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In this paper we study the existence of travelling wave solutions (L.w.s.),
u(x, 1) = ¢(x — ¢t} for the equation

u 8 ou

a2 Dluy— . *
Y ax{ lu)axJ + g(u) (*)
where the reactive part g{u) is as in the Fisher—K PP equation and different assump-
tions are made on the non-linear diffusion term D(u). Both functions D and g are
defined on the interval [0, 1]. The existence problem is analysed in the following
two cases.

Case I. D(0)=0, D{«}>0 Yue(0,1]. D and geCi, ), D'{0)#0 and
D"(0) # 0. We prove that if there exists a value of ¢, ¢*, for which the equation (*)
possesses a travelling wave solution of sharp type, it must be unique. By using some
continuity arguments we show that: for 0 <e¢ < c*, there are no tw.s., while for
¢>c*, the cquation (*) has a continuum of tw.s. of front type. The proof of
uniqueness uses a monotonicity property of the solutions of a system of ordinary
differential equations, which is also proved.

Case 2. D(0)=D'(0)=0, D and ge C%,,‘ i D"(0)0. Yf, in addition, we
impose D"(0)>0 with D{u)>0 Yue (0, 1], we give sufficient conditions on ¢ for
the existence of t.w.s. of front type. Meanwhile if D”(0) <0 with D(u) <0 VYue (0,1]
we analyse just one example (D{u)= —u’, and g(u)=u(l—~u)) which has
oscillatory t.w.s. for 0 <¢ <2 and t.ws. of front type for ¢ > 2.

In both the above cases we use higher order terms in the Taylor series and
the Centre Manifold Theorem in order to get the local behaviour around a
non-hyperbolic point of codimension one in the phase plane. " (995 Academic Press. Inc
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I. INTRODUCTION

The first mention of travelling waves as solutions for a certain reaction—
diffusion equation was in a report due to Luther in 1906. He drew an
analogy between the conduction of a nerve pulse and a crystallisation pro-
cess. A modern version of his paper can be seen in Showalter and Tyson
(1987). In 1937 an important contribution was made in two separate works
due to Fisher and Kolmogorov et al., respectively; both of which are
related to the description of the space-time distribution of an advantageous
gene in a population which lives in a one-dimensional domain. In
Kolmogorov et al., the authors introduced a formal way in which one can
analyse the existence and the stability of the travelling wave for the case
when it is a solution of a type of parabolic equation. They stated their
results on existence for the equation w,=Du .+ f(u) with D>0 and
fe C{D.,] satisfying: f(0)= f(1)=0, f(u)>0 Vue(0,1) f(0)>0, and
f'(1)<0. With a Heaviside function as initial condition they proved a
theorem on convergence to the travelling wave.

Since these seminal papers, much resecarch has been carried out in an
attempt to extend the original results to more complicated equations which
arise in several fields. For example in ecology the first systematic treatment
of dispersion models of biological populations (due to Skellam in 1951)
assumed random movement. Here the probability that an individual which
at time ¢ =0 is at the point x, moves to the point x, in the interval of time
At is the same as that of moving from x, to x, during the same time inter-
val. So the probability, p, is a symmetric function; i.e.,

Pxy, X32)= p(x,, xy). (1)

On this basis were constructed the classical models of population disper-
sion in which the diffusion coefficient appears as constant.

There is, however, considerable evidence that some species engage in
non-random movement. In a very general way, this phenomenon can be
divided into two types:

1. Spatial Characteristics. Some insects move in response to olfactory
or visual stimuli. Obviously here the probability is not symmetric. To
model this type of movement, McMurtrie (1978) considered the case where
attractive and repulsive forces are the cause of movement of one species. He
assumed that both forces could be measured by a function which depends
on position. Letting ofx) and f(x) be the concentration at the point x of
the attractive and repulsive substances respectively, the probability takes
the form

pUxy,x3) = platxy), lxs)). (2)
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In this case the population density, u(x, 1), satisfies the following diffusion
equation
ou 0 Ou (G df Oy dax
'az"a\-[‘/’“‘)é?+%a/)’dx_ﬁic?;}“} (3)

where v is the variance of the motion. (For full details see McMurtrie,
1978). If we include both space-dependent diffusion and non-linear rate of
growth the model takes the general form

5w | Pgg| Tt 4

Shiguesada eral. (1986) derived and studied a “logistic™ model for a
dispersing population in a heterogeneous environment in which they also
included space variation in the intrinsic rate of growth. Their equation is

‘u & @
ax

(W:é;{D('\‘)

} +ule(x)y—puul, (5)

where x>0, and D and ¢ are periodic functions in space with period /.

