
J. Math. Biol. (2014) 68:1199–1224
DOI 10.1007/s00285-013-0665-7 Mathematical Biology

A general reaction–diffusion model of acidity
in cancer invasion

Jessica B. McGillen · Eamonn A. Gaffney ·
Natasha K. Martin · Philip K. Maini

Received: 30 July 2012 / Revised: 10 January 2013 / Published online: 28 March 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract We model the metabolism and behaviour of a developing cancer tumour in
the context of its microenvironment, with the aim of elucidating the consequences of
altered energy metabolism. Of particular interest is the Warburg Effect, a widespread
preference in tumours for cytosolic glycolysis rather than oxidative phosphorylation
for glucose breakdown, as yet incompletely understood. We examine a candidate
explanation for the prevalence of the Warburg Effect in tumours, the acid-mediated
invasion hypothesis, by generalising a canonical non-linear reaction–diffusion model
of acid-mediated tumour invasion to consider additional biological features of potential
importance. We apply both numerical methods and a non-standard asymptotic analysis
in a travelling wave framework to obtain an explicit understanding of the range of
tumour behaviours produced by the model and how fundamental parameters govern
the speed and shape of invading tumour waves. Comparison with conclusions drawn
under the original system—a special case of our generalised system—allows us to
comment on the structural stability and predictive power of the modelling framework.
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1 Introduction

Altered energy metabolism is a near-universal feature of solid cancer tumours, and has
emerged in recent years as a possible phenotypic hallmark (Hanahan and Weinberg
2011) and avenue for novel treatment strategies (Kroemer and Pouyssegur 2008). The
principle of altered metabolism in tumours dates back to the seminal work of Otto War-
burg (Warburg 1930). Warburg observed that rat and human carcinomas underwent
glucose metabolism not by oxidative phosphorylation as in normal cells, but primarily
by glycolysis, a truncated extramitochondrial pathway which produces lactic acid as
a byproduct and is usually reserved for conditions of hypoxia. Although many tumour
cells are subject to chronic or transient hypoxia due to crowding and faulty vascula-
ture (Gatenby et al. 2007; Basanta et al. 2010; Gillies and Gatenby 2007), Warburg
noted that tumours maintained the glycolytic pathway even when presented with suf-
ficient oxygen for oxidative phosphorylation, indicating that the metabolic shift from
oxidative phosphorylation to glycolysis—now called the Warburg Effect or glycolytic
phenotype—was a fundamental change in tumour metabolism (Warburg 1956).

The intervening decades have borne out Warburg’s observations. The glycolytic
phenotype is sufficiently prevalent, for example, for the success of 18fluoro-2-
deoxyglucose positron emission tomography (FDG-PET) imaging, which exploits the
dramatically increased rate of glucose uptake exhibited by tumours expressing the gly-
colytic phenotype (Nieweg et al. 1996). The underlying drivers of the Warburg Effect
remain largely mysterious, however, as it comes with a significant drop in absolute
ATP yield per molecule of glucose compared to the normal oxidation pathway and
generates a toxic lactic acid load. Possibly, uncoupling glycolysis from respiration
enables tumour cells to optimise their catabolic and anabolic pathways for the rapid
biosynthesis required by a programme of intensive growth (DeBerardinis et al. 2008;
McCarthy 2009). Alternatively, or perhaps in complement, by acquiring resistance to
acidification of the microenvironment, tumour cells expressing the glycolytic pheno-
type may gain a selective advantage over neighbouring, acid-sensitive, healthy cells
that enables them to invade the microenvironment (Gatenby and Gillies 2004). This
idea, termed the acid-mediated invasion hypothesis, is the focus of this paper.

The acid-mediated invasion hypothesis is motivated by viewing a tumour as an
invasive species experiencing increasingly harsh selective pressures and undergoing
somatic evolution within the microenvironment of a healthy population (Pienta et al.
2008; Clarke et al. 1990; Kallinowski et al. 1988; Vogelstein et al. 1988; Gatenby 1991;
Fidler and Hart 1982; Nowell 1976); hence, it is amenable to mathematical represen-
tation as a reaction–diffusion system at the tissue scale. While many mathematical
models have been developed to explore the relationships between tumour invasion,
tissue acidity, and cellular metabolism and energy requirements (Smallbone et al. 2005;
Venkatasubramanian et al. 2006; Bianchini and Fasano 2009; Bertuzzi et al. 2010),
Gatenby and Gawlinski were the first to put the acid-mediated invasion hypothesis
into a reaction–diffusion framework (Gatenby and Gawlinski 1996). Operating under
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the assumption that the tumours under consideration were already expressing the
Warburg Effect—that is, tumour metabolism was uncoupled from oxygen supply—
the authors isolated the consequences of the glycolytic phenotype for invasion at the
interface between the growing tumour and the surrounding healthy tissue. Their result-
ing system of non-linear partial differential equations is detailed fully in Gatenby and
Gawlinski (1996), but for convenience we reproduce the equations here, with U (X, T )

denoting the density of healthy cells (a function of the spatial variable X in units of cen-
timetres and time T, measured in seconds), V (X, T ) the density of tumour cells, and
W (X, T ) the concentration of extracellular lactic acid in excess of normal tissue acid
concentrations. The Gatenby–Gawlinski equations (Gatenby and Gawlinski 1996) are:

∂U

∂T
= ρ1U

(
1 − U

κ1

)
︸ ︷︷ ︸

logistic growth

− δ1U W︸ ︷︷ ︸
acid-

mediated
healthy

cell death

(1)

∂V

∂T
= ρ2V

(
1 − V

κ2

)
︸ ︷︷ ︸

logistic growth

+ ∂

∂ X

[
�2

(
1 − U

κ1

)
∂V

∂ X

]
︸ ︷︷ ︸

density-limited tumour
cell diffusion

(2)

∂W

∂T
= ρ3V − δ3W︸ ︷︷ ︸

acid production
by tumour cells
and clearance
by vasculature

+�3
∂2W

∂ X2︸ ︷︷ ︸
chemical
diffusion
of excess

acid

. (3)

Here the subscript ‘1’ represents parameter association with healthy cells, ‘2’ with
tumour cells, and ‘3’ with excess extracellular lactic acid. The constants κ1,2 represent
the tissue carrying capacities, δ1 the rate of acid-mediated healthy cell death, δ3 the
rate of clearance of excess acid by combined buffering and vascular evacuation, ρ1,2
the cell proliferation rates, ρ3 the rate of production of excess acid by tumour cells,
�2 the free-space diffusion coefficient of tumour cells, and �3 the chemical diffusion
coefficient of excess acid. A key feature of this model is the density-limited tumour
diffusion term in Eq. (2), the idea being that a healthy tissue operating at full carrying
capacity will spatially constrain a tumour unless diminished. In Gatenby and Gawlinski
(1996), numerical solution of Eqs. (1)–(3) captured two types of behaviour: invasion
by a heterogeneous tumour consisting of both healthy and malignant cells, and invasion
by a homogeneous tumour killing all healthy cells behind its leading edge. Further,
for sufficiently aggressive tumours the authors predicted the opening of an interstitial
gap between advancing malignant cells and regressing healthy cells, a previously
unreported behaviour, and went on to detect gaps in fixed and flash-frozen head and
neck specimens of human squamous cell carcinomas. This prediction and subsequent
detection of the interstitial gap has been recognised as an elegant illustration of the
benefits of a hybrid mathematical and experimental approach to the study of cancer
(Byrne 2010), and the gap could, perhaps, have diagnostic potential as a marker for
aggressive tumours.
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The Gatenby–Gawlinski model is one of a number of studies suggesting that acidity
may play an important role in tumour progression (Gillies et al. 2012). If true, this could
lead to novel therapeutic strategies. One such treatment currently in development—
buffering therapy—was motivated by the modelling conclusions in Gatenby and Gawl-
inski (1996) and aims to strip a developing tumour of its selective advantage by neu-
tralising the pH of the microenvironment (Robey et al. 2009; Silva et al. 2009; Martin
et al. 2010, 2011; Alfarouk et al. 2011; Robey and Martin 2011). In this paper we aim
to further our understanding of acid-mediated invasion by generalising the Gatenby–
Gawlinski model from the highly aggressive special cases considered in Gatenby
and Gawlinski (1996) to capture a wider range of tumour behaviours which may be
clinically relevant. In the following section (Sect. 2) we augment Eqs. (1)–(3) with
biologically motivated terms. We then look both numerically (Sect. 3) and analytically
(Sect. 4) into the tumour behaviours captured by this extended model, and also exam-
ine the parameter conditions governing the occurrence of interstitial gaps, as these
were considered an important feature of the Gatenby–Gawlinski formulation.

2 Development of the generalised model

To generalise the Gatenby–Gawlinski model and explore the sensitivity of the mod-
elling framework to the inclusion of more biological information, we incorporate two
new elements. First, we add terms representing mutual competition between healthy
and tumour cells for resources needed for growth, which may be postulated to be a
relevant feature of the tumour–host interface where the two cell types are in close
proximity. Second, we conjecture that it is biologically realistic to add a term for acid-
mediated tumour cell death, as tumours are rarely observed at a pH more acidic than
6.3 (Casciari et al. 1992; Park et al. 1999) and so would not exhibit complete acid
resistance. Retaining the notation used for Eqs. (1)–(3), our reaction–diffusion PDEs
are:

∂U

∂T
= ρ1U

(
1 − U

κ1
− α2

V

κ1

)
︸ ︷︷ ︸

logistic growth with
cellular competition

− δ1U W︸ ︷︷ ︸
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(4)
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+ ∂

∂ X

[
�2

(
1 − U

κ1

)
∂V

∂ X

]
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density-limited tumour
cell diffusion

(5)

∂W

∂T
= ρ3V − δ3W︸ ︷︷ ︸

acid production
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by vasculature

+�3
∂2W

∂ X2︸ ︷︷ ︸
chemical
diffusion
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acid

. (6)

In these equations, terms repeated from Eqs. (1)–(3) carry the same meanings as
before, but now δ2 represents the rate of acid-mediated tumour cell death and α1,2 the
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Table 1 Dimensional parameter values for Eqs. (4)–(6)

Parameter Value Units Source

ρ1 1 × 10−6 s−1 Gatenby and Gawlinski (1996)
ρ2 1 × 10−6 s−1 Gatenby and Gawlinski (1996)
ρ3 2.2 × 10−17 cm3s−1M Martin and Jain (1994)
δ1 O(1) M−1s−1 Gatenby and Gawlinski (1996)
δ2 O(1) M−1s−1 Chosen to be O(δ1)

δ3 O(10−4) s−1 Gatenby and Gawlinski (1996)
κ1 5 × 107 cm−3 Tracqui et al. (1995)
κ2 5 × 107 cm−3 Tracqui et al. (1995)
�2 2 × 10−10 cm2s−1 Dale et al. (1994)
�3 5 × 10−6 cm2s−1 Lide (1994)
α1 O(1) Dimensionless Chosen freely
α2 O(1) Dimensionless Chosen freely

relative competitive strengths of the two cell types. Values and, where appropriate,
order-of-magnitude estimates for our dimensional parameters are listed in Table 1.

Letting u = U
κ1

, v = V
κ2

, w = δ3W
ρ3κ2

, t = ρ1T , and x =
√

ρ1
�3

X in Eqs. (4)–(6)

produces the non-dimensionalised system

ut = u(1 − u − a2v) − d1uw (7)

vt = r2v(1 − v − a1u) − d2vw + D[(1 − u)vx ]x (8)

wt = c(v − w) + wxx (9)

where a1,2 = α1,2, r2 = ρ2
ρ1

, d1,2 = δ1,2ρ3κ2
ρ1δ3

, c = δ3
ρ1

, and D = �2
�3

. While
Eqs. (4)–(6) allow for a choice of scaling different from the one presented here—for
example, a scaling which retains the rates of tumour acid production (ρ3) and acid-
mediated tumour cell death (δ2) as independent parameters—we employ the same
non-dimensionalisation as that in Gatenby and Gawlinski (1996) to facilitate later
comparisons with the Gatenby–Gawlinski model, now a special case of our gener-
alised model. Values, order-of-magnitude estimates, and some biologically motivated
constraints for our non-dimensional parameters are listed in Table 2. Importantly, for
the duration of this work we require that d2 ≤ d1 to capture tumour capacity for
acid resistance. The Gatenby–Gawlinski model is then the limiting case of complete
tumour resistance to acid, for which d2 = 0 (and competition is negligible), with the
other extreme being a tumour that lacks any resistance to acid (d2 = d1).

After non-dimensionalisation, the spatial domain extends along a one-dimensional
ray from the tumour core at x = −1 out into the bulk healthy tissue at x = 1.
We impose homogeneous Neumann boundary conditions at both spatial boundaries,
x = −1 and x = 1, and initial conditions as depicted in Fig. 1, with a piece-wise linear
decreasing tumour density extending out from the core and attaining zero within the
domain, an analogous but reflected healthy density, and no excess extracellular acid.
These boundary and initial conditions are appropriate for a travelling wave framework,
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Table 2 Table of non-dimensionalised parameter estimates for all numerical solutions of Eqs. (7)–(9)
carried out in this paper.

