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The suicide substrate reaction is a model for certain enzyme-inhibiting drugs. This
reaction system is examined assuming that the substrate diffuses freely while the
enzyme remains fixed. Two sets of initial and boundary conditions are examined:
one modelling an instantaneous point source, akin to an injection of substrate, the
other, a continuous point source, akin to a continuing influx, or intravenous drip, of
substrate. The quasi-steady-state assumption is applied to obtain analytical solutions
for a limited parameter space. Finally, further applications of numerical and
analytical experimentation on pharmaceutical mechanisms are described.
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1. Introduction

This is the third in a sequence of papers generalizing enzyme-substrate analyses
(Burke et al., 1990; Maini et al., 1991). The system we are most interested in is the
'suicide substrate' system, represented by

*1 *J *3

E + S^X-Y-E+P,

where E, S, and P denote enzyme, substrate, and product, respectively; X and Y,
enzyme-substrate intermediates; Ej, inactivated enzyme; and the k's, the positive rate
constants. In this system, the enzyme reacts with the suicide substrate S to form
intermediate Y, which can either convert to product and regenerate the unchanged
enzyme or become irreversibly inactivated enzyme. In this way, a suicide substrate
can specifically target an enzyme for inactivation. Furthermore, suicide substrates
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are not harmful in their common form. Hence, they are very useful as drugs (Seiler
et al, 1978; Walsh et al, 1984).

Using the law of mass action on the suicide substrate reaction, along with
conservation of enzyme, we obtain a system of four rate equations:

[S], = -M£o-[X] - [Y] -
[X], = fc,(£0 - [X] - [Y] - [E,])[S] - ( * _ , + fc2)[X],

], = *4[Y],

where [ ] denotes concentration. In a previous paper (Burke et al, 1990), we applied
a new small parameter e to the above space-independent problem. The new e was
defined by Segel & Slemrod (1989) as

e= E° , (1)
So + ^M

where Eo and So are the initial concentrations of free enzyme and substrate,
respectively, and KM = (k_1 + k2)/kl is the Michaelis constant. This e was introduced
as a more general small parameter than eh = Eo/So, which was previously used by
several authors (see e.g. Heineken et al, 1967, and the books by Murray, 1977, and
Keener, 1988). By utilizing this new parameter, which is small when KM is large, even
if Eo and So are of the same order of magnitude, it is possible to solve the system in two
time regimes: when t/e is 0(1) and when t is 0(1), that is, before and during the
quasi-steady-state phase, when the enzyme is saturated with substrate and the
quasi-steady-state assumption (QSSA) is valid. In this way, one can obtain a solution
uniformly valid for all time.

In a second paper (Maini et al, 1991), we discussed the spatially varying problem
by introducing injection and diffusion of the substrate. There, we find that the region
where the QSSA holds is no longer a small region close to t = 0, but varies from a
small ring about the origin to a disc in space which expands in time, depending on
the enzyme reaction. However, we do find the consistency that when

is small, where E and S are some typical values of enzyme and substrate, the QSSA
is valid. This emphasizes the significance of the new e, as it introduced KM, the only
quantity which is constant in space and time.

In this paper, we examine more closely the case where the QSSA holds in the
suicide substrate reaction, and attempt to solve the resulting system with both an
instantaneous point source, representing a single injection of substrate, and a
continuous point source, representing a continuous flow of substrate into the system.

2. Reaction-diffusion system

In enzyme reactions, the molecular weight of the enzyme is normally much larger
than that of the substrate; in some cases it may be orders of magnitude larger.
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Furthermore, there are many instances where the enzyme is, in fact, physically bound
to a membrane while the substrate diffuses freely. For these reasons, it is reasonable
to model the spatial dependence in an enzyme-substrate reaction by diffusion of the
substrate while the enzyme is held fixed.

It is notable that, in assuming E is fixed, we can assume that any complex involving
E (X, Y, and E,) is also fixed. As a first step towards modelling spatial dependence,
we assume that the medium is homogeneous; we ignore effects due to blood cells,
cell membrane, or blood vessel barriers, and consider the diffusion to be modelled
by Fick's law with constant diffusion coefficient.

The scenario we would like to examine is as follows. Initially, an amount of
substrate is injected into the medium at the origin. The substrate diffuses into the
medium and reacts with the enzyme. In looking at the suicide substrate reaction, we
wish to analyse the parameters that affect the size of the region and the degree to
which the enzyme is inactivated.

Therefore, in our simple case, we use a Dirac delta-function as the initial condition
for [S], with So as its coefficient. This implies that the total amount of substrate
is So at the origin and zero elsewhere at the beginning of the reaction (time = 0).
The free enzyme, on the other hand, is present in uniform concentration, £0,
throughout the medium. At the beginning of the reaction, there are no enzyme-
substrate complexes.

The full three-dimensional version of the model is not amenable to analysis and
can only be solved numerically. To gain insight into the behaviour of the system with
diffusion, we therefore restrict ourselves to the special case of radial symmetry—this
enables us to carry out a reasonably complete analysis and to understand the effects
of diffusion. We represent the spatial dimension by r, distance from the origin, and
use V2 to indicate the spatial Laplacian in n dimensions. For illustrative purposes,
we use n = 1. The constant coefficient of diffusion is D.

To investigate the effects of diffusion we consider a large domain, so that boundary
conditions play only a minimal role in the initial stages of the reaction. Since the
problem is symmetric about r = 0 for n > 1, we have a no-flux condition at the
origin. We also use a no-flux condition at the periphery, r = L, so that substrate
does not leak out from the boundary. To ensure that this holds for n = 1, we impose
no-flux conditions at r = 0 in this case also. With these conditions, we have, for the
spatially dependent suicide substrate reaction,

[S], = - / c ^ o - [X] - [Y] - [E,])[S] + k.,[X] + DV2[S], (2)

[X], = MEo - [X] - [Y] - [E,])[S] - ( * _ , + k2)[X], (3)

[Y], = *2[X]-(*3 + *4)[Y], (4)

[E,], = *4[Y], (5)

with initial conditions

[S](0, r) = S08(r), (6)

[X](0, r) = [Y](0, r) = [E,](0, r) = 0, (7)
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and boundary conditions

[S]r(r, 0) = [S],(t, L) = 0, (8)

[X]P(t, 0) = [X],(r, L) = 0, (9)

[Y]r(r, 0) = [Y],(t, L) = 0, (10)

[Ei]r(t,O)=[Ei]r(t, ^) = 0, (11)

where we have used a Dirac delta-function initial condition to simulate a fixed
amount So of substrate injected initially at r = 0. For all subsequent numerical
simulations, we approximate the delta-function by a tent function.

3. The quasi-steady-state assumption

When D = 0, it was found previously (Burke et al., 1990) that the quasi-steady-state
assumption is valid if

e =
+

is small. Keeping this in mind for the D # 0 situation, intuitively we may say that
where some related (but now variable) quantity

( ) ^

is small, the quasi-steady-state assumption holds. We introduce this new notation of
£ as a function of r and t to emphasize that it is no longer constant. Specifically, S
is not constant. In fact, although we use [S](0, r) = S08(r) as an initial condition, So

is not a good characteristic value of S. We think of S intuitively as the typical amount
of substrate that one observes at a fixed point in space. Although the delta-function
initial condition implies that a space point near r = 0 has zero initial concentration
of substrate, very quickly a large amount of substrate diffuses towards that point. In
contrast, a point far from r — 0 also has zero initial concentration of substrate, but
substrate only slowly enters its neighbourhood in very small amounts. Intuitively,
we would like to say that these two points have different S, but as yet we cannot
quantify this.

Moreover, neither is E constant. Again observing from a fixed space point, we
begin with [E] = Eo. The concentration of enzyme then decreases as it reacts with
substrate which has diffused into the area. Enzyme may not increase again signifi-
cantly as substrate diffuses out of the area, because some of the enzyme does not
return to its original form, but is left inactivated. So £ also varies in time and space
in some as yet unqualified way.

Qearly, adding diffusion has greatly increased the complexity of the problem, so
we must choose special cases in which we can carry out an analysis. In the next
section, we examine the effects of using the QSSA in the case where KM » £0, So.
We will see that the QSSA is largely valid in this case, because e(r, t) is small for
most of the domain.
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4. Instantaneous point source analysis

When KM is large compared with Eo and S& then the quasi-steady-state approxi-
mation holds for all time and space domains, because KM is independent of time and
space, and £0 and So are the maximum values of E and S, respectively. Thus, e(r, t)
is bounded above by E0/KM, and is always small. To test this hypothesis, we compare
numerical solutions of the full system with the solutions of the quasi-steady-state
system.

For this and all other simulations of parabolic systems of partial differential
equations, we used NAG routine D03PGF. When only one parabolic PDE was
solved, NAG routine D03PAF was used.

Using the quasi-steady-state assumption on (2)-(5), we set the time derivatives of
[X] and [Y] in (3) and (4) equal to zero. Solving (4) for [Y] and substituting into
(3), we have

[ X ] HKfi.-

[S](£o - [E,])

By adding equation (2) to equation (3) with the left-hand side equated to zero we
obtain a simple equation for [S], in terms of [X]:

[S] f =-* 2 [X] + /)V2[S]. (14)

Substituting (13) into (14) and (5), we obtain a system of two equations for [S]
and [E,],

= _ -fc a[S](£,-[E,])

{1+*/ (* + *)}[S] + K

r E -• _ M * [S](£o - [E,])
i J ' *3 + kA {1 + k2/(k3 + *4)}[S] + KM'

as the quasi-steady-state equations.
Figure 1 compares the [S] and [E;] solution surfaces of the full system (2)-(5)

with the solution surfaces of the quasi-steady-state approximation (15)—(16). We call
this the 'difference surface': it is determined by taking the magnitude of the difference
of the two concentration values at each point, and dividing by their average. Thus,
where the difference surface is zero, the quasi-steady-state assumption is valid. This
picture shows that KM large ensures validity of the QSSA almost everywhere, except
near the very beginning of the reaction. We therefore take (15) to be a valid
approximation for [S] of the full system. To solve this equation we must examine
the magnitude of the various terms.

Large KM implies that k_i+k2»k1. In practice, it is often true that the
enzyme-binding step (the uptake of substrate) is the rate-limiting step, which implies
that fc_i »fct. So let us assume that k{ and k2 are 0(1), and fc_, is 0{\/e).
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FIG. I. Difference surface for (a) [S] and (b) [E,] from equations (2)-(5) and equations (15H16) (see text).
Parameters: k, = 0.05, fc-, = l.O, k2 = I.O, k> = I.O, fc4 = l.O, £ 0 - l.O, So = 4.0, D = 0.05. With these
parameter values, Ku = 40. Note that away from zero for large t there is a large percentage difference.
This is because [S] is very small here, so that the denominator in the difference surface calculation tends
to zero.

In (15) and (16), we notice that both denominators contain the term

l + - ^ - i r S l + Ku. (17)

Assuming that all the k's except fc_j are 0(1), we may approximate (15) and (16) by

* , _ . _ _ . . _ _ _ ( 1 8 )

(19)

[S], = - ~ [S](£o - [EJ) + DV2[S],

k2k4
[E,], = [S](£o - [E,]),

where we have used the observation that XM » So => KM » [S]. That this is a good
approximation to the quasi-steady-state equations (15)—(16) can be seen by solving
both sets of equations numerically and calculating the difference surface (shown
in Fig. 2).
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FIG. 2. Difference surface for (a) [S] and (b) [E,] from equations (15)—(16) and equations (18)—(19).
Parameters: k, = 0.05, * . , = 1.0, k2 = 1.0, k3 = 1.0, kt = 1.0, £ 0 = 1.0, So = 4.0, D = 0.05.

To analyse this system further, we first make the following substitution:

A = £ 0 - [ E J . (20}

The variable A is the concentration of'active' enzyme (that is, either free or in complex
as X or Y) and is easier to determine experimentally than the amount of inactive
enzyme. The system (18)—(19) now becomes

k2k4
•IS]A,

(21)

(22)

which may be reduced to a single reaction-diffusion equation as follows (Britton,
1991).

Solving (22) for [S], we find

A<
A k2k4

C23)



104 MEGHAN A. BURKE ET AL.

Now introducing the function W, where

W(r,t)= I [S](r,t)dT, (24)
Jo

we have

Solving (25) for A, we obtain

A(r, t) = Eo exp ( - * 2 ^ W(r, r)). (26)
V (k + k ) K )

Now we integrate (21) with respect to t and writing in terms of W, using (24), we get

k f'
^ = [S](r, 0) - - i [S]i4 dr + Z)V2 W (27)

^M JO

Substituting (23) and (26) into (27) leads, after some manipulation, to a single
equation involving only W,

Wt(r, t) = [S](r, 0) + ±L±*± ELXP( - *2*4 iv) - l ] + DV2H< (28)

from which we can obtain [S], and hence an analytical expression for A, namely (26).
For KM large in comparison with W, it is reasonable to approximate

exP( - „ :r\~ W) (29)

by

1 bh w, (30)
(k3 + k4)KM

with the obvious limitation of positivity. This reduces (28) to

^ (31)

the solution to which can be found, for example, by Fourier transforms for the
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one-dimensional case. Thus

2N/Df/

^ ) ] } , (32,
where K = (Eok2)/KM.

We now obtain [S] by differentiating W with respect to time:

[S] = -%= cxJ-Kt-^-). (33)

This is, in fact, precisely the result obtained in the Michaelis-Menten case (see Maini
et al., 1991). So, when (30) is a valid approximation of (29), that is, when KM is large
compared with W, the mechanism of the suicide substrate reaction has little effect on
the dynamics of [S].

This approximation is not simply a degeneration to a previous case. The analytical
solution for W in (32) can now be used to give an analytical solution for A from
(26). We thus have

A = E

This analytical solution is only valid where (29) can be approximated by (30), that
is, where KM is large compared with W. Note that KM is a straightforward
combination of rate constants, but W is more difficult to quantify intuitively. For
a given t and r, W is the 'history' of [S] from the initial time point to time = t at
space point r. Thus several parameters have an effect on W. For example, when D is
large, S diffuses quickly, and at a given space point, W will be smaller than it would
be if large amounts of S remained in the area (small D). Figure 3 shows the validity
of the approximation for various values of KM and D for [S] and [E,] . Notice that the
approximation for [S] becomes worse than the approximation for [E,] , and that KM

appears to have a more pronounced effect than D, but that with increasing time (and
hence increasing W) the approximation breaks down. Thus care is required when
using (33) and (34), as the parameter space where they are valid is tight. However,
these analytical solutions, expecially (34) for [EJ , can be informative in the parameter
spaces where they are valid.

5. Continuous source

Previously, we considered the initial condition for substrate in our system to be a
Dirac delta-function or a tent function approximation to it. This was intended to
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FIG. 3. Difference surfaces for [S] and [EJ from the analytically solvable equations, (18) and (19)
compared with [S] and [EJ from the full system (2)-(5) for various values of Ku and D. (a) [S] with
D = 0.5, k, = 0.005 (KM = 400.0). (b) [E,] with D and fc, as in (a).

represent an injection of substrate at the origin. We now consider the case of a
continuous point source of substrate at the origin; that is, substrate flows into the
system at a constant rate at that one point, much like an intravenous 'drip'.

The suicide substrate reaction is especially interesting under such conditions, as
we can examine the dynamics of the inactivated enzyme, and draw preliminary
medical conclusions from our study.

To represent a continuous source, we return to the differential equations (2)-(5)
and change the boundary conditions from no flux at the origin to include influx of
substrate at the origin. Thus the suicide substrate equations (2)-(5) remain the same,
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FIG 3. (Continued), (c) [S] with D = O.I, fc, = 0.01 (KM = 200.0). (d) [E,] with D and k, as in (c).
(continued)

but the initial and boundary conditions now become

[S](r, 0) = [X](r, 0) = [Y](r, 0) = [E,](r, 0) = 0,

[S] , (0,0=-6. [S]r(L,t) =

[X]r(O,t)=O, [X]f(L,0 = 0,

[Y]r(0, t) = 0, [Y]r(i, 0 = 0, |

[E,]r(0, 0 = 0, [EJ/L, t) = 0,;

(35)

(36)
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FIG. 3. (Continued), (e) [S] D - 0.05, fc, = 0.05 (KM = 40.0). (0 [E,] with D and k, as in (e). Other
parameters: fc_, = 1.0, k2 = 1.0, k} = 1.0, fc* = 1.0, £ 0 = 1.0, So = 4.0.

where — Q is the gradient of [S] at the origin (after t = 0). By Fick's law, the flux

(37)

so the first term in the first of (36) represents flux of S into the system at the origin
with a flow rate F = DQ. We use (2)-(5) with (35) and (36) as a standard system for
all numerical simulations of the suicide substrate continuous source system.

In the case of the continuous source, the QSSA should hold at a space point once
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FIG. 4. Difference surface for (a) [S] and (b) [ E J of the full system (2H5) and of the QSS system (15H16)
with large KM and continuous source conditions, (35) and (36). Parameters: /c, = 0.05, /t_, = 1.0, k2 = 1.0,
/c3 = 1.0, k4 = 1.0, £ 0 = 1.0, Q = 400.0, D = 0.005.

enough substrate has arrived to saturate the enzyme. If KM is large, this presaturation
time period should be very short, and the QSSA will be a good approximation
throughout the space-time domain. This implies that we can use (15) and (16) with
the initial and boundary conditions describing a continuous source, namely (35)
and (36). Figure 4 shows the difference surfaces for [S] and [E;] of the full system
(2)-(5) and of the QSS system (15)—(16) with large KM and continuous source
boundary conditions. With [EJ the difference is small everywhere except near the
origin at very small time, while with [S] the difference is small (less than 10%)
everywhere. It is clear from these figures that we are justified in using the QSSA
when KM is large.

The solution for a problem with a continuous source may be obtained from the
corresponding instantaneous source solution by integrating with respect to time (see
e.g. Crank, 1975: p. 31). We apply this technique to the appropriate approximate
solutions obtained earlier. There we found equation (33) as an approximate solution
to the QSS system when KM is large and So is the coefficient of the delta-function
point source. Now we can find the solution to the system with F as the continuous
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source flow rate by integrating (33) with respect to time:

This is, in fact, W from (32). As the boundary conditions and initial conditions for
[EJ are the same whether we have an instantaneous source or a continuous source,
we can still use the expression obtained for [EJ from (26):

[E,](r, t) = E0- Eo exp( - *2*4 P [S](r, T) d A (39)
V (fc3 + kJKM Jo /

The expression for [S] in (38) cannot be integrated in closed form, but can be
numerically integrated to give a solution for [EJ.

We now determine the regions in parameter space wherein the expressions (38)
and (39) found in the previous section via the QSSA are in close agreement with the
solutions obtained by numerical simulation of the full system (2)-(5).

Figure 5(a, b) shows the approximations (38) and (39) for [S] and [EJ compared
with the full system. In this figure, large KM was used (KM = 4.0) with small Q
(Q = 0.04) so that the accumulation of S, which is denned as W, remains small, making
(30) a valid approximation of (29). One can see that the approximate solutions are
in very close agreement with the full system. Figure 5(c, d) shows the same solutions,
but with different parameters. Here Q is larger (Q = 0.4), while KM is kept at 4.0.
These parameters are outside the domain specified when we obtained (38) and (39),
so we expect to lose some accuracy. If we violate the restrictions further, and use
smaller KM (KM = 0.8), we can see (Fig. 5(e, f)) that the accuracy of our approxima-
tions deteriorates further. However, we now know that our approximations are valid
in the specified parameter space, namely KM large and Q small.

6. Discussion

We have generalized the quasi-steady-state assumption to apply to the case where
the diffusion coefficient D / 0 for two different boundary conditions. We have shown
how the careful choice of a general small parameter e enables us to analyse certain
types of reaction which could not be analysed using the classical small parameter.
Specifically, we obtained solutions for an enzyme-suicide substrate reaction with an
instantaneous point source of substrate.

We then used these analytical solutions to the instantaneous point source problem
to obtain solutions to the continuous point source problem, with boundary con-
ditions (35) and (36). For both sets of boundary conditions we have determined the
regions in parameter space where our analytical solutions are valid.

Now that we have an idea of the suicide substrate reaction dynamics with a
continuous source, a natural extension of this work is to examine the system with a
switch-function source. That is, we would like to turn the source on and off, and
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FIG. 5. Approximations for [S] and [E,], (38) and (39), compared with the numerical solutions of the full
system (2H5). (a) and (b): [S] and [E,] with A, = 0.5, * . , = 1.0, k2 = 1.0, Q = 0.04. (c): [S] with Jc, = 0.5,
* - , = 1.0, k2 = 1.0, Q = 2 x 10" (continued)
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FIG. 6. Profiles of the boundary conditions used for the four experiments on influx rate: (a) flow
rate = 0.0001 M/sec for 20 seconds; (b) flow rate = 0.0002 M/sec for 10 seconds; (c) flow rate = 0.0005 M/sec
for 4 seconds; and (d) flow rate = 0.001 M/sec for 2 seconds.

determine whether any factor associated with these changes other than the total
amount of substrate injected has a significant effect on the final concentration profile
of inactivated enzyme. For example, Fig. 6 shows several influx profiles where the
total amount of substrate applied remains constant but the rate and duration of the
process was varied. Figure 7 shows that the final inactive enzyme concentration
profile, taken well after the finish of the application process, remained the same for
the four different rates.

This is just one example of numerical experiments which may be done on
generalized model systems to determine the dynamics of drug concentrations, in this
case suicide substrates. By using the analytical solutions determined here, as
numerical methods on more complex scenarios where analytical approaches are not
possible, we believe that the dynamics of these substrate concentrations can be
determined more accurately.
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W

Rate=0.0001
Rate=0.0002
Rate=0.0005
Rate=0.001

FIG. 7. Final-state inactive enzyme concentration profiles for each of the boundary conditions in Fig. 6.
Parameters: k, = 0.05, fc_, = 1.0, k2 = 1.0, fc3 = 1.0, kt = 1.0, Eo = 1.0, D = 0.005.
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