2. Density-Dependent Characteristics. Some species migrate from den-
sely populated areas into sparsely populated areas to avoid crowding. Thus
overcrowding increases population dispersion. Other species have social
behaviour such that the population only moves from one place to another
until its density attains a certain value. Myers and Krebs (1974} studied
density-dependent dispersion as a regulatory mechanism of the cyclic
changes in the density of some small rodents. In these cases, the probability
that an animal moves from the point x, to x, depends on the density at x,.
Here the population density satisfies the following equation

2] pun (6)
dr ox S

The details of the derivation of (6) can be found in McMurtrie (1978).

When both density-dependent diffusion and non-linear rate of growth
are present, we have the general one-dimensional model for a species'

% _ 21 pun 2 + g (7
B ax| DM gy TEMO )

"In a more realistic situation we have that the diffusion coefficient depends on both the
distance and the density.
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The first model of this type was derived by Gurney and Nisbet (1975) in
an ecological context. They used a probabilistic approach to construct the
following three-dimensional model for a Malthusian rate of growth

cu _

—=DV - (uVu)+ru, {(8)
at

where D and r are positive. Meanwhile Gurtin and MacCamy (1977)
adopted a continuum approach and deduced the model

.
5’;’=V2[¢(u)]+g<u) (9)

where ¢'(0)=0, p'(u)>0 for u >0, to describe the growth of one species.
However, their analysis was developed for the particular equation

—=VHu™) + pu (10)

with « > 0. They transformed (10) into

ow —V2w) (1
or Wk )
where
selx - 1)e 1
u = we'' and T= S

ula—1)

to prove the existence of weak solutions.

In another context, if the state variable w(r, t) in (11) is interpretated as
the concentration of a substance, then such an equation is called the porous
media equation (see Aronson, 1980, 1986).

The problem of existence of t.w.s. for equation (7) when the non-linear
diffusion coefficient D(u) is strictly positive in the interval [0. 1] and the
reactive part g is as in the Fisher-KPP equation has been studied com-
pletely. Hadeler (1981) gives sufficient conditions on the speed ¢ for the
existence of solutions of front type satisfying the boundary conditions
¢(—oc)=1and ¢+« )=0. In a later paper Hadeler (1983) shows a very
important relationship between the ordinary differential equation (ODE)
system for the travelling wave solution of a Fisher-KPP equation and the
corresponding ODE system for the travelling wave solution of the more
general Eq. (7). For the same equation Engler (1985) gives necessary and
sufficient conditions for the existence of front type solutions. These condi-
tions are given in terms of a relationship between the t.w.s. for the equation
u,=u, + D(u) glu) and those for (7).



TRAVELLING WAVE PHENOMENA 285

When the density-dependent diffusion is zero at one point (1 =0, for
instance) and strictly positive in (0, 1] for the same kinetic term as above,
the problem of existence of t.w.s. for Eq. (7) has been analysed only in a
few particular cases. Aronson (1980) considered the equation wu,=
[mu” ‘u ], +u(l —u) and gave a plausible reasoning for the existence of
a critical value of ¢, ¢* =¢*(m), for which this equation: (i) has no tw.s.
for 0 <¢ < c*(m), (i1} possesses a travelling wave solution of sharp type for
¢=c¢*(m), and (1) has a continuum of t.w.s. of front type for ¢ > ¢*(m). He
illustrated this with numerical solutions for the case m =2,

For the same equation with m=2, Murray (1989) found that
c*2)= l/ﬁ and gave explicitly the travelling wave of sharp type.

