monly used distribution in directional statistics [12,14,15]. It

is a good approximation for the normal distribution on a

circle and mathematically more convenient, as the pdf does

not involve an infinite summation [20]. We choose the VM

distribution with pdf

fFðf;kÞ ¼ ek cosðfÞ

2pI0ðkÞ
; ð2:1Þ

where I0 denotes the modified Bessel function of the first kind

with order zero and the parameter k � 0 controls the
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Figure 1. The effect of sampling on apparent motion. The lower track is
simulated using the run-only model. Circles indicate reorientation events,
crosses indicate sampling points and two run lengths and a turning angle
are shown. The upper panel shows the circled portion in greater detail.
This is the observed track, with two apparent displacements and two AACs
marked.
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‘peakedness’ of the distribution. This distribution is sym-

metric about zero, hence has zero mean, since our motion

model is an unbiased CRW. When dealing with circular stat-

istics, alternative summary statistics are needed from those

used in linear statistics. We shall use the angular deviation

[20], given by

sd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� rÞ

p
; ð2:2Þ

where r denotes the mean cosine of the underlying angle

change, F. For the VM distribution (2.1), we have [20]

r ¼ I1ðkÞ
I0ðkÞ

: ð2:3Þ

We may also use equation (2.2) to compute the angular devi-

ation of the AACs, su, in which case r denotes the apparent

mean cosine. For consistency, we therefore specify the angu-

lar deviation of the underlying VM distribution, sd, which we

convert to the VM parameter k using equations (2.2) and (2.3).

This equation has a unique solution as I1(k)/I0(k) is monotonic

in k; we compute this using a numerical optimization routine

based on the trust-region algorithm [21].

The sampling process is modelled as a uniform tempo-

ral discretization of the underlying track, with consecutive

observations separated by the sampling interval t. Since

reorientations occur stochastically in continuous time, obser-

vations do not in general coincide with reorientation events.

The observed track takes the form of a series of transition vec-

tors, denoted di, where i [ f1; 2; . . .g gives the ordering of the

transitions. The quantities of interest are the relative apparent

speed (RAS) between consecutive observations, Ri/cconst ¼

jjdijjcconstt, and the AAC between three consecutive obser-

vations, Qi ¼ arccos(di . diþ1/jjdijj jjdiþ1jj) (figure 1). The

RAS is a non-dimensional measure of the proportion of

the true speed obtained by the observed individual across a

sampling interval; use of this quantity ensures that our results
are independent of cconst. We record all observed quantities in

order to approximate the pdf by computing a histogram. We

also compute the mean RAS, �c, the standard deviation of

RASs, sc, and the angular deviation of AACs, su.

When computing summary statistics for the run-and-stop

CRW, we discard AACs and speeds arising from static

intervals in which the simulated individual has zero displace-

ment. Static intervals in tracks are readily discernable, and

provide a direct means to calculate the underlying reorienta-

tion angle. Where the tracking data permit this type of direct

analysis, for example, when reorientations occur at landing

sites [14], other analysis methods are more appropriate than

computing all apparent quantities.

For simplicity, we neglect the effects of measurement

noise; while the effects of noise and sampling frequency are

related [4], many open questions remain about the role of

sampling frequency alone. We discuss this in further detail

in §6.
2.1. Stochastic simulation algorithm
Throughout this study, we use the following stochastic simu-

lation algorithm to generate realizations of the unbiased two-

dimensional CRW. In the run-only model, waiting times

between reorientation events are drawn from the exponential

distribution with mean time tR. In the run-and-stop model,

the duration of each stationary reorientation event is also expo-

nentially distributed with mean tS. Reorientation events are

simulated by drawing an angle change from the VM dis-

tribution with concentration parameter k using the algorithm

of Best & Fisher [22]. Between reorientations, the indivi-

dual moves in the chosen direction with constant speed,

cconst ¼ 1 m s21. The stochastic trajectory of a single individual

is simulated in this way until the total time exceeds a pre-

defined value, at which point the trajectory is ceased. The

position of each simulated individual is finally calculated at

regularly spaced times, separated by the sampling interval t.

All simulations are implemented in Matlab. The code

used to simulate tracks is available in the electronic sup-

plementary material, in addition to a movie illustrating the

simulated tracks.
3. Stationary sampling distributions
When a run-only CRW is sampled at low frequency, many

reorientation events occur between consecutive observations

and hence persistence in the observed motion is lost. The

observed process is diffusive, provided that the mean cosine

of the underlying angle change distribution satisfies r , 1

[11,23]. We now describe the asymptotic behaviour of the

CRW in the diffusive limit. Consider an individual undergoing

two-dimensional Brownian motion, observed at regular time

intervals, t. Between each observation, the displacements in

each dimension, dx and dy, are iid and normally distributed,

with zero mean and variance equal to 2Dt, where D is the

macroscopic diffusion coefficient. Othmer et al. [13] have pre-

viously shown that, for a constant-speed two-dimensional

run-only CRW, D ¼ c2
consttR=ð2ð1� rÞÞ. The RAS between con-

secutive sample points,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

x þ d2
y

q
=ðcconsttÞ, is therefore

distributed according to the scaled x distribution with two

degrees of freedom and scale parameter
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t=ðtRð1� rÞÞ

p
. The
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mean of this distribution is given by

�c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

t=ðtRð1� rÞÞ

s
G

3

2

� �
; ð3:1Þ

and its standard deviation is given by

sc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

t=ðtRð1� rÞÞ 1� G
3

2

� �2
 !vuut : ð3:2Þ

Expressions (3.1) and (3.2) are plotted in figure 2 overlaid with

stochastic simulation results for a range of values of sd. As sd

increases, so does the time scale of relaxation to the diffusion

limit. This result is intuitive; trajectories with high angular

deviation lose persistence rapidly, as reorientations are often

drastic, hence the time scale at which they appear diffusive is

short compared to a trajectory with low angular deviation.

Regardless of the value of sd, the standard deviation of RASs

initially increases with sampling interval, before eventually

decreasing at sampling intervals near to the diffusive limit.

We return to this observation in §4.1.

For a diffusing individual, the AACs between consecutive

pairs of observations are distributed uniformly on a circle

[23]. The wrapped uniform distribution has a mean cosine

of zero, therefore from equation (2.2) the apparent angular

deviation is
ffiffiffi
2
p

. This result is plotted in figure 3. As for the

mean RAS, the greater the true angular deviation, the more

quickly the observed process relaxes to the diffusion limit.

The results presented above may be extended to include a

stationary reorientation phase in a straightforward manner,

by noting that the mean proportion of time spent in a run-

ning state is given by tR/(tR þ tS). Multiplying the

macroscopic diffusion coefficient D by this quantity gives

the effective diffusion coefficient for a run-and-stop CRW.
4. Simulation study of dynamic
sampling distributions

For many applications, the apparent motile behaviour of indi-

viduals at shorter sampling intervals is of greater practical

interest than in the diffusive limit. Having derived results for

the asymptotic properties of the run-only CRW when t/tR is

large, we now consider the effect of sampling on time scales
corresponding to t/tR � 1. Here, persistence in the motion is

perceivable and the observed process is not purely diffusive.

We shall use stochastic simulations of the run-only and run-

and-stop CRW models to compute the pdf of RASs and

AACs for a range of values of t/tR.

4.1. Run-only model
The distribution of RASs for different sampling intervals is

shown in figure 4a for two different values of sd. There is a

greater spread in the case sd ¼ 0.4 compared with the case

sd ¼ 0.1, because each reorientation event tends to result in

a larger change of direction. As t/tR is increased, the RAS

distribution becomes broader because each sampling interval

has a greater probability of containing one or more reorienta-

tion events. When a reorientation occurs in an interval, the

RAS is reduced.

The results in figure 4a are in agreement with the findings

of Codling & Hill [12]. As we increase t/tR, the distribution

of RASs is skewed towards lower speeds. This decreases

the mean RAS. We further investigate this phenomenon in

figure 5, in which we show the variation of the first percentile

RAS with t/tR. When the underlying angular deviation is

high, the first percentile RAS is less than 0.5 for even the highest

sampling rate considered. Conversely, when sd ¼ 0.1, the first
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percentile RAS remains close to one until the sampling interval

is relatively large. This is a key example of the use of alternative

summary statistics to demonstrate the effects of sampling rate.

The insight gained from considering the full distribution of

RASs now allows us to rationalize the variation of the standard

deviation of RASs, plotted in figure 2b. The RASs are tightly

clustered about the true value of c for small t/tR, becoming

increasingly skewed towards lower RASs as t/tR increases,

leading to the initial increase in sc with t/tR. As the sampling

interval becomes large, RASs are observed in the vicinity of

zero with increasing frequency, which reduces sc, leading to

the observed asymptotic behaviour.
As we sample more frequently, the distribution of RASs

converges to the true underlying distribution, as individuals

undergo fewer reorientations between sampling intervals.

For the constant-speed process considered here, the distri-

bution of RASs therefore tends towards a delta function at

the true underlying speed as we decrease t/tR. This result

is not restricted to a constant-speed process; when there is

an underlying distribution of speeds, the observed speed dis-

tribution converges to the true underlying distribution (data

not shown).

Figure 4b,c show the distribution of AACs for several

values of t/tR and sd. The VM distribution used for reorien-

tations in the underlying CRW is also shown. Note that this

distribution is constant in each figure; the change in height

is because of a rescaling of the y-axis. The broadening of

the distribution of AACs results in an increase in su. In the

rapid sampling limit, this distribution tends towards a delta

function at the origin, because most sampling intervals contain

no reorientations and hence measure zero angle change. Such

intervals are described as ‘artificial zero turns’ by Codling &

Hill [12]. In contrast with RASs, where the true underlying

distribution is obtained in the limit t/tR! 0, at no sampling

interval does the distribution of AACs match the true under-

lying angle change distribution. This is because, in making

observations at regular intervals, we sample both across and

between reorientations.
4.2. Run-and-stop model
We now perform a similar analysis for the run-and-stop

model, in which the additional parameter tS specifies the
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mean duration of a stopping phase. The distributions of RASs

for two values of sd and tS are shown in figure 6. Compared

with the run-only model (figure 4), two peaks are visible at

c ¼ 0 and 1, corresponding to individuals that are stationary

for the duration of an interval and to individuals that

undergo no reorientations in an interval, respectively. Both

decay as t/tR increases. The density at intermediate RASs

spans the full range of permissible values, in contrast to the

run-only case, in which the range of observed values is

more limited. When tS ¼ tR, the densities in the two outer

peaks are equal, as individuals populate both the running

and reorientating states equally, on average. Reducing tS

causes the distribution to be more negatively skewed for all

values of t/tR considered, as individuals spend more time

running than reorienting.

In figure 7, we plot the mean and standard deviation of

RASs, �c and sc, for different values of tS. As discussed earlier,

we exclude static intervals in the calculation of these quan-

tities. Comparison of figures 2a and 7a indicates that the

time scale on which the process appears diffusive is longer

in the run-and-stop CRW than the run-only CRW. In all

cases, the mean RAS decreases monotonically for all

sampling intervals considered, with the initial rate of

decrease becoming more marked for larger tS.

We find that sc displays a non-monotonic dependence on

the sampling rate for tS ¼ 0.2, 0.5 and 1 s. For small sampling
intervals, the RAS pdf is dominated by the two peaks at 0

and 1, with resulting large standard deviation. As the sampling

interval increases, the density between these peaks initially

increases, hence sc decreases. When log(t/tR) � 2, the outer

peaks are no longer apparent, the density in the central

region continues to broaden with sampling interval, and

hence sc increases with t/tR. At yet longer sampling intervals

corresponding to logðt=tRÞ � 4, RASs are increasingly

observed in the vicinity of 0, therefore sc again decreases

with t/tR, as predicted in §3 and discussed in the case of the

run-only model.

The distribution of AACs is shown for sd ¼ 0.4 and tS ¼ 1 s

in figure 8a. The distributions shown do not include angle

changes arising from static intervals. Comparing with figure 4,

we see that the inclusion of a stopping phase causes the distribu-

tion of observed angle changes to become more concentrated

about u ¼ 0. The shape of the distribution is, however, qualitat-

ively similar in both cases. Figure 8b shows the dependence ofsu

on sampling frequency. As for the run-only CRW, an asymptote

is reached at su ¼
ffiffiffi
2
p

, though the time scale of relaxation to this

diffusive limit increases with tS. Furthermore, as tS increases, the

angular deviation decreases for a given value of t/tR. A larger

value of tS means that, on average, fewer reorientations occur

over a sample interval. As a result, the distribution of AACs

has greater density at low values, and the apparent angular

deviation is lower.
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5. Analytic study of dynamic sampling
distributions

While stochastic simulations are useful for assessing the

effect of sampling rate on the observed CRW, they are time-

consuming, as many realizations are required to obtain

sufficiently smooth distributions. Furthermore, a new simu-

lation is required for each new set of parameters, making it

hard to draw general conclusions about the effect of varying

the reorientation angle pdf. We therefore seek an analytic

description of the underlying CRW, for application to the

sampling rate problem. As before, we consider an unbiased,

run-only, constant-speed, two-dimensional CRW. We include

a general underlying pdf for reorientations, fF(f). In order to

make analytic progress, we assume that the relative sampling

interval, t/tR, is sufficiently small that the probability of two

or more reorientations occurring between consecutive sample

points is negligible. Using the fact that reorientations in the

underlying CRW occur as a Poisson process, this probability

is given by

PðN � 2; t; tRÞ ¼ 1� e�t=tRð1þ t=tRÞ; ð5:1Þ

where N denotes the number of reorientations in a time interval

of duration t. We also assume that no two consecutive

sampling intervals contain reorientation events, an occurrence

with probability given by

PðN . 0 in two consecutive intervals; t; tRÞ ¼ ð1� e�t=tRÞ2:
ð5:2Þ

Expression (5.2) is always greater than (5.1). For example,

choosing t/tR ¼ 0.05, (5.1) evaluates to 1.2 � 1023, and (5.2)

gives a value of 2.4 � 1023, so one of the two assumptions is

broken once every 280 intervals, on average. Discounting

these events, all intervals are assumed to contain at most one

reorientation event, with no consecutive events. A key example

of an experimental protocol that is compatible with these

assumptions is bacterial motility, which is commonly probed

using video microscopy to perform tracking [1]; in these

studies, the frame capture rate of the digital microscope

camera is typically significantly higher than the rate at which

bacteria reorient [1,24,25].
Figure 9 shows two portions of a simulated trajectory cor-

responding to N ¼ 0 and 1. The former case always returns

AACs equal to 0 and step lengths equal to cconstt. In the

case of a single reorientation event, the true underlying trajec-

tory consists of two straight line sections separated by an

instantaneous reorientation of angle F, given relative to the

previous direction of travel. In contrast, the observed path

appears to contain two reorientation events, with angles Q1

and Q2 ¼ F 2 Q1. The statistical properties of the unbiased

CRW are time-reversal invariant, meaning that the distri-

butions of Q1 and Q2 must be identical. We therefore drop

the subscript in all further notation. The apparent displace-

ment is denoted by R. As before, the difference between the

apparent and true paths is because of the discrete sampling

of the continuous underlying trajectory. Let L denote the dis-

tance between the last sampling point and the reorientation

event. For a constant-speed process, the distance travelled

by an individual over the course of a sampling interval is

given by cconstt. The distance between the reorientation

event and the next sampling point is therefore cconstt 2 L.

We reiterate that the CRW model used in the present study

assumes F is independent of L.
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We now derive an expression for the joint pdf of

the apparent step lengths and angle changes, R and Q,

denoted fR,Q(r, u), assuming that the functional form of the

angular pdf fF(f ) and the value of cconst are both known.

Knowledge of this pdf permits us to approximate the pdf

of RASs and AACs when t=tR � 1. We use stochastic simu-

lations to study the range of values of t/tR for which our

approximation holds.

We first define non-dimensional parameters by rescaling the

total path length between sampling points, cconstt, as follows:

L̂ ¼ L
cconstt

and R̂ ¼ R
cconstt

: ð5:3Þ

Note that R̂ is equivalent to the RAS. The desired joint

pdf, denoted fR̂;Qðr; uÞ following rescaling, is then given by

a sum of conditional joint pdfs:

fR̂;Qðr; uÞ ¼ PðN ¼ 0; t; tRÞf ð0ÞR̂;Q
ðr; uÞ þ PðN ¼ 1; t; tRÞf ð1ÞR̂;Q

ðr; uÞ;

ð5:4Þ

where f ðNÞ
R̂;Q
ðr; uÞ is the joint pdf of R̂ and Q, conditional on

the number of reorientation events, N [ f0; 1g. Since N ¼ 0

corresponds to no change in r and u, we have

f ð0Þ
R̂;Q
ðr; uÞ ¼ dðr� 1ÞdðuÞ; ð5:5Þ

where d denotes the Dirac delta function. This result alone
is unremarkable; it is the inclusion of the N ¼ 1 case that

explains the observed broadening of the distributions of

speeds and angle changes with small t/tR. We now use an

analytic description of the bijective mapping between the

ðL̂;FÞ and ðR̂;QÞ representations of the N ¼ 1 trajectory to

compute f ð1Þ
R̂;Q
ðr; uÞ:

cosF ¼ ðR̂ sinQÞ2 � ð1� R̂ cosQÞ2

ðR̂ sinQÞ2 þ ð1� R̂ cosQÞ2
ð5:6Þ

and

L̂ ¼ 1� R̂ cosQ� R̂ sinQ

2ð1� R̂ cosQÞ
: ð5:7Þ

The joint pdf of R̂ and Q, conditional upon N ¼ 1, is then

f ð1Þ
R̂;Q
ðr; uÞ ¼

r
ð1� r cos uÞ fL̂ðlðr; uÞÞfFðfðr; uÞÞ; r [ ½0; 1�;

0, otherwise;

8<
:

ð5:8Þ

where the first term is obtained by evaluating the determinant

of the Jacobian and we have made use of the independence of L
and F. For a Poisson process, the distribution of events within

an interval, conditional on the number of events, is uniform

[26], and hence fL̂ðlÞ ; 1; l [ ½0; 1�. Substituting (5.6) and

(5.7) into (5.8) yields
f ð1Þ
R̂;Q
ðr; uÞ ¼

r
ð1� r cos uÞ fF arccos

r2 sin2 u� ð1� r cos uÞ2

r2 sin2 uþ ð1� r cos uÞ2

" # !
; r [ ½0; 1�;

0; otherwise:

8><
>: ð5:9Þ
We now integrate the joint pdf (5.4) to obtain the marginal

pdfs for R̂ and Q, respectively, denoted by fR̂ðrÞ and fQ(u). In

order to compare our results with those from a stochastic simu-

lation, we must specify fF(f ). We again use the VM

distribution with zero mean and angular deviation sd ¼ 0.4.

The remaining parameters are tR ¼ 1 s, t ¼ 0.2 s and cconst ¼

1 m s21. Using the functional form of the VM distribution

(2.1) in equation (5.9), it is not possible to obtain analytic

forms for the marginal pdfs. We therefore use Gaussian

quadrature to evaluate the pdf numerically.
Figure 10 shows the observed pdfs of RASs and AACs,

computed with the stochastic simulation algorithm for

t/tR ¼ 0.05 and t/tR ¼ 2, overlaid with the result of perform-

ing numerical integration of equation (5.9). The stochastic

data are filtered to remove transitions in which no reorienta-

tions occur (the N ¼ 0 case), as these result in a large number

of artificial 0 turns, and RASs equal to 1. This is achieved by

discarding transitions with an AAC whose magnitude is

less than a defined numerical tolerance, which we take to

be 1 � 1026. Changing this value by two orders of magnitude
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makes no significant difference to the results (data not shown).

The remaining data therefore correspond to one or more reor-

ientation events. The agreement is good when t/tR ¼ 0.05 as

this relative sampling interval is sufficiently small that our ear-

lier assumptions are justified. Conversely, the agreement is poor

when t/tR ¼ 2, with the stochastic simulation generating a

broader distribution in both cases. This discrepancy for large

relative sampling interval is caused by frequent violation of

the underlying assumptions of our analysis.

In order to investigate the range of values of t/tR for

which equation (5.9) is valid, we compute the Kullback–

Leibler (KL) divergence between the analytic and stochastic

results [27]. The KL divergence quantifies the information

lost when a discrete pdf, Q, is used to approximate a

known discrete pdf, P, and is given by

dKL ¼
X

x
log

PðxÞ
QðxÞ

� �
PðxÞ; ð5:10Þ

where x denotes the set of all permissible values of the

observed data for which Q(x) = 0. We let P equal the empiri-

cal pdf obtained from a histogram of the stochastic results

and evaluate the numerical integrals of equation (5.9) over

the same grid spacing to obtain Q. Figure 11 shows the vari-

ation of the KL divergence with t/tR for a CRW with sd ¼

0.4. The divergence increases more rapidly with t/tR over

the range considered for RASs than for AACs. In both

cases, the observed agreement is poor for t/tR � 2 (compare

with figure 10). The small residual KL divergence observed

when t/tR is very small is because of stochastic fluctuations

in P, and decreases as the number of simulation iterations is

increased (data not shown).
6. Conclusions
In this paper, we have considered the effect of the sampling

frequency on observed quantities of interest arising from an

unbiased, constant-speed CRW in two dimensions. We

studied two variants of the CRW, denoted the run-only and

run-and-stop models. The CRW is a very versatile framework

for modelling the motion of organisms. For example, it has
previously been used to incorporate biased motion owing

to the influence of gravity and light [19], stationary phases

[13] and prokaryotic biochemical signalling pathways [28].

Sampling frequency is an important factor, as it has a

strong effect on many of the quantities that researchers are

commonly interested in extracting from tracking data [4,12].

For this study, we focused on the two most widely applicable

quantities: apparent speeds and angle changes between suc-

cessive observations. We initially derived results that are

valid at long sampling intervals, based on the assumption

of a diffusive process. These provided a useful consistency

check for the ensuing work. We next analysed intermediate

sampling interval regimes using simulated tracks, before

using mathematical methods to describe the run-only

model when the sampling frequency is high.

In our simulation study, we have extended the work of

Codling & Hill [12] by investigating the effect that sampling

frequency has on the observed pdf, rather than on common

summary statistics. Our work represents a significant

advance as summary statistics, while undoubtedly useful

information, may hide the complex nature of the sampling

effect. For example, figure 4a shows that the distribution of

RASs is skewed significantly towards lower speeds, a result

not evident by considering the mean and standard deviation

alone. Furthermore, several statistical tests based on the

empirical cumulative distribution function exist to quantify

the compatibility of observed data with a reference distri-

bution [29]; this is not possible with only knowledge of

summary statistics. For example, Kareiva & Shigesada [14]

develop a method to test whether the observed motion in

their tracking data fits a CRW model based on the MSD.

The authors assess the compatibility of the data with the

CRW by direct comparison of theoretically predicted and

empirically observed MSDs, yielding no information relating

to the statistical significance of the match. In more recent

tracking studies, sufficient data have been available to

perform a more in-depth comparison, using the full distri-

bution of speeds and angle changes [30]. We therefore

propose that the present study enables a robust test of the

statistical compatibility of these observables with the CRW

model, taking sampling effects into account. Further work

is required to test this conjecture on real tracking data.

The effect of incorporating a stationary reorientation

phase into the CRW has not been considered before. This

model of motion is applicable to many species that are amen-

able to study using tracking methods. Examples include

bacteria such as R. sphaeroides that reorient by stopping the

rotation of their flagellum [31], flying insects that pause on

landing sites [14] and ruminants that pause at foraging sites

[4,17]. We demonstrated that the inclusion of stationary

phases in the underlying motion leads to complex variation

in the observed standard deviation of RASs, and suggested

an explanation based on consideration of the evolution of

the RAS pdf. This again highlights the utility of analysing

the full pdf of observed quantities.

An open question arising from the simulation study was

how to infer the true distribution of angle changes. Since

sampling intervals do not in general coincide with reorienta-

tion events, we cannot simply ‘read off’ the result from a

histogram of framewise angle changes. This provided the

motivation for our analytic study in §5, in which we derived

a mathematical description of the sampling process and its

effect on the observed data in the limit of rapid sampling.
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In previous studies, the analytic forms for the first, second

and fourth apparent displacement moments after a specified

number of reorientation events have been determined [14,18].

While these results are related to the problem considered

here, they are not directly applicable to a study of the effect

of sampling frequency, as the independent variable being

considered is the number of reorientation events, not the

sampling interval. Furthermore, to our knowledge no studies

have derived an analytic description of the pdf of AACs. In

contrast, our method permits a description of the variation

of the full pdfs of both RASs and AACs with the sampling

interval for any given pdf of underlying angle changes, pro-

vided it is possible to integrate equation (5.9) numerically.

Additional investigation showed that our analytic approxi-

mation agrees well with simulated data for sampling

intervals corresponding to t=tR � 1. This is a wider range

of values than expected based on consideration of the prob-

ability of more than one reorientation event occurring in a

given sampling interval. This suggests that our result for the

pdf of RASs and AACs conditional on a single reorientation

event is similar to the pdfs conditional on a greater number

of reorientations, which we discounted for the purposes of

this study. As a result, many tracking experiments are sam-

pled sufficiently rapidly that our results are applicable [1,4,9].

Our approach gives important new mathematical insight,

and lays the groundwork for describing more complicated

motion models.

The CRW model considered in this study is two-

dimensional; further work is needed to investigate whether

the findings are significantly different in the case of a three-

dimensional CRW. This may be a more realistic model for

some types of motile behaviour, such as the motion of air-

and water-borne organisms. The tracking in these cases
may still be two-dimensional owing to technical constraints

[19], in which case it is necessary to determine the combined

effects of sampling interval and projection of the observed

motion onto a plane.

An important next step in this work is to consider the role of

noise, which is present in all tracks obtained experimentally.

The sources of noise depend on the application, for example,

measurement error in acquiring position fixes [4,32] and

errors in computing cell centroids in microscope tracking

studies [33,34]. Further work is required to determine the com-

plex interplay between experimental noise and the sampling

frequency, which is beyond the scope of this study. Several

studies have explicitly considered the joint effects of noise

and sampling rate on observed tracks, for example [4,34–36];

however, to our knowledge, no studies exist in which these

joint effects have been systematically analysed using a CRW

movement model. The simulation approach presented in §4

may be extended in a straightforward manner to include

noise, for example by modelling measurement error as a

Gaussian process [4]; this represents ongoing work.

A further area in which research is required is in more com-

plex CRW models of motility. For example, our assumption

that organisms move with a constant speed is not upheld in

many species of bacteria [37], mammals [4] and fish [38].

More work is needed to elucidate the effects of sampling rate

when organisms move with varying speeds. It remains to be

seen whether it is possible to extend the analytic approach

developed in the current study to incorporate this effect.
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