Parameter Value or range Constraint Derivation

r2 1 ρ2/ρ1
d1,2 O(1) to O(10) d2 ≤ d1 δ1,2 · (ρ3κ2)/(ρ1δ3)

c O(1) to O(10) δ3/ρ1
D 4 × 10−5 �2/�3
a1,2 O(1) a1 �= a2 α1,2

In an absolute sense all parameters are order-of-magnitude estimates due to between-tumour differences
and intrinsic experimental error (Fasano et al. 2009), but for our purposes we allow more variation in some
parameters than others. Beyond all parameters being non-negative, we impose the constraint that d2 ≤ d1
to capture tumour capacity for acid resistance, and additionally require that a1 �= a2 as tumour and healthy
cells are unlikely to consume resources with precisely the same efficiency. We do not otherwise immediately
restrict a1 and a2 as we wish to allow for the possibility of a tumour consuming resources more aggressively
(a2 > a1) or experiencing a cost of acid resistance (a2 < a1 in cases of low d2)

Fig. 1 Initial conditions for the
non-dimensional tumour density,
v (black), and healthy tissue
density, u (grey), in all
numerical simulations of
Eqs. (7)–(9). This imposes a
tumour-only population at
carrying capacity occupying the
left-hand portion of the domain,
representing the tumour core,
and a healthy-only population at
carrying capacity far to the right
of the core. No excess acid (w)
is present initially −1 −0.5 0 0.5 1
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Initial conditions

to be discussed in Sect. 4, in which the tumour evolves from an invaded state in the
core toward a homogeneous healthy state far from the core.

Examining our system under spatial and temporal invariance indicates the attainable
types of tumour behaviour as governed by the model parameters. Equations (7)–(9)
exhibit four equilibrium points, as did the original Gatenby–Gawlinski system (see
Gatenby and Gawlinski 1996 for details), but whereas the healthy state was glob-
ally unstable in the Gatenby–Gawlinski formulation, leading exclusively to invasive
behaviours, it is now conditionally stable in our formulation, allowing both invasive
and non-invasive behaviours. The stationary points for Eqs. (7)–(9) are:

1. a trivial absence of all species, (u, v, w) = (0, 0, 0), globally unstable;
2. a healthy state, (u, v, w) = (1, 0, 0), linearly unstable if a1 < 1 and stable if

a1 > 1;
3. a heterogeneous state, (u, v, w) = (1 − (a2 + d1)ṽ, ṽ, ṽ),

where ṽ = 1 − a1

1 − a1a2 + d2
r2

− a1d1
,

linearly unstable if d1 > 1 + d2
r2

− a2 and stable if 0 < d1 < 1 + d2
r2

− a2; and
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4. a homogeneous tumour state, (u, v, w) =
(

0, 1
1+ d2

r2

, 1
1+ d2

r2

)
,

linearly unstable if 0 < d1 < 1 + d2
r2

− a2 and stable if d1 > 1 + d2
r2

− a2,

noting again that we always require d2 ≤ d1 to capture tumour capacity for acid
resistance. In combination with the initial conditions we impose on the system (Fig. 1)
these steady states and their stability lead to various tumour behaviours which we
explore numerically in the following section.

3 Numerical exploration of the generalised model

Our initial conditions (Fig. 1) impose a tumour-only state at x = −1 and a healthy-only
state at x = 1, and we expect the system to evolve over time according to the analysis
in Sect. 2, producing four types of tumour behaviour. If a1 < 1, then the healthy
state is unstable and we expect the tumour to propagate in the positive x-direction,
establishing behind the moving tumour-healthy interface either a heterogeneous state
with both cell types coexisting at reduced densities, if 0 < d1 < 1 + d2/r2 − a2, or a
homogeneous tumour state if d1 > 1 + d2/r2 − a2 > 0. If a1 > 1, then we expect the
stable healthy state to prevent tumour invasion, instead either clearing the tumour if
0 < d1 < 1 + d2/r2 − a2 or establishing a stationary interface with the stable tumour
population if d1 > 1 + d2/r2 − a2. In all cases we additionally require that d2 ≤ d1,
to capture tumour capacity for resistance to acid.

We solve Eqs. (7)–(9) numerically in Matlab using the Method of Lines (Schiesser
1991), with the system of partial differential equations discretised using a spatial
step of dx = 0.005 and the resulting system of linked ordinary differential equa-
tions solved through time using Matlab’s inbuilt ODE15s algorithm to accommodate
stiffness. All simulations are run to at least t = 20, corresponding to approximately
0.6 years, to ensure complete decay of transients, and initial and boundary conditions
are imposed as described in Sect. 2. The particular initial configuration shown in Fig. 1
is chosen simply for clear delineation of tumour vs. healthy tissue, with the interface
positioned at the domain midpoint (x = 0) to allow enough space in the domain
for us to observe either leftward- or rightward-propagating waves. Changing the ini-
tial conditions (not shown) does not alter the overall system behaviour, provided the
biologically-motivated boundary constraints are met; that is, one end of the domain
(here x = −1) is primarily tumour, and the other end (here x = 1) is exclusively
healthy tissue. The wavespeed of an invasive tumour—here, one that propagates in the
positive x-direction—is measured by tracking the midpoint of the front as it evolves
near the end of each simulation.

The accuracy of our numerical method is confirmed by setting a1 = a2 = d2 = 0
in Eqs. (7)–(9) to recover the two behaviours captured by the Gatenby–Gawlinski
model, heterogeneous invasion and homogeneous invasion, with wavespeeds closely
matching those measured in Gatenby and Gawlinski (1996) (Fig. 2). Additionally, upon
setting d1 = d2 = 0 in Eqs. (7)–(9) to remove acid-mediated cell death, we attain,
as expected, the dynamics of a classical mutual-competition system (not shown) in
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Fig. 2 Recovery of dynamics in Gatenby and Gawlinski (1996). Profiles of tumour density (black) and
healthy density (grey) from numerical simulations of Eqs. (1)–(3), non-dimensionalised and subject to
the initial and boundary conditions detailed in Sect. 2, with arrows indicating the direction of tumour
propagation. Excess extracellular acid is omitted for clarity but tracks the tumour front with a shallower
profile. a Heterogeneous invasion is obtained by setting d1 = 0.5, producing a non-dimensional wavespeed
of 0.0066 (corresponding to approximately 0.01 mm/day). b Homogeneous invasion with an interstitial gap
is obtained by setting d1 = 12.5, producing a non-dimensional wavespeed of 0.0128 (approximately 0.03
mm/day). Each simulation was run to a final time of t = 20 (approximately 0.6 years) to ensure complete
decay of transients. Other parameter values are r2 = 1, D = 4 × 10−5, and c = 70

which the competition parameters, here a1 and a2, govern the linear stability of the
system (Murray 2002).