De Pablo and Vazquez (1991) considered the equation wu,=
(™ 'u ]+ (1 —u) with m>1 and 4> 0. They proved a result on
the existence of a critical value of ¢, ¢*, as above for m>1, A= 1/m, and
m+nz0

For the same diffusion term but for reactive part g satisfying: g(0) =
gla)=g(1)=0, g(u)y<0 Yue(0,a), and g(u)>0 VYue(a, 1), Hosono
{1985) gave necessary and sufficient conditions for the existence of t.w.s. He
also proved a result on stability of such t.w.s.

In this paper we study the existence of t.ws. for Eq. (7) when the non-
linear diffusion coefficient D(u) vanishes at =0 and the reactive term g is
as in the Fisher-KPP equation. In Section 2 we add the conditions: D and
ge Ciy > Dy >0 Yue(0,1], D'(0), D"(0)#0, and prove that if Eq. (7)
has a travelling wave solution of sharp type for a certain value of ¢, ¢*, it
must be unique. The proof uses a monotonicity property of the solutions
which is also proved in Section 2. Using arguments of continuity of the solu-
tions with respect to the parameter ¢ we show that: (i) for 0 < ¢ <c¢* Eq.(7)
has no tws., and (i) for ¢ > c¢* Eq.(7) possesses a continuum of t.w.s. of
front type. In Section 3 we consider the same smoothness conditions on
the functions D and g but set D’'(0)=0. When D"{0) >0 we give sufficient
conditions on the speed ¢ for the existence of t.w.s. of front type. The case
D"(0) <0 implies that at least locally D must be negative. We consider
D(u) <0 Yue (0, 1] to show the appearance of t.w.s. of oscillatory type.

2. A UNIQUENESS RESULT OF SHARP TYPE SOLUTIONS
FOR SOME DEGENERATE EQUATIONS

In this section we will consider the existence of travelling wave solutions
{x, t}=g(x — ct) = §(&) for the one-dimensional reaction—diffusion equation

ou 0 Ju .
7 el : : 2
2 A [D(u)ax} + glu); (x,1)e RxR™, (12)
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where the following assumptions are made:
g(0y=g(1)=0, g(u)>0 for all ue (0, 1)
geC{,,, with ¢'(0)>0 and g'(1) <0
D(0) =0 with D(u)>0 for all ue (0, 1]
4. DeCy{, , with D'(0), D"(0)#0.

hadi S e

We require that the function ¢ satisfies the conditions
M—oc)=1 and Pl+o0)=0 (13)

with 0< (&)< VEe(—o, + ).
We start our analysis by introducing the following definition.

DerINITION 2.1.  If there exists a value of w, u*, in the domain of D such
that D(u*)=0, then Eq. (12) is called degenerate.

Note that, for all i # «* for which D is defined, Eq. {12) is parabolic of
second order but, for uw=u*, (12) degenerates to first order.

Now we will calculate the sign of the speed ¢ of the possible t.w.s. for
Eq. (12). Equation (12) can be written as

u

a ';2 2
- ¢ ”+1)'<u){~} + glu). (14)

Z_p ’
7 - Dl g3

ot

If a travelling wave solution of {14) exists, it must satisfy the following
second order ODE?

D(B(EN) @" +cd'(E)+ D(PEN[P(E)]* + g(d(E)) =0, (15)

Multiplying both sides of (15) by D(¢)¢’ (not by ¢ as in the
Fisher-K PP equation) we get

D) "¢ +cD() ' 17 + D(d) D'($)[¢' 1" + g(¢) D(¢) ¢ =0. (16)
Note that

SN $ P = DA9) 676+ (9] D) DI
dg 2 f

so (16) becomes

d |l ) .
aE {; [D((<)) ¢'<5)]-} +eDIBENH(E)]* + g($(£) D(gE)) ¢'(£) =0
S L&

* Here we are abusing the notation since * on the function D means derivative with respect
to ¢, while on ¢ it means derivative with respect to <.
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a b
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¢

FiG. 2.1. Different behaviours of travelling wave solutions to (12). (a) Discontinuