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Abstract Mathematical modeling in cancer has been growing in popularity and 
impact since its inception in 1932. The first theoretical mathematical modeling in 
cancer research was focused on understanding tumor growth laws and has grown to 
include the competition between healthy and normal tissue, carcinogenesis, therapy 
and metastasis. It is the latter topic, metastasis, on which we will focus this short 
review, specifically discussing various computational and mathematical models of 
different portions of the metastatic process, including: the emergence of the meta-
static phenotype, the timing and size distribution of metastases, the factors that 
influence the dormancy of micrometastases and patterns of spread from a given 
primary tumor.

Abbreviations

MCs Markov chains
CA Cellular automata
EMT Epithelial-mesenchymal transition
CTCs Circulating tumor cells
ODEs and PDEs Ordinary and partial differential equations
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9.1  Introduction—Why Use Mathematical Models?

Metastasis accounts for 90 % of cancer related deaths [1], and the shift from local-
ized to metastatic disease represents a paradigm shift for clinicians and patients 
alike as the strategy for therapy changes from aggressive and localized, to systemic 
and generally palliative. Despite its importance, this complex multi-step process 
remains poorly understood. With the exception of studies showing genetic correla-
tions between primary sites and sites of metastatic arrest [2, 3], there is little under-
standing of the driving principles behind this process. Our lack of knowledge is, for 
example, reflected in the fact that self-seeding, a process whereby a primary tumor 
releases metastatic cells that return to the primary tumor and accelerate its growth, 
is hypothesized to be a driver of primary growth [4], yet our current knowledge of 
the metastatic cascade is insufficient to determine the validity of this claim. For 
such a multi-faceted process, only through a combination of experimental and theo-
retical investigations can we hope to gain a comprehensive mechanistic understand-
ing, and therefore uncover sensitive points where we can intervene and prolong the 
life of affected patients.

9.2  Where Experiments Cannot Go: Opportunities  
for Mathematical Models

The strength of experimental model systems is their ability to provide clear an-
swers to specific questions. The strength of mathematical models is their ability to 
combine disparate experimental data and coalesce them into a coherent framework, 
which can then be used to predict the overall dynamics of the system in question. In 
particular, mathematical models allow for identification of the parameters to which 
the system is the most sensitive, and also allow for logical reasoning beyond what 
experiments can provide. In this sense, mathematical models of metastasis should 
be playing a larger role in the research in this area as experimentation is typically 
limited to one or a few steps in the cascade. Many mathematical models to date, 
however, have also concentrated on only a subset of the steps of the cascade. While 
these models are useful, as they have quantified the impact of parameters within 
the models of each step, they have yet to yield any fundamental additions to our 
knowledge of the process itself.

To definitively answer questions in biology, the burden of proof falls on the ex-
perimental scientists. To connect the disparate experimental ‘truths’ into a coherent 
framework however, is within the purview of theorists. Further, when theory has 
been established, but necessary experimental techniques have yet to be developed, 
theory can again step in to advance science by making specifically testable pre-
dictions—vastly shrinking the set of possible experiments. This dual role is best 
understood by thinking of where mathematical/computational science fits into the 
scientific method. The place of theory, typically called mathematical or theoretical 
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biology, lies between biological conclusions and new hypotheses (Fig. 9.1). The 
central goal of this discipline is to create rigorous frameworks, beyond linear ‘car-
toon’ models of mechanism, through which specific predictions and hypotheses can 
be generated. Bioinformatics, another computational field in biology, largely works 
between experiment and conclusion, helping to make sense of the vast amounts of 
data that come out of modern day experiments. This review will focus on models 
from the field of theoretical biology.

9.2.1  Model Types: Descriptive vs. Mechanistic Models

Mathematical models of biological systems tend to fall into two broad camps: descrip-
tive and mechanistic. A descriptive model seeks to succinctly encapsulate the behavior 
of a system so that future behaviors can be predicted, without regard to the underlying 
processes. These types of models can often be ‘fit’ in their final form by using any one 
of a number of optimization methods. A mechanistic model, on the other hand, is one 
that begins by trying to capture the processes driving a complex system and then builds 
up towards the measurable results. These types of models are more commonly ‘pa-
rameterized’ with low-level experimental data rather than fit to large-scale outcomes.

Fig. 9.1  An overview of the scientific method, and where theoretical/computational scientists fit 
into this process in the life/medical sciences and biology. Theoretical biology is the science of put-
ting together existing knowledge into specific theoretical frameworks which can be used to make 
predictions and generate further hypotheses. Bioinformatics is a statistical science used for helping 
scientists make conclusions when faced with large data sets and non-linear relationships. Dialogue 
between multi-disciplinary scientists helps shape meaningful experiments. Laboratory technique 
translates experimental constructs into meaningful results
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Both approaches can provide useful insights but since we want to connect direct-
ly with experimental measurement and drive novel experimentation, mechanistic 
models are where we need to focus our attention. This does not mean that we should 
build all-encompassing mechanistic models of every process that we think is im-
portant in metastasis—since this would only provide us with a complex caricature 
of the real system with no additional understanding. Instead, we need to consider 
key processes and describe them in a level sufficient to gain insight, which should 
be tied to the resolution of the experimental data that might be used to drive and 
validate such models in the first place. Mirroring experimental observation should 
always be a key part of model validation but ultimately if a model is to be useful it 
should also make predictions that go beyond current observations, and further drive 
our understanding and inquiry.

To this end, our group, and others, have begun to build models more like those 
typically built to understand complex engineering systems, into which the more 
detailed models can eventually be embedded when the time comes for specific pre-
dictions to be made. Until that time, these higher level models serve to shed light on 
areas of our knowledge which are most severely lacking, and provide experimental 
questions to fill those gaps in a systematic manner.

9.2.2  A Note on Mathematical Tools: Stochastic vs. Deterministic 
Models

Like experimentalists, mathematical modelers have many tools at their disposal. 
These tools comprise a wide spectrum, ranging from classical ‘pen and paper’ mod-
els, to those requiring powerful computers to iterate, and everything in between. 
There are many ways to distinguish these models from each other, but likely the most 
telling dichotomy is the difference between stochastic and deterministic models.

A deterministic model is one in which there is no randomness: the mod-
el will behave exactly the same way each time it is solved. This does not 
mean that the model is necessarily predictable: indeed, many determin-
istic models exhibit wild fluctuations and even chaotic results, exhibit-
ing strong dependence on even small changes in initial conditions or param-
eter values. The strength of these models is that they allow us to understand 
all the possible behaviors of a system and in which parameter regimes those 
behaviors occur. Examples of deterministic models discussed in this re-
view include ordinary and partial differential equations (ODEs and PDEs), 
which describe how key quantities of interest, such as chemical concentrations 
or cell densities, vary continuously with one (in the case of ODEs) or many (for 
PDEs) independent variables. Well-mixed systems, where space is not consid-
ered, are typically modeled with ODEs where the dependent variables evolve in 
time; PDEs are utilized when there is also spatial heterogeneity, or differences in 
‘age’ or differentiation status across the population modeled.

J. G. Scott et al.
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A stochastic model, on the other hand, has randomness written in to the sys-
tem itself. This randomness can be incorporated into the model in many different 
ways. Models can represent many individual entities which can interact with one 
another or move in ways defined by probabilities. Alternatively, noise terms may 
be explicitly incorporated into existing deterministic descriptions. As compared 
to their deterministic counterparts, these sorts of models are often better repre-
sentations of the underlying biological processes, which do seem to be governed 
at some level by randomness, and the results of any given simulation of a model 
can be quite different from another, again mimicking biology. Gaining a deep 
understanding of these models through analysis is, however usually much more 
difficult, and we must often rely upon averages of many realisations to gain an 
understanding of the system, or on analysing the average (“mean-field”) behavior 
of the system, effectively returning to a deterministic description. Examples of the 
types of stochastic model discussed in this review include Markov chains (MCs), 
cellular automata (CA) and Moran processes. MCs are stochastic processes in 
which a population is subject to a time-independent series of transitions, from one 
state to another in a ‘memoryless’ fashion, that is without regard to the history of 
the system [5]. CA are discrete time and discrete ‘cell’ based models. Individual 
cells, often called ‘agents’, are programmed with simple rules and simulated as 
they interact in a computational domain. Complex behaviors often can emerge 
from simple rule sets and limited numbers of agents [6], and while these models 
are not necessarily stochastic by nature, the ones described in this review are, by 
virtue of their rules. The Moran process [7] is a stochastic process of birth and 
death in which a well-mixed population of two (or more) species compete in a 
manner meant to mimic Darwinian selection.

In the science of metastasis, all of these model types have been, and will 
continue to be, utilized for different applications. This is particularly relevant as 
there are a number of steps in the metastatic cascade (outlined in Fig. 9.2) which 
span multiple scales, both spatial and temporal. In the remainder of this brief 
review, we will cover the most relevant mathematical models of the metastatic 
cascade and highlight the ways in which these models have affected our knowl-
edge, future experiments and clinical decision making. We will begin by describ-
ing a series of mathematical models built around a specific experimental murine 
metastasis model which was able to give insight into several key, unmeasurable 
parameters. We will then describe a series of models focussed on the genetic 
emergence of metastasis which generates a number of hypotheses, but can not 
yet be tied to experimental data. We then discuss models aimed at understand-
ing the size distribution of metastases at the time of diagnosis, several of which 
offer the possibility of connecting to patient-specific data. We then review sev-
eral models aimed at understanding the temporal patterns of recurrence through 
the dormancy mechanism, and we conclude by reviewing some recent network 
models of metastasis aimed at understanding the anatomic patterns of metastatic 
spread within the body.

9 Mathematical Modeling of the Metastatic Process
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9.3  Models of Experimental Systems

One of the first attempts to model the metastatic process is described in a series of 
papers by Liotta and colleagues [8–10]. In this work, the authors built an experi-
mental system and mathematical models in parallel in an attempt to better define the 
parameters of each step in the process. The experimental system considered was a 
mouse model of fibrosarcoma that readily formed pulmonary metastases, via both 
implantation and intravenous injection. In this way, the authors were able to accu-
rately control many parameters, and use the results to obtain estimates for those that 
could not be measured directly.

The authors derived an ODE model to describe how the population of tumor 
cells changes in time in each of several key ‘compartments’ as a result of flux be-
tween them. Each of the compartments in their mathematical model represents a 
discrete phase of the metastatic cascade, illustrated schematically by the blue boxes 

Fig. 9.2  An overview of the metastatic process. Each step in the cascade represents an opportunity 
for experimental systems to be designed. Understanding the temporal dynamics within each step, 
and how the steps join together, however, is a challenge that also requires mathematical modeling. 
Cells from typically heterogeneous primary tumors grow (a) and some ( blue and purple) are able 
to intravasate (b). Once in the vascular system, cells are subject to physical forces and selection 
of flow and filtration (c) until they extravasate (d) and colonise a foreign tissue bed (e). Tumors at 
this final stage will be distributed in size based on temporal and other factors (f) and will be made 
up of only certain clones from the primary tumor dependent on biological factors
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in Fig. 9.3 [8]. Numbers of cells measured from the murine experimental system 
were used to parameterize this mathematical model. The model was then used to 
predict the effect of a number of perturbations to the system including: tumor resec-
tion, tumor trauma, vessel growth inhibition, lung vessel damage and inhibition of 
intravasation. Each of these perturbations was simulated to predict response and 
the experimental system was then assayed with good correlation, giving significant 
insight into the otherwise unmeasurable aspects of the system and the mechanisms 
driving the response to the perturbations.

As discussed previously, biological systems are often ruled by stochastic pro-
cesses at the cellular level, and in the case of metastasis, this is certainly the 
case. To this end, Liotta et al. developed and analysed a MC model of a subset 
of the above system [9]. The authors additionally considered that cancer cells do 
not only travel and arrest as single cells, but are found in clumps of varying size 
[11]. The model contains three compartments: tumor cell clumps in the circula-
tion, tumor cell clumps arrested in the pulmonary capillary bed, and pulmonary 
metastatic foci. In agreement with experimental data, the model assumes that 
the entry rate of clumps is size-dependent, following a decaying power-law (i.e. 
the number of clumps of size n scales as n-α, α = 2), that the clump death rate is 
inversely proportional to size, and the colonisation rate increases linearly with 
clump size. The validation was carried out in the fibrosarcoma mouse model, 
where cancer cells were injected intravenously and the animals were sacrificed 
10–30 days post-implant. The model showed good agreement both with respect 
to the number of macroscopic metastatic foci as a function of time, and the time-
dependent probability of finding a metastasis-free animal. An interesting conclu-
sion from the study was that larger clumps have a strong impact on metastasis 
formation, and hence that disassociating agents that reduce clump size could 
have therapeutic effect.

Fig. 9.3  Compartment model developed by Saidel et al. [8]. Each of the blue boxes represent 
measurable quantities from the in vivo model, while the ovals represent quantities inferred from 
the model
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A follow-up study further simplified this mathematical model to account only for 
arrest and foci formation, without regard to clump size [10]. Interestingly, the sharp 
transition in the metastasis-free probability remained, suggesting that this phenomenon 
is due only to the stochastic nature of arrest and foci formation. If these results can be 
extended to patients they could represent a novel method for assessing the likelihood 
of micrometastatic lesions that eventually could become clinically relevant.

9.4  Models as Abstractions: Insights into Unmeasurable 
Processes

In the previously discussed models, each portion of the model corresponded di-
rectly to an aspect of an experimental system. In this way, the authors were able to 
use the strength of each system to gain a deeper understanding of the mechanisms 
driving each portion of the well-controlled process. Many aspects of the metastatic 
process in the clinic, however, are not amenable to this sort of methodology, and 
cannot be measured/quantified directly. This situation, where measurements are not 
yet able to be made, is one where mathematical models can play an influential role 
and relieve the impasse at which we would otherwise be. A specific case of this is 
in tumor genomics: we know that genetic mutations play a role, but we are not yet 
able to measure the dynamic changes of a tumor genome within a patient over time.

9.4.1  Evolutionary Models: Emergence of Metastatic Clones

The emergence of metastatic disease has largely been attributed to cells gaining 
functions specific to intravasation (Fig. 9.2). This gain of function has been linked 
to genetic mutation, with large numbers of specific genes being implicated. More 
generally, the epithelial-mesenchymal transition (EMT) has been identified as a 
process (likely polygenic) involved in the acquisition of metastatic potential [12].

Experimental studies have shown that EMT (among other phenotypic changes) 
is important for the development of metastatic clones [13], but as measuring the 
individual mutations within a patient’s tumor over time remains beyond the scope 
of experimental science, understanding the dynamics of this process is a ripe ques-
tion for theoreticians. To this end, a number of models have employed a stochastic 
description called the Moran process [7] to study the genetic landscape of a tumor’s 
cellular population over time. In this process, populations of constant size consisting 
of individual agents (cells), usually of two distinct (geno)types, are grown in compe-
tition with one another under selection. The Moran process was originally designed 
to mimic Darwinian selection, where cells of a given type are chosen randomly 
to divide or die based on an ascribed fitness, usually linked to division rate. The 
population dynamics are then simulated, with the aim of understanding long-term 
behavior (coexistence or dominance by one population). These models serve as ex-

J. G. Scott et al.
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cellent platforms through which to understand the emergence of new clones within a 
population, much like the emergence of EMT, or any other metastasis-specific trait.

To study the dynamics of the emergence of the metastatic phenotype, Michor 
et al. [14] proposed a model of tumor growth, based on the Moran process, that 
took account of mutation to a metastatic phenotype. The authors modeled a hetero-
geneous tumor made up initially of cells without the ability to metastasize (type-0, 
fitness r0). At each time step, a cell is randomly chosen to divide (biased by fitness) 
at which time the cell has a probability u of producing mutated offspring that can 
metastasize (a type-1 cell) with fitness r1 (where a fitness of 1 is neutral). This 
mutated offspring also now has a probability q of being ‘exported’ from the popu-
lation to initiate a metastatic tumor of their own (Fig. 9.4). Results for a range of 
parameter combinations were calculated both analytically and by exact stochastic 
simulation. The authors found that initiating tumors with different parameter com-
binations could lead to qualitatively different outcomes: the model predicted that 
metastatic clones are most likely the result of advantageous mutations that will 
occupy the majority of the primary tumor. Indeed, for a mutation that confers meta-
static potential and simultaneously a lower fitness in the primary tumor, there must 
be approximately a million-fold increase in metastatic potential for it to generate the 
same number of metastases in a patient.

Dingli et al. [15] extended the previous model by Michor et al. [14] by allowing 
tumors to grow above a constant size, and incorporating a dependence on tumor 
size in the export probability. The authors suggested that certain types of mutations 
confer a fitness advantage ( r1 > 1) and metastatic ability (e.g. mutations in RAS and 
MYC), and can dominate the tumor and seed many metastases; while other types of 
mutations (such as MSG) have a lower relative fitness as compared to non-mutants 
( r1 < 1) and can therefore co-exist only in small populations and can even be ‘ex-
ported’ entirely, depending on the export rate ( q). This insight provides an explana-
tion for the situation in which there exists metastatic disease without evidence for 
cells with metastatic potential in the primary, or in the more extreme case where 
there is no evidence of a primary tumor at all [16].

To consider this model in a more clinically grounded context, Haeno and col-
leagues [17] studied a new metric, total tumor burden, which they tied to survival. 
In this study, the aforementioned model was extended and the timing of interven-
tions, which included surgery (removal of a fraction of type-0 and type-1 cells; 
those residing in the primary tumor) and chemotherapy (affecting birth and death 
rates for all cells) was incorporated. The authors used threshold values for total 
tumor burden to correlate with time of diagnosis and patient death and investigated 
the effect of each of the therapies. They found that, depending on how a simulated 
patient’s tumor was situated in parameter space (the relative rates of acquisition of 
the metastatic phenotype, u, ‘export’ of the metastatic cells to foreign stroma, q, 
and the birth-death balance ( r0, r1) of each cell type), qualitatively different out-
comes could be obtained from therapies given at different times. While currently 
beyond our abilities to tie to clinical data, this model served to illustrate how such 
a technique could shed light on the metastatic processes in play for a patient, and 
potentially influence treatment choice.

9 Mathematical Modeling of the Metastatic Process
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9.4.2  Metastatic Colony Size Distribution

At present there is a single designation in the standard clinical cancer staging sys-
tem (the TNM system, which describes the primary Tumour, any positive lymph 
Nodes and any Metastasis) to describe metastatic disease: either M0 for a patient 
with no observable metastasis, or M1 for a patient with any amount of metastatic 

Fig. 9.4  The Moran process as utilized to study the emergence of metastasis [14–16]. The primary 
tumor ( left) is allowed to grow and turn over, the population changing based on the probability 
of mutation, u, and the relative fitness of the two cell types, r0 and r1. As cells gain the ability to 
metastasize (mutate into type 1 cells) they also have the opportunity, at rate q, to be exported and 
begin their own colonies. At steady state, the primary tumor can be composed of either all type 
1 cells (dominance, when r1 > r0) or a coexistence with the proportions of cells governed by the 
mutation u and the fitness ratio r1 ∕r0
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disease; yet there can be great variation in both size and location of metastases from 
one patient to another. Historically, patients with any amount of metastatic disease 
have only been offered localized treatment at those metastatic sites if they caused 
a specific problem, but not with curative intent (with several specific exceptions, 
e.g. solitary brain metastasis in lung cancer). This paradigm is beginning to change 
with the advent of the concept of ‘oligometastasis’ describing the situation where 
a patient may have only a small number of metastases, a number worth treating. 
While only a small number of trials have been conducted [18, 19], this approach is 
gaining in popularity with the increased availability of highly targeted, minimally 
invasive therapeutic modalities such as stereotactic body radiation therapy. The 
main problem confronting this movement, however, is our lack of understanding of 
which situations represent ‘oligometastasis’. That is, which patient with one obvi-
ous metastatic lesion actually has many other, subclinical ones, and which does not? 
To answer this question, a number of mathematical models have been developed in 
an attempt to understand the distribution of sizes of metastatic lesions in time.

One such study is that of Iwata et al. [20], in which computed tomography (CT) 
images of spatially separated colonies of hepatocellular carcinoma in a patient’s 
liver were fit to a novel PDE model of colony size. In their system the population 
of tumors was modeled as a distribution of colony size over time. Each colony was 
assumed to grow by a saturating growth function (specifically Gompertzian growth, 
though any growth law could have been used [21]) and release metastatic cells at 
a rate proportional to the volume of the colony raised to some power, effectively 
representing the fractal dimension of the blood supply of the tumor [22, 23].

Using three successive scans of the patient’s tumor progression without therapy, 
and several after initiation of chemotherapy, the model parameters were fit and 
predictions about the pre-diagnosis time course could be made. Further, and likely 
of greater import, predictions about subclinical metastatic burden at the time of 
diagnosis were made. This sort of information, which is currently not available to 
clinicians, represents a class of personalized information about a patient’s disease 
that does not rely on genomic information, and could be measured for any patient 
who already has scans taken during the course of standard therapy. This approach, 
of using scans which are ‘standard of care’, is being utilized in primary glioblas-
toma and is approaching clinical trials [24], but the model of Iwata et al. represents 
the only such attempt, to our knowledge, in metastatic disease.

The same question that was addressed with a deterministic model by Iwata et al. 
[20] has been addressed using a number of stochastic modeling techniques. Borto-
szyinski et al. [25], Hanin et al. [26] and Xu et al. [27] used similar growth laws 
as discussed by Iwata et al. and then derived expressions called joint distribution 
functions, which predicted the probability of there being a given distribution of 
metastatic colony sizes at a given time. The authors then each validated their models 
against a single patient’s data. The models, after fitting, were also able to predict 
several salient features about the patients’ pre-diagnosis condition and the natural 
history of their disease.

9 Mathematical Modeling of the Metastatic Process
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9.4.3  Understanding Temporal Recurrence Patterns

9.4.3.1  Tumor Dormancy

The mechanisms and timing of distant recurrence of cancers after treatment of the 
primary tumor remain difficult to study in the clinic. It is widely believed that most 
patients have sub-clinical micrometastatic disease at the time of diagnosis, the dis-
tribution of which we discussed in the previous section, but that only some of them 
will go on to develop overt metastasis. The reasons for this are largely unknown 
even though there is a large literature [28], both experimental and theoretical, sur-
rounding the period of so-called ‘tumor dormancy’.

After definitive therapy for most primary cancers, the majority of distant recur-
rences occur in the first two years, mostly due to micrometastatic disease that was 
undetected at the time of primary therapy that eventually grew to a detectable size. 
Demicheli and colleagues [29] however, noted a bimodal distribution of relapse 
times for patients treated in the Milan trial of primary surgery for breast cancer. 
One peak was in the expected range, at 18 months, while the other was a broader 
peak centered at 60 months after surgery. To understand this long lag time, Retsky, 
Demicheli and colleagues [30, 31] proposed a new mechanism of cancer dormancy 
and recurrence. They posited that micrometastases that exist at the time of surgery 
can be activated by the subsequent inflammation into a non-dormant state. To il-
lustrate their hypothesis they built a stochastic model of micrometastasis dormancy 
in which metastatic sites exist in one of three states: dormant single cells, colonies 
arrested at the avascular limit, and growing colonies. In their simulations they al-
lowed for stochastic transitions between these states (assuming the transition was 
to a larger state) and showed that this model could recapitulate the unexpected bi-
modal distribution of the large clinical trial—but only if they allowed for a transi-
tion ‘bonus’ added at the time of surgery (Fig. 9.5). Their results have been used to 
argue for differing chemotherapy schedules as well as suppression of inflammation 
at the time of primary surgery [32, 33].

Another explanation for variable dormancy times is related to the cancer stem 
cell hypothesis. This well-known hypothesis has been modeled extensively for a 
number of different tumors (for a review, see Michor [34]), but has only received 
limited attention in connection to dormancy and metastasis. Enderling and col-
leagues pioneered this work and showed, using a stochastic model of cellular hi-
erarchy within a tumor, that single cancer stem cell-driven solid microtumors may 
undergo long periods of dormancy despite cellular activity [35]. The length of the 
dormancy period depends on the complex interplay between stem cells and their 
non-stem cancer cell counterparts. Specifically, they found that impaired cancer 
stem cell migration, as well as large numbers of non-stem cancer cells, increase 
population dormancy times. Higher non-stem cancer cell death rates were corre-
lated with shorter dormancy times and, paradoxically, with increased tumor growth 
in the long term [35–37]. This ‘tumor growth paradox’ was also explored in an ana-
lytical model by Hillen et al. [38] and was put forward as an explanation for some 
of the failures of therapy [39].

J. G. Scott et al.
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9.4.3.2  Primary-Secondary Communication

The idea that primary tumor factors can affect the growth of metastases has also 
been modeled by considering communication between the primary tumor and sec-
ondary metastatic deposits. Boushaba and colleagues [40, 41] considered an anti-
angiogenic factor secreted by the primary which would keep spatially separated, 
yet local, metastases in a dormant state and reported a critical distance window in 
which this effect was active. This result is difficult to interpret in hematogenous 
metastasis as the idea of a diffusion ‘distance’ for any factor secreted by the pri-
mary is not trivially understood because of the fluid dynamics involved in blood 
flow as compared to diffusion through tissue. A different study, by Eikenberry et al. 
[42], considered the effect of the primary on metastatic deposits through interac-
tions mediated by the immune system. They modeled the removal of the primary 
as a decrease in immune stimulus, which in turn could promote metastatic growth. 
A mechanism-agnostic model analyzed by Diego et al. showed primary-secondary 
communication to have an effect on metastatic growth, but only in a very small 
region of parameter space [43], suggesting that, while possible, this is a rare phe-
nomenon. While there is a growing theoretical literature on this subject, the clinical 
data to support its import are lacking and the data in biological model systems have 
been shown in only a few studies, reviewed by Peeters et al. [44], and therefore it is 
difficult to draw any solid conclusions at this time.

Fig. 9.5  The model posited by Retsky et al. [30]. The primary tumor ( red) is allowed to grow and 
randomly seed single metastatic cells. The single cells can switch state stochastically to become 
growing colonies which are constrained by an avascular limit ( P1,2) or which are vascularized 
( P1,3). In order to fit the results of this model to bimodal recurrence pattern of the Milan trial [29], 
they needed to effect a ‘bonus’ to the transition probabilities at the time of surgery ( S), which led 
to the hypothesis that there is a metastasis promoting role by peri-surgical inflammation
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9.5  Making Sense of Existing Data on Patterns of Spread

We have now discussed mathematical models built with specific experimental sys-
tems in mind, ones designed to help explain some unmeasurable quantities in exist-
ing patients and ones for which no experiments can yet be done. The final class of 
models that we will discuss were derived in order to analyze existing, population 
level data of metastatic spread, with the aim of making predictions about the most 
likely routes of spread. The aim of these models is not to examine and quantify the 
involved substeps (such as the models by Liotta et al. [8–10]), but instead they focus 
on the ‘global’ system dynamics.

9.5.1  Metastasis Dynamics on Networks

Understanding the patterns of spread of a particular primary tumor can help guide 
clinicians in their decision making for patients. This knowledge is useful for follow 
up purposes in that we can target our interrogations to the organs most likely at risk 
so as to minimize testing and maximize our chances of early detection of recurrence. 
Further, understanding the temporal patterns of recurrence helps us to structure our 
follow up schedule and to understand when to employ the greatest vigilance, as 
early detection of recurrence gives the best chance of successful salvage therapy.

This temporal aspect of metastatic spread was captured in a model by Chen 
et al. [45], which made use of a large database of Medicare claims. The data were 
such that, for each patient with a primary tumor, a temporal sequence of metastatic 
events labeled according to anatomical location were recorded. The authors ana-
lyzed the data by calculating a time-dependent hazard as a function of the primary 
and metastatic site, and could observe how, given a primary in a certain location, 
the risk of developing certain metastatic lesions developed over time. They also 
formulated a statistical model with the ability to predict the location of the pri-
mary tumor given a sequence of metastatic sites, and the reverse: given a certain 
primary, predicting the most typical sequence of metastatic sites. The accuracy of 
the above predictions is, however, not yet of a quality that makes them a clinically 
relevant tool (the true positive rate of primary site prediction was 51 %), although 
the study shows the potential of this kind of temporal data when mixed with a 
network based approach.

In another effort to better understand the patterns and timing of metastasis, New-
ton et al. built and analyzed a MC model of metastatic patterns of primary lung 
cancers [46, 47]. By focusing on a specific cancer, rather than patterns overall, the 
authors hoped to be able to infer more about the mechanisms of metastasis than sim-
ply quantifying the patterns. When building this model, they began by construct-
ing a network of connected organs and made the assumption that any transition is 
possible as a direct step, that is: a cancer can move directly from any organ to any 
other organ (the network connectivity is ‘all to all’). Once this network was built, an 
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iterative, random method called the Monte Carlo method [48] was used to solve for 
a series of transition probabilities, which would then lead to the steady state defined 
by a large autopsy study of untreated patients [49]. The quantitative understanding 
provided by these studies goes beyond the empirical understanding clinicians have 
about patterns of spread from retrospective studies, and allows for a more detailed 
analysis of the parameters and the dynamics than is possible without these methods.

The most important insight gained from this approach was that certain sites, in 
the case of primary lung cancer, act differently than others, and that these differenc-
es affect the metastatic patterns of the disease as a whole. Specifically, Newton et al. 
[47] identify the adrenal gland and kidney as ‘spreaders’, which, when colonized 
by metastases, significantly increase the probabiliy of further organs becoming in-
volved. They also identified regional lymph nodes, the liver and bone as ‘sponges’, 
temporally suppressing metastasis in other sites when colonized.

9.5.2  Embedding Anatomically Correct Connectivity

Each of the previous studies which has utilized a network-theoretic approach has 
assumed ‘all to all’ connectivity. In the case of hematogenous metastasis however, 
there is a simple and conserved network architecture (that of the vasculature) that 
significantly reduces the complexity of the problem and further, and more impor-
tantly, offers the possibility for patient specific modeling and prediction—some-
thing that the previous models are unable to do. Specifically, the human vascular 
network can be written down very simply as a directed network which is weighted 
by relative blood flow and capillary bed filtration. Scott and colleagues recently 
postulated a series of hypotheses based on this anatomically informed network [50]: 
that the specific filtration characteristics of each organ, modulated by the biology 
of the circulating tumor cells (CTCs), would significantly affect the half-life of 
CTCs in the circulation; that one could solve for metastatic patterns by knowing a 
patient’s specific filtration characteristics, much like one could solve for quantities 
within an electric circuit; and that treatment could be personalized, based on CTC 
measurements from each of the vascular compartments, and knowledge of the pri-
mary tumor location.

In subsequent theoretical work, Scott et al. examined the self-seeding hypothesis 
[51] and showed that direct self-seeding (i.e. the primary tumor shedding cells that 
directly returned to the primary), which they dubbed ‘primary seeding’, was many 
orders of magnitude less likely than ‘secondary seeding’, the process by which cells 
from the primary metastasize to a secondary location, grow and then re-shed prog-
eny into the vasculature which then return to the primary. This distinction, while 
difficult or currently impossible to measure in the clinic, is of chief importance, as 
it suggests that there are levels of detail about extant disease that are not captured in 
the previous models. Specifically that the direct organ-organ ‘transitions’ that were 
suggested by Newton et al. [47] could instead be meta-phenomena reflecting more 
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than one transition, meaning that information could be missed concerning the loca-
tion of metastatic colonies.

While we learn about the population-level propensity and temporal dynamics 
of spread from the models of Chen [45] and Newton [46, 47], what is lacking is a 
framework by which these models could be applied to an individual patient. In or-
der to make these models applicable to individual patients, and not just more accu-
rate statements about population level data, we have to be able to tie them to clinical 
measurements. While the model of Scott and colleagues is based on a highly het-
erogeneous selection of experiments [51], the underlying framework is one that can 
be utilized in a patient-specific manner, a non-genetic application of the concept of 
‘personalized medicine’. Specifically, measurements of CTCs could be taken from 
the individual compartments (arterial, venous and portal venous, respectively, red, 
blue and purple in Fig. 9.6) and used to infer the existence of subclinical metastatic 
disease. This information would provide a better understanding of the overall tumor 
burden and would allow for clinical trials to test the utility of organ directed therapy 
or localized therapies, depending on the patient specific clinical data.

9.6  The Way Forward: Communication and Iterative 
Multi-Disciplinary Science

Mathematical models have several roles to play in the clinical and biological sci-
ences. The models presented in this review have highlighted a disparate set of these 
roles, including generation of novel hypotheses, explanation of phenomena which 
could not be described with existing, ‘cartoon’ models, and prediction of patterns 
of spread. We have specifically discussed a number of models of the metastatic 
process which lend insight to several different aspects of the process. These insights 
include: the dynamics of the emergence of metastatic potential, the distribution of 
size of metastases through time, the possible mechanisms responsible for tumor 
dormancy, the patterns of spread of primary tumors, and possible mechanisms driv-
ing these patterns.

These theoretical models never stand alone in the scientific process, but they 
do represent an underutilized tool in the biological sciences, and particularly in the 
study of metastasis. Metastasis remains the most important, lethal, and enigmatic 
part of cancer, and while we have been ‘waging war’ against this disease for nearly 
50 years, our progress has been limited. Indeed, the limited scope of this review, 
which covers all of the theoretical work, to our knowledge, in this critical com-
ponent of cancer progression, highlights the dire need for more work in this area. 
More and more we are finding that scientists working alone are not able to make 
as much progress as they could working together—and indeed this has been the 
case in metastasis. Going forward, scientists from disparate fields, including the 
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mathematical/theoretical disciplines, must open and foster dialogues between one 
another, for if we aim to understand, and therefore interrupt, this complex and non-
linear process, we have to work integrate and work together [52].
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Fig. 9.6  The human vascular system represented as a network to illustrate the filter/flow perspec-
tive. From this perspective, several new quantities can be calculated for an individual patient which 
could be used to tailor therapy in a personalized way. Specifically: η, the filtration fraction, which 
is the proportion of CTCs that are able to traverse a given capillary bed; β, the shedding rate of an 
individual tumor; and, the number of CTCs in the each of the three distinct compartments (arterial, 
red; port venous, purple; and, systemic venous, blue). A knowledge of each of these could, for an 
individual patient, be used to better understand the individual’s risk of metastatic spread

 

9 Mathematical Modeling of the Metastatic Process



206

References

 1. Britta W, Peterse JL, van’t Veer LJ (2005 Aug) Breast cancer metastasis: markers and models. 
Nat Rev Cancer 5(8):591–602

 2. Bos PD, Zhang XH-F, Nadal C, Shu W, Gomis RR, Nguyen DX, Minn AJ, van de Vijver MJ, 
Gerald WL, Foekens JA, Massagu J (2009 June) Genes that mediate breast cancer metastasis 
to the brain. Nature 459(7249):1005–1009

 3. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald 
WL, Massagu J (2005 July) Genes that mediate breast cancer metastasis to lung. Nature 
436(7050):518–524

 4. Norton L, Massagu J (2006 August) Is cancer a disease of self-seeding? Nat Med 12(8):875–
878

 5. Norris J (2008) Markov Chains. Cambridge University Press
 6. von Neumann J, Burks AW (1966) Theory of Self-Reproducing Automata. University of Illi-

nois Press
 7. Moran PAP (1962) The statistical processes of evolutionary theory. Clarendon, Oxford
 8. Saidel GM, Liotta LA, Kleinerman J (1976 February) System dynamics of metastatic process 

from an implanted tumor. J Theoret Biol 56(2):417–434
 9. Liotta LA, Saidel GM, Kleinerman J (1976 September) Stochastic model of metastases forma-

tion. Biometrics 32(3):535–550
10. Liotta LA, Delisi C, Saidel G, Kleinerman J (1977 September) Micrometastases formation: a 

probabilistic model. Cancer letters 3(3–4):203–208
11. Liotta LA, Kleinerman J, Saidel GM (1974 May) Quantitative relationships of intravascular 

tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer 
Res 34(5):997–1004

12. Chaffer CL, Weinberg RA (2011 May) A perspective on cancer cell metastasis. Science 
331(6024):1559–1564

13. Thiery JP (2003 Dec) Epithelial-mesenchymal transitions in development and pathologies. 
Curr Opin Cell Biol 15(6):740–746

14. Michor F, Nowak MA, Iwasa Y (2006 June) Stochastic dynamics of metastasis formation. J 
Theoret Biol 240(4):521–530

15. Dingli D, Michor F, Antal T, Pacheco JM (2007 March) The emergence of tumor metastases. 
Cancer Biol Therap 6(3):383–390

16. Greco FA (2012 Aug) Cancer of unknown primary site: evolving understanding and manage-
ment of patients. Clin Adv Hematol Oncol 10(8):518–24

17. Haeno H, Michor F (2010 March) The evolution of tumor metastases during clonal expansion. 
J Theor Biol 263(1):30–44

18. Milano MT, Zhang H, Metcalfe SK, Muhs AG, Okunieff P (2009 June) Oligometastatic breast 
cancer treated with curative-intent stereotactic body radiation therapy. Breast Cancer Res Treat 
115(3):601–8

19. Milano MT, Katz AW, Zhang H, Okunieff P (2012 July) Oligometastases treated with stereo-
tactic body radiotherapy: long-term follow-up of prospective study. Int JRadiat Oncol Biol 
Phys 83(3):878–86

20. Iwata K, Kawasaki K, Shigesada N (2000 March) A dynamical model for the growth and size 
distribution of multiple metastatic tumors. J Theor Biol 203(2):177–186

21. Gerlee P (2013 Feb) The model muddle: in search of tumour growth laws. Cancer Res 
73(8):2407–2411

22. Baish JW, Jain RK (1998 Sep) Cancer, angiogenesis and fractals. Nat Med 4(9):984
23. Baish JW, Jain RK (2000 July) Fractals and cancer. Cancer Res 60(14):3683–8
24. Neal ML, Trister AD, Cloke T, Sodt R, Ahn S, Baldock AL, Bridge CA, Lai A, Cloughesy TF, 

Mrugala MM, Rockhill JK, Rockne R C, Swanson KR (2013) Discriminating survival outco-
mes in patients with glioblastoma using a simulation-based, patient-specific response metric. 
PLoSOne 8(1):e51951

J. G. Scott et al.



207

25. Bartoszyński R, Edler L, Hanin L, Kopp-Schneider A, Pavlova L, Tsodikov A, Zorin A, Ya-
kovlev AY (2001 June) Modeling cancer detection: tumor size as a source of information on 
unobservable stages of carcinogenesis. Math Biosci 171(2):113–42

26. Hanin L, Rose J, Zaider M (2006 Dec) A stochastic model for the sizes of detectable metasta-
ses. J Theor Biol 243(3):407–417

27. Xu JL, Prorok PC (1998 Sept) Estimating a distribution function of the tumor size at metasta-
sis. Biometrics 54(3):859–864

28. Piez D, Labonte MJ, Bohanes P, Zhang W, Benhanim L, Ning Y, Wakatsuki T, Loupakis F, 
Lenz H-J (2013 Feb) Cancer dormancy: a model of early dissemination and late cancer recur-
rence. Clin Cancer Res 18(3):645–53

29. Demicheli R, Abbattista A, Miceli R, Valagussa P, G Bonadonna (1996) Time distribution of 
the recurrence risk for breast cancer patients undergoing mastectomy: further support about the 
concept of tumor dormancy. Breast Cancer Res Treat 41(2):177–85