Numerical solution of our full system, Eqs. (7)–(9) with all parameters non-zero,
produces the four expected types of tumour behaviour (Fig. 3). While the two invasive
types seen in Gatenby and Gawlinski (1996) are still present in our model—when
a1 < 1 and d1 < 1 + d2/r2 − a2 we see heterogeneous invasion (Fig. 3a) and when
a1 < 1 and d1 > 1 + d2/r2 − a2 we see homogeneous invasion (Fig. 3b)—we also
capture two other types of behaviour. First, when a1 > 1 and d1 > 1 + d2/r2 −
a2 we see a non-aggressive tumour which appears stationary for a time (Fig. 3c).
This behaviour is unlikely to persist, however, as our simulations indicate that a truly
stationary outcome requires a tumour with both no acid resistance (i.e. the limiting
case of d2 = d1) and a competitive strength precisely equivalent to that of the healthy
cells (i.e. 1 < a1 = a2); but these are biologically unlikely conditions and, in the case
of the latter, dependent upon mathematical parameter fine-tuning. Instead, the delicate
balance between the two stable homogeneous states will be tipped in one direction
or the other by inequalities between the two populations. If the tumour has no acid
resistance (d2 = d1) and the healthy population is the stronger competitor (a1 > a2)
then the tumour will eventually be cleared in a manner similar to Fig. 3d; but if the
tumour does exhibit acid resistance (d2 < d1), as is more plausible biologically, then
it will invade. Nevertheless, the speed of invasion is extremely slow—for example, the
parameter set {a1, a2, d1, d2} = {1.4, 1.6, 10, 8} produces a tumour which advances
by less than half a millimetre over a year of simulation time—and hence tumours in
this regime, while not strictly stationary, can be considered non-aggressive, at least in
comparison with the faster-moving types in the a1 < 1 regimes (Fig. 3a, b) which travel
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(a) (b)

(c) (d)

Fig. 3 Representative time-evolving profiles of tumour density (black) and healthy density (grey) from
numerical solutions of Eqs. (7)–(9) according to parameter regime, with arrows indicating the direction
of tumour propagation. a Heterogeneous tumour invasion with healthy cells surviving behind the tumour-
healthy interface, b homogeneous tumour invasion with no healthy cells remaining behind the interface, c
establishment of a non-aggressive tumour which can progress either toward clearance, in the limiting case
of no tumour acid-resistance, or toward very slow invasion, and d clearance of the tumour by the healthy
population. Each simulation was run to a final time of t = 20 (approximately 0.6 years)

on the order of 4 mm per year. The final observed behaviour is truly non-invasive: when
a1 > 1 and d1 < 1 + d2/r2 − a2, the healthy cells clear away the tumour (Fig. 3d).

While the numerical exploration detailed here provides us with a high-level under-
standing of the attainable tumour behaviours, it does not indicate where in parameter
space interstitial gaps can occur, or indeed whether they are permissible under our
generalised system. Moreover, from numerical simulations alone we cannot eluci-
date explicitly how the system behaviours depend on fundamental model parameters;
and as the parameter space is high-dimensional, an implicit description is inadequate
for building a comprehensive picture of the system. Simulations do indicate, how-
ever, that in the invasive parameter regimes the system exhibits travelling tumour
waves of constant velocity and shape, which arise due to propagation into the unsta-
ble healthy state (van Saarloos 1988); hence, in the following section we carry out
a travelling wave analysis of Eqs. (7)–(9) to attain an explicit understanding of the
dynamics. Very broadly this analysis follows the strategy taken in Fasano et al. (2009)
on the Gatenby–Gawlinski system, but with the introduction of extra subtleties due to
increased coupling in our more comprehensive model.

123



1208 J. B. McGillen et al.

4 Analysis of the generalised model

We transform Eqs. (7)–(9) into travelling wave coordinates by letting, with a mild abuse
of notation, u(x, t) = u(z), v(x, t) = v(z), and w(x, t) = w(z) where z = x − θ t is
our travelling wave coordinate and θ the (constant, positive) wavespeed. Extending the
spatial domain to the real line to allow for travelling waves, we obtain, with˙denoting
differentiation with respect to z:

− θ u̇ = u(1 − u − a2v) − d1uw (10)

−θv̇ = D(v̈(1 − u) − u̇v̇) + r2v(1 − v − a1u) − d2vw (11)

−θẇ = ẅ + c(v − w). (12)

In Eqs. (10)–(12) the wavefront is now fixed through translational invariance at z = 0,
with z < 0 behind the advancing wavefront and z > 0 ahead. Accordingly, we impose
the healthy state at the boundary far ahead of the tumour wavefront and one of the two
invaded states (heterogeneous or homogeneous) far behind, such that the travelling-
wave boundary conditions are:

(u, v, w)(∞) = (1, 0, 0), and (13)

(u, v, w)(−∞) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − (a2 + d1)ṽ, ṽ, ṽ) if d1 < 1 + d2

r2
− a2, or⎛

⎜⎜⎝0,
1

1 + d2

r2

,
1

1 + d2

r2

⎞
⎟⎟⎠ if d1 > 1 + d2

r2
− a2,

(14)

where ṽ = 1 − a1

1 − a1a2 + d2
r2

− a1d1
as before.

In Eq. (11) the parameter D, the ratio between the free-space tumour and acid diffu-
sion coefficients, is very small, and we exploit it as an asymptotically small parameter
by relating it to the wavespeed via consideration of the fast and slow dynamics of
Eqs. (10)–(12). That is, we let z = x − εθ0t where ε = √

D � 1 and θ0 is O(1). The
system becomes:

− εθ0u̇ = u(1 − u − a2v) − d1uw (15)

−εθ0v̇ = ε2(v̈(1 − u) − u̇v̇) + r2v(1 − v − a1u) − d2vw (16)

−εθ0ẇ = ẅ + c(v − w). (17)

It is clear from numerical simulations (for example, Fig. 3a) that the system exhibits
a boundary layer: within and near the tumour wavefront is a region of rapid change
for the species and their derivatives, while far behind and ahead of the wavefront the
changes are much slower. To asymptotic (leading order) accuracy, the solution in the
slowly-varying outer regions satisfies Eqs. (15)–(17) with ε = 0:
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0 = u(1 − u − a2v) − d1uw (18)

0 = r2v(1 − v − a1u) − d2vw (19)

0 = ẅ + c(v − w). (20)

Rescaling the narrow wavefront region by setting z = εζ , the leading order solution
in the wavefront region satisfies, with the subscript ‘in’ denoting a profile in this inner
region and ′ denoting differentiation with respect to the ‘stretched’ inner coordinate ζ ,

− θ0u′
in = uin(1 − uin − a2vin) − d1uinwin (21)

−θ0v
′
in = v′′

in(1 − uin) − u′
inv′

in + r2vin(1 − vin − a1uin) − d2vinwin (22)

w′′
in = 0. (23)

The Gatenby–Gawlinski model, a subset of our generalised model, exhibits intersti-
tial gaps and sharp fronts—profiles under semi-compact support with a discontinuity
in the derivative where zero density is reached—under certain parameter regimes
(Fasano et al. 2009); hence, we must allow for these possibilities in our model.

We proceed by first finding an approximate solution for the healthy profile (u)
to asymptotic accuracy, then finding an asymptotic approximation for the excess acid
profile (w) and using both of these to determine the dynamics in the tumour wavefront.

4.1 Asymptotic approximation for the healthy profile, u

Before considering the asymptotic structure of the problem for evaluating u, from
Eq. (15) we have exactly that

u̇ = u2 − A(z)u

εθ0
, where (24)

A(z) = 1 − a2v − d1w (25)

and A(+∞) = 1. In the outer regions this will invoke a fast relaxation to one of the
roots, u = 0 or u = A(z), and in the inner region the u derivatives are larger still, so
the same behaviour will occur; hence to asymptotic accuracy we expect to have u ≈ 0
or u ≈ A(z), as follows.

With the substitution u = 1/q, Eq. (24) becomes

εθ0q̇ = A(z)q − 1,

a linear equation which we solve directly to obtain

q(z) = e
− 1

εθ0

∫ z̃
z A(s)ds

q(z̃) + 1

εθ0
e

1
εθ0

∫ z
0 A(s)ds

z̃∫
z

e
− 1

εθ0

∫ s
0 A(x)dx

ds
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1210 J. B. McGillen et al.

where z̃ is a judicious choice of z. Choosing this z̃ to be extremely large, but not
infinite since

∫∞
z A(s)ds is ill-defined, we have q(z̃) = 1/u(z̃) ≈ 1 because of the

healthy-state boundary conditions imposed on u(z) as z → +∞. Substituting u(z)
back into the equation, we obtain

u(z) ≈ e

1
εθ0

∫ z̃

z
A(s)ds

1 + 1

εθ0
e

1

εθ0

∫ z̃

0
A(s)ds ∫ z̃

z
e
− 1

εθ0

∫ s

0
A(x)dx

ds

,

and with

φ(s) = − 1

θ0

s∫
0

A(x)dx and

I (z) =
z̃∫

z

e
1
ε
φ(s)ds

this becomes

u(z) ≈ e

1
εθ0

∫ z̃

z
A(s)ds

1 + I (z)

εθ0
e

1
εθ0

∫ z̃

0
A(s)ds

(26)

where I (z) is a Laplace integral (Bender and Orszag 1999).
These expressions implicitly assume that u ≈ max{0, A(z)} is such that A(z) =

1 − a2v − d1w has at most one root. Ahead of the wavefront, v ≈ 0 and hence
A(z) = 1 − d1w, which is increasing as w always decreases (this is evident from
numerical solutions and also will be seen in Sect. 4.2); thus there can be at most
one root ahead of the wavefront. This root is illustrated by Case 1c of Fig. 4, which
depicts the possible locations of the tumour wavefront in relation to the zeros of
A(z). Considering two or three roots, as illustrated in the third and fourth rows of
Fig. 4, respectively, we immediately have an absence of monotonicity in u which is
not consistent with our numerical results. Furthermore, Case 1b in Fig. 4 requires
parameter fine tuning, and hence we do not consider it, in view of the variability in
our parameters imparted by between-tumour variation and intrinsic experimental error
(Fasano et al. 2009). We are left with Cases 0a, 1a, or 1c from Fig. 4, which we explore
below.

For fixed z, suppose that A > 0 on the interval
[
z, z̃
]
, with z̃ 
 1, and hence has

no roots; this is Case 0 in Fig. 4. Then we have that φ̇(s) = − 1
θ0

A(s) < 0 for all s in[
z, z̃
]
, indicating that on the interval

[
z, z̃
]
, 1

ε
φ(s) has its maximum at s = z, and we

Taylor expand I (z) about this point:
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Fig. 4 Locations along z where the inner wavefront region can fall (shaded columns) in relation to the
roots of A(z), the function given by Eq. (25) and shown as a black curve, for four possible scenarios: no
roots (top), a single root at z∗ (second from top), two roots at z∗ and z∗∗ (second from bottom), or three
roots at z∗, z∗∗, and z∗∗∗ (bottom)

I (z) ≈
z̃∫

z

e
1
ε

[
φ(z)+(s−z)φ̇(z)

]
ds

≈ − ε

φ̇(z)
e

1
ε
φ(z)

where the second line follows from the first by extension of the upper limit of inte-
gration to ∞ in accordance with the Laplace Method (Bender and Orszag 1999),
introducing only exponentially small errors. Substituting this into Eq. (26), we obtain

u(z) ≈ e
1

εθ0

∫ z̃
z A(s)ds

1 + 1
A(z)e

1
εθ0

∫ z̃
z A(s)ds

≈ e
1

εθ0

∫ z̃
z A(s)ds

1
A(z)e

1
εθ0

∫ z̃
z A(s)ds

= A(z)

with the second line following from the first by the observation that A(s) > 0 for all
s in
[
z, z̃
]

and hence the exponential dominates unity.
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If A(s) has one root at s = z∗, then for z > z∗ the asymptotics are analogous
to the no-root case and u ≈ A(z); here we consider z < z∗, corresponding to Case
1a or 1c in Fig. 4. We have at z∗ that φ̇(z∗) = − 1

θ0
A(z∗) = 0, and it follows that

φ̈(z∗) = − 1
θ0

A′(z∗) ≤ 0. Excluding the mathematically fine-tuned degenerate case

for which φ̈(z∗) = 0, we assume that φ̈(z∗) < 0 and expand I (z) about s = z∗:

I (z) ≈
z̃∫

z

e
1
ε

[
φ(z∗)+ (s−z∗)2

2 φ̈(z∗)
]
ds

≈ e
1
ε
φ(z∗)
√

2πε

−φ̈(z∗)

with the second line following from the first by extension of the limits of integration
to −∞ and +∞, again introducing only exponentially small errors. Substituting this
into Eq. (26) gives us

u(z) ≈ e
1

εθ0

∫ z̃
z A(s)ds

1 + 1

εθ0
e

1
εθ0

∫ z̃
z∗ A(s)ds

√
2πεθ0

Ȧ(z∗)

≈ e
1

εθ0

∫ z̃
z A(s)ds

1

εθ0
e

1
εθ0

∫ z̃
z∗ A(s)ds

√
2πεθ0

Ȧ(z∗)

=
√

εθ0 Ȧ(z∗)
2π

e
1

εθ0

∫ z∗
z A(s)ds

≈ 0

where the final line comes from letting ε → 0 for an approximation to leading order in
ε, noting that in the interval from z to z∗ we have A(s) < 0 and hence the exponential
vanishes.

Consistent with our initial expectation, we have found that

u ≈ max{0, A(z)} (27)

to leading order. In the following section we incorporate this solution into an asymp-
totic approximation for the excess acid profile, w.

4.2 Asymptotic approximation for the acid profile, w

Depending on the type of invasive behaviour as determined by the imposed boundary
conditions, either heterogeneous invasion or homogeneous invasion is possible, with
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the limit in z < 0 corresponding to the appropriate boundary condition at z = −∞
from Eq. (14). Furthermore, ahead of the wavefront, Eq. (19) governs the tumour
density and hence we have either v = 1 − a1u − d2w/r2 or v = 0 to asymptotic
accuracy. The former can be discounted immediately as it is inconsistent with the
boundary condition at spatial infinity, except for the mathematical fine tuning a1 = 1,
which corresponds to the confluence of two of the steady states and is excluded by
the conditions for invasion. Therefore, for invading waves we have, to asymptotic
accuracy, v = 0 for all z > 0. In this region, Eq. (20) becomes 0 = ẅ − cw, and from
this we find the leading-order solution for w for z sufficiently large:

w+ = k1e−√
cz (28)

where k1 is to be determined. In z < 0 we have 0 = ẅ + c(v − w), and the profiles
in z < 0 then depend on invasive type as follows.

When we enforce the boundary conditions for heterogeneous invasion by requiring
that a1 < 1 and d1 < 1+ d2

r2
−a2, for all z < 0 we have v �= 0 and u > 0 everywhere;

hence from Eq. (27) we have u = A(z) > 0 (Case 0 in Fig. 4). Under these conditions,
Eq. (20) becomes

−c(1 − a1)

1 − a1a2
= ẅ − c

(
1 +

d2
r2

− a1d1

1 − a1a2

)
w.

Letting

λ = 1 +
d2
r2

− a1d1

1 − a1a2
and, as before,

ṽ = 1 − a1

1 − a1a2 + d2
r2

− a1d1
,

solving this linear ordinary differential equation and applying the heterogeneous
boundary condition for w at z = −∞ yields the leading-order solution for w,

w− = k2ez
√

cλ + ṽ,

for all z < 0. To find the unknown constants k1 and k2 and determine the inner solution
for the acid, win , we match the functional forms of the leading-order approximations
for w in each of the outer regions with those in the inner region within the overlapping
boundary regions. To leading order win is given by Eq. (23); this equation could be
satisfied by a linear win , but as win must be bounded in order to match with the bounded
outer regions, it must be constant rather than linear. Consequently, matching the outer
solutions to the inner boundaries is equivalent to matching the functional forms of
w−(0) and w+(0) with one another across the constant inner region where both take
the value of win . We match the functions, w−(0) = w+(0), and their derivatives,
ẇ−|0 = ẇ+|0, to obtain at leading order in ε:
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1214 J. B. McGillen et al.

w =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ṽ

(
1 − ez

√
cλ

1 + √
λ

)
for z < 0,

ṽe−z
√

c

1 +
√

1
λ

for z > 0,
(29)

and it follows that for all ζ ,

win = ṽ

1 +
√

1
λ

(30)

in the heterogeneous invasion case. The sign of λ exerts an extra constraint on our
parameter space, in that λ must be positive for solutions for w to be real, and hence
we must have

d1 <
1

a1

(
1 + d2

r2

)
− a2. (31)

When we enforce the boundary conditions for homogeneous invasion by requiring
that a1 < 1 and d1 > 1 + d2

r2
− a2, ahead of the wavefront we have v ≈ 0 and the

behaviour of w is as previously, but in z < 0 the limit as z → −∞ now tends to the
homogeneous boundary condition. Again we find from Eq. (20) that

−c(1 − a1)

1 − a1a2
= ẅ − cλw,

and solving this ODE, now with the homogeneous boundary condition imposed on w,
gives

w− = k3ez
√

cλ + 1

1 + d2
r2

for z < 0. Matching the functional form of this solution with the solution in z > 0,
given by Eq. (28), we obtain the outer solution for w to asymptotic accuracy:

w =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

1 + d2
r2

(
1 − ez

√
cλ

1 + √
λ

)
for z < 0,

e−z
√

c

(
1 + d2

r2

)(
1 +
√

1
λ

) for z > 0,
(32)
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and it follows that for all ζ ,

win = 1(
1 + d2

r2

)(
1 +
√

1
λ

) (33)

in the homogeneous invasion case, again subject to the parameter restriction in Eq. (31).
We now use the solutions from this section and Sect. 4.1 to extract the tumour
wavespeed, θ , from the equation governing the tumour wavefront, Eq. (22).

4.3 Determination of the wavespeed, θ

To find the invasive speed, θ , of an invading tumour wave in our system, we again
consider each type of invasion—heterogeneous and homogeneous—as dictated by
parameter conditions.

When a1 < 1 and d1 < 1 + d2
r2

− a2, leading to heterogeneous invasion, in order
to match with the appropriate boundary conditions we must have from Sect. 4.1 that
u ≈ A(z) > 0 everywhere in the domain. Incorporating our solution for w, Eq. (30),
we have

uin ≈ 1 − a2vin − d1ṽ

1 +
√

1
λ

to leading order in ζ in the inner region, and it follows that u′
in = −a2v

′
in . With these

leading-order solutions for uin and win , the asymptotic equation for the wavefront,
Eq. (22), becomes

0 = a2[vinv′
in]′ + αv′′

in + θ0v
′
in + vin(β − γ vin) (34)

where

α = d1ṽ

1 +
√

1
λ

,

β = r2

⎛
⎝1 − a1 − ṽ

d2
r2

− a1d1

1 +
√

1
λ

⎞
⎠ , and

γ = r2(1 − a1a2).

Recalling that the healthy state imposed at z = +∞ is unstable, we have the type
of propagation in which the wave is pulled by the instability at its leading edge (van
Saarloos 1988). At this leading edge the tumour density, vin , is very small and the
degenerate term in Eq. (34), a2[vinv′

in]′, becomes negligible, allowing us to consider
only
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0 ≈ αv′′
in + θ0v

′
in + vin(β − γ vin),

which is a Fisher-type equation and by marginal stability exhibits an asymptotic front
speed of θ0 = 2

√
αβ. Substituting back to the original parameters and recalling that

θ = εθ0 = √
Dθ0, we obtain the speed

θ ≈ 2
√

D

√√√√ d1r2ṽ

1+
√

1
λ

(
1 − a1 − ṽ

d2
r2

−a1d1

1+
√

1
λ

)
(35)

in the heterogeneous invasion case.
When a1 < 1 and d1 > 1 + d2

r2
− a2, leading to homogeneous invasion, to satisfy

the appropriate boundary conditions we must have u tending to zero somewhere in
the domain; thus, A(z) must have a root, and whether or not u plays a role in the
inner region depends on where this root is located. Using Eq. (32) and our previous
argument that v ≈ 0 in z > 0, we have, for all z > 0,

u ≈ max

⎧⎪⎪⎨
⎪⎪⎩

0, 1 − d1e−z
√

c

(
1 + d2

r2

)(
1 +
√

1
λ

)
⎫⎪⎪⎬
⎪⎪⎭

. (36)

The system behaviour in the wavefront now depends on whether the root of A(z) falls
in z > 0; that is, whether the magnitude of d1 is sufficient to drive u to zero ahead of
the tumour wavefront. For notational convenience we let

σ =
(

1 + d2
r2

)(
1 +
√

1
λ

)
.