30. Retsky MW, Demicheli R, Swartzendruber DE, Bame PD, Wardwell RH, Bonadonna G, Speer 
JF, Valagussa P (1997 Sept) Computer simulation of a breast cancer metastasis model. Breast 
Cancer Res Treat 45(2):193–202

31. Demicheli R, Retsky MW, Swartzendruber DE, Bonadonna G (1997 Nov) Proposal for a new 
model of breast cancer metastatic development. Ann Oncol 8(11):1075–80

32. Demicheli R, Retsky MW, Hrushesky WJM, Baum Michael (2007 Dec) Tumor dormancy and 
surgery-driven interruption of dormancy in breast cancer: learning from failures. Nat Clin Pract 
Oncol 4(12):699–710

33. Retsky M, Demicheli R, Hrushesky WJm, Forget P, De Kock M, Gukas I, Rogers RA, Baum 
M, Pachmann K, Vaidya JS (2012) Promising development from translational or perhaps anti-
translational research in breast cancer. Clin Transl Med 1(1):17

34. Michor F (2008 June) Mathematical models of cancer stem cells. J Clin Oncol: Offic J Am Soc 
Clin Oncol 26(17):2854–2861

35. Enderling H, Anderson ARA, Chaplain MAJ, Beheshti A, Hlatky L, Hahnfeldt P (2009 Nov) 
Paradoxical dependencies of tumor dormancy and progression on basic cell kinetics. Cancer 
Res 69(22):8814–8821

36. Enderling H, Hahnfeldt P, Hlatky L, Almog N (2012 May) Systems biology of tumor dorman-
cy: linking biology and mathematics on multiple scales to improve cancer therapy. Cancer Res 
72(9):2172–5

37. Enderling H (2013) Cancer stem cells and tumor dormancy. Adv Exp Med Biol 734:55–71
38. Hillen T, Enderling H, Hahnfeldt P (2013 Jan) The tumor growth paradox and immune system-

mediated selection for cancer stem cells. Bull Math Biol 75(1):161–84
39. Gao X, McDonald JT, Hlatky L, Enderling Heiko (2013 Jan) Acute and fractionated irradiation 

differentially modulate glioma stem cell division kinetics. Cancer Res 73(5):1481–1490
40. Boushaba Khalid, Levine HA, Nilsen-Hamilton M (2006 Oct) A mathematical model for the 

regulation of tumor dormancy based on enzyme kinetics. Bull Math Biol 68(7):1495–526
41. Kim Y, Boushaba K (2013) Regulation of tumor dormancy and role of microenvironment: a 

mathematical model. Adv Exp Med Biol 734:237–59
42. Eikenberry S, Thalhauser C, Kuang Y (2009 Apr) Tumor-immune interaction, surgical treat-

ment, and cancer recurrence in a mathematical model of melanoma. PLoS ComputBiol 
5(4):e1000362

43. Diego D, Calvo GF, Prez-Garca VM (2012 July) Modeling the connection between primary 
and metastatic tumors. J Math Biol:1–36

44. Peeters CFJM, de Waal RMW, Wobbes T, Ruers TJM (2008 Nov) Metastatic dormancy impo-
sed by the primary tumor: does it exist in humans? Ann Surg Oncol 15(11):3308–15

45. Chen LL, Blumm N, Christakis NA, Barabsi A-L, Deisboeck TS (2009 Sept) Cancer metastasis 
networks and the prediction of progression patterns. Br J Cancer 101(5):749–758

46. Newton PK, Mason J, Bethel K, Bazhenova LA, Nieva J, Kuhn P (2012) A stochastic Markov 
chain model to describe lung cancer growth and metastasis. PloS one 7(4):e34637

9 Mathematical Modeling of the Metastatic Process



208

47. Newton PK, Mason J, Bethel K, Bazhenova L, Nieva J, Norton L, Kuhn P (2013 Feb) Spreaders 
and sponges define metastasis in lung cancer: A Markov chain mathematical model. Cancer 
Res 73(9):2760–2769

48. Diaconis P (2009 April) The markov chain monte carlo revolution. Bullet Am Math Soc 
46(2):179–205

49. Disibio Guy, French SW (2008 June) Metastatic patterns of cancers: results from a large autop-
sy study. Arch Pathol Lab Med 132(6):931–939

50. Scott J, Kuhn P, Anderson ARA (2012 July) Unifying metastasis–integrating intravasation, 
circulation and end-organ colonization. Nat Rev Cancer 12(7):445–6

51. Scott JG, Basanta D, Anderson ARA, Gerlee P (2013) A mathematical model of tumour self-
seeding reveals secondary metastatic deposits as drivers of primary tumour growth. J Royal 
Soc, Interface/Royal Soc 10(82):20130011

52. Anderson ARA, Quaranta V (2008) Integrative mathematical oncology. Nat Reviewscancer 
8(3):227–234

J. G. Scott et al.


	Chapter 9
	Mathematical Modeling of the Metastatic Process
	9.1 Introduction—Why Use Mathematical Models?
	9.2 Where Experiments Cannot Go: Opportunities for Mathematical Models
	9.2.1 Model Types: Descriptive vs. Mechanistic Models
	9.2.2 A Note on Mathematical Tools: Stochastic vs. Deterministic Models

	9.3 Models of Experimental Systems
	9.4 Models as Abstractions: Insights into Unmeasurable Processes
	9.4.1 Evolutionary Models: Emergence of Metastatic Clones
	9.4.2 Metastatic Colony Size Distribution
	9.4.3 Understanding Temporal Recurrence Patterns
	9.4.3.1 Tumor Dormancy
	9.4.3.2 Primary-Secondary Communication


	9.5 Making Sense of Existing Data on Patterns of Spread
	9.5.1 Metastasis Dynamics on Networks
	9.5.2 Embedding Anatomically Correct Connectivity

	9.6 The Way Forward: Communication and Iterative Multi-Disciplinary Science
	References