If d1 < σ , then u is driven to zero in z < 0 by matching to the limit as z → −∞
(Case 1a from Fig. 4). We thus expect uin to be nonzero, resulting in homogeneous
tumour invasion with no interstitial gap and the inner travelling wave equation

0 = αv′′
in + θ0v

′
in + vin(β − γ vin)

where

α = d1

σ

β = r2

(
1 − a1 −

d2
r2

− a1d1

σ

)
, and

γ = r2(1 − a1a2).
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It follows that the asymptotic front speed is

θ ≈ 2
√

D

√√√√ d1r2
σ

(
1 − a1 −

d2
r2

− a1d1

σ

)
. (37)

If d1 = σ , then u ≈ max{0, 1 − e−z
√

c}, and u attains zero inside the narrow inner
region; this is the mathematically fine-tuned Case 1b from Fig. 4, and considering
the potential variance in parameter values across tumours, we do not proceed further
with it.

If d1 > σ , then this condition is sufficient to push u to zero at some z∗ > 0 (Case 1c
from Fig. 4), resulting in homogeneous invasion with an interstitial gap. In this case,
uin = 0, and Eq. (22) simplifies to

0 ≈ v′′
in + θ0v

′
in + vin

(
r2 − d2

σ
− r2vin

)
,

exhibiting a tumour wavespeed of

θ ≈ 2
√

D
√

r2 − d2
σ

. (38)

Finally, recalling that the wavefront is fixed at z = 0 through translational invari-
ance, we determine the width of the interstitial gap to be given by the location where
u attains zero, z∗:

z∗ = 1√
c
ln
(

d1
σ

)
. (39)

We now have a comprehensive picture of the parameter space belonging to Eqs. (7)–
(9), and the types of behaviours that can arise within this space, shown in Fig. 5.

Comparing our analytical solutions—Eqs. (35)–(39)—with estimates measured
from our numerical solutions (described in Section 3), we see good agreement (Fig. 6).
Discrepancies on the order of our asymptotic parameter, ε, arise due to our use of
leading-order approximations in the asymptotics, but the correspondence is sufficiently
close that we do not consider it necessary to include higher-order terms.

To understand the behaviour of Eqs. (35)–(39), we view the ‘aggressiveness’ of
a tumour in terms of the values of its competitive strength and acid-mediated death
parameters (d2 and a2, respectively) relative to those of the healthy population (d1
and a1, respectively). We consider ‘low’ aggressiveness to mean that the tumour death
rate and competitive strength parameters are similar to those for the healthy tissue;
‘moderate’ aggressiveness to indicate a tumour with a death rate approximately half,
and competitive strength twice, the values for the healthy tissue; and ‘high’ aggressive-
ness to mean a tumour with a death rate an order of magnitude lower, and competitive
strength an order of magnitude higher, than those of the healthy tissue.

Under these three aggressiveness characterisations, we vary the healthy cell death
rate and competitive strength parameters (d1 and a1, respectively) and plot the resulting
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Fig. 5 A comprehensive schematic of the parameter space and possible behaviours arising from Eqs. (7)–
(9), with the additional, biologically motivated, constraint in all regimes that d2 ≤ d1 to capture tumour
capacity for acid resistance. In the regime labelled ‘absence of travelling wave solutions’ we have compli-
cated solutions that do not exhibit travelling waves, stemming from a negative value of λ in the exponentially
decaying approximation for the acid profile (see Sect. 4.2)

(a) (b)

Fig. 6 Comparison of a invasive tumour wavespeeds and b interstitial gap widths produced by our analysis
from Sect. 4 (curves) and numerical simulations detailed in Sect. 3 (dots), over increasing rates of acid-
mediated healthy cell death, d1, from d1 = 1 to d1 = 10. Other parameters are held constant at r2 = 1,
d2 = 1 (maintaining d1 ≥ d2 as required from Sect. 2), D = 4·10−5, c = 70, a1 = 0.1, and a2 = 0.2. Errors
of O(ε) in the analytical curves arise due to our use of leading-order approximations in the asymptotics

wavespeeds (Fig. 7). Broadly speaking the wavespeeds increase with tumour aggres-
siveness as one would expect. Increasing aggressiveness also compresses the regime
of valid travelling wave solutions, as a result of the parameter condition in Eq. (31),
which when violated produces a complex solution for the acid profile (see Sect. 4.2).

Returning to the interstitial gap, we again vary the healthy death and competition
parameters under three degrees of tumour aggressiveness, but plot interstitial gap width
rather than wavespeed (Fig. 8). We find that gap width increases with aggressiveness,
from no gaps in much of the parameter space for ‘low’ aggressiveness to gaps as large
as 5 mm in the parameter space for ‘high’ aggressiveness. To be realistic, however,
interstitial gaps must fulfil two criteria. First, their size must fall within the range
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Fig. 7 Effect of tumour aggressiveness on the speed of invasion. Tumour wavespeed, as found in Sect. 4.3,
is plotted (greyscale gradients, redimensionalised to millimetres per day) by healthy death rate (d1) and
healthy competitive strength (a1) on the x and y axes, respectively. The checkered regions mark parameter
combinations that are outside the regime of travelling wave solutions. a The tumour acid-mediated death
rate (d2) is set to 0.8d1 and tumour competitive strength (a2) to 1.2a1, representing tumours which are only
mildly aggressive; b d2 is set to 0.5d1 and a2 to 2a1, representing moderately aggressive tumours; c d2 is
set to 0.1d1 and a2 to 10a1, representing highly aggressive tumours. Other parameters are held constant at
r2 = 1, D = 4 · 10−5, and c = 70

observed experimentally by Gatenby and Gawlinski; that is, on the order of 0.1 mm
(Gatenby and Gawlinski 1996). Second, the tissue pH established inside the tumour,
which comes from our solution for w near the core, must be experimentally plausible;
the core was assumed a priori to be non-necrotic (Gatenby and Gawlinski 1996), and
hence the pH must be higher (less acidic) than 6.3, the commonly observed threshold
for tumour cell survival (Park et al. 1999). Taking these two criteria together, it emerges
that while gaps in general arise over a large portion of parameter space, realistic gaps
occur in a fairly restricted space that shrinks as the aggressiveness of the tumour
increases, indicating that realistic gaps are sensitive to parameter choice.

Finally, some past experiments have indicated a lack of correlation between speed
of invasion and the density of healthy cells, stroma, and other material mixed in with
the tumour (Dvorak et al. 1983). Sampling our (a1, a2, d1, d2) parameter space while
holding all other parameters constant reveals the presence of a negative correlation
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Fig. 8 Effect of tumour aggressiveness on the width of the interstitial gap and parameter spaces giving rise to
realistic gaps. Interstitial gap width, as found in Sect. 4.3, is plotted (greyscale gradients, redimensionalised
to millimetres) by healthy death rate (d1) and healthy competitive strength (a1) on the x and y axes,
respectively, with the checkered regions marking parameter combinations that are outside the regime of
travelling wave solutions. a Tumour acid-mediated death rate (d2) is set to 0.8d1 and tumour competitive
strength (a2) to 1.2a1, representing tumours which are only mildly aggressive; b d2 is set to 0.5d1 and a2 to
2a1, representing moderately aggressive tumours; c d2 is set to 0.1d1 and a2 to 10a1, representing highly
aggressive tumours. The dashed lines, white on a and black on b, represent the threshold pH value of 6.3,
below which tumours are not seen clinically (Park et al. 1999). To the right of each of these dashed lines,
the tissue pH near the tumour core—calculated by converting the acid profile (w) near the left-hand domain
boundary to pH units—is above this threshold, meaning it is clinically plausible. In c the pH is lower than
the threshold of 6.3, and hence unrealistic, for all parameter choices. Gap widths on the order of 0.1 mm
are within the range observed experimentally in Gatenby and Gawlinski (1996); allowing widths of up to
1 mm, and incorporating the pH information, the regions of parameter space giving rise to biologically
realistic interstitial gaps are outlined by the solid curves, white in a and black in b. Despite the occurrence
of gaps ranging to 5 mm in width in c, none of the gaps are realistic due to the implausibly low pH values.
In all three figures, the fixed parameters are r2 = 1, D = 4 · 10−5, and c = 70

between wavespeed and healthy density (Fig. 9a); and a positive non-linear cor-
relation between wavespeed and tumour density, albeit with considerable spread
(Fig. 9b).

In the following section we discuss some implications of the analytical results
presented here and future directions to which they lead.
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Fig. 9 Correlation between invasive speed and density of cells remaining behind the advancing front,
obtained by taking 105 random samples from uniform distributions of a1, a2, d1, and d2 in the invasive
regimes, subject to the ranges and biologically motivated constraints listed in Table 2 (with the remaining
parameters held constant at r2 = 1, D = 4 · 10−5, and c = 70), and applying the results from Sect. 4. a
Tumour wavespeed, in millimetres per day, is plotted against the density of healthy cells near the core, in
thousands of cells per cubic millimetre. b Tumour wavespeed is plotted against the density of tumour cells
near the core, with the same units as in a. The tissue carrying capacity for both cell types is 50 thousand
cells per cubic millimetre

5 Discussion

We have incorporated additional, potentially important, biological features into the
canonical Gatenby–Gawlinski model of acid-mediated invasion to generalise its
descriptive power beyond the highly aggressive cases considered in Gatenby and
Gawlinski (1996) (Sect. 2). By rendering the healthy state conditionally stable rather
than globally unstable, we have obtained four tumour behaviours, two of which are
non-invasive or non-aggressive and were not captured by the original model (Sect. 3,
Fig. 3). We would caution, however, against translating these non-invasive and non-
aggressive cases directly to an in vivo or clinical setting, not least because competitive
strength of the healthy population (a1) is a somewhat abstract term and finding a
one-to-one correspondence between it and an adjustable property of the biological
system may prove difficult. Nevertheless, it is promising that we have attained such
behaviours, in part because they may provide good targets for model validation. In this
respect our model fits into a larger goal of assessing possible experiments that will test
the acid-mediated invasion hypothesis, an important task in light of novel treatment
strategies, such as buffering therapy (Robey et al. 2009; Silva et al. 2009; Martin et al.
2010, 2011; Alfarouk et al. 2011; Robey and Martin 2011), to which the hypothesis
has given rise.

Furthermore, Sect. 4 demonstrates that our model remains amenable to mathemat-
ical analysis. Through an asymptotic travelling wave analysis we have fully charac-
terised the invasive behaviours in the parameter space, finding these to be consistent
both with our own numerical solutions (Fig. 6) and with previous mathematical and
experimental descriptions of the system (Gatenby and Gawlinski 1996; Fasano et al.
2009). It should be noted that existence of the minimum wavespeed has not been
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proven here, and this remains a general open problem for travelling wave systems
with multiple species. Our numerical simulations indicate, however, that the minimum
wavespeed is indeed established, at least for the parameter ranges we have considered.
Taking all of this together, we suggest that our general model, which captures more
biologically observed phenomena than the original Gatenby–Gawlinski model while
preserving its structural stability and key results, may be useful for further targeted
studies of the kind seen in Martin et al. (2010) or McGillen et al. (2012).

Our finding that the interstitial gap is sensitive to parameter choice (Fig. 8) leads
to the modelling prediction that the gap is perhaps unlikely to be a widespread feature
of tumour invasion. This finding is not inconsistent with the experimental results in
Gatenby and Gawlinski (1996), in which the formation of hypocellular interstitial
gaps along the tumour–host interfaces was observed in 14 out of 21 fixed specimens.
We note that our model predicts gaps in mildly aggressive tumours rather than the
highly aggressive tumours predicted by the Gatenby–Gawlinski formulation, most
likely due to our inclusion of the biologically realistic, but aggression-limiting, features
of tumour cell death and cellular competition, as well as our experimentally-motivated
lower limit on tissue pH. In future the mathematical results presented herein should be
supplemented by experiments to pin down the range of permissible widths for the gap
and determine its comparative frequency of occurrence in, for example, fixed versus
unfixed in vitro specimens. Moreover, as gaps observed experimentally in Gatenby and
Gawlinski (1996) are on roughly the scale of a single cell, it is probable that stochastic
effects play a role in their formation, and a discrete realisation of Eqs. (7)–(9) could help
to evaluate whether gaps could be, for example, a transient feature of tumour invasion.

Lastly, the correlations we have found between invasive speed and cell densities
inside the tumour (Fig. 9) are at odds with past experimental results that saw no such
correlations (Dvorak et al. 1983), indicating that something more must be influencing
the system dynamics than we have considered here. While the Gatenby–Gawlinski
model was an elegant first investigation into the acid-mediated invasion hypothesis, and
the generalisation presented in this paper provides a formulation applicable to a wider
variety of tumour scenarios, both are coarse-grained descriptions of the tissue-scale
dynamics. It is likely, though, that tissue-scale consequences of the Warburg Effect
emerge from the intricate biochemical mechanisms by which tumour cells handle
their metabolically-derived intracellular acid loads and govern the spatial coordination
of their intracellular pH; hence, a finer-scale understanding of tumour pH may be
necessary for true insight into acid-mediated invasion. Such an understanding would
have immediate implications for buffering therapy and perhaps could point the way
to treatment strategies not yet considered.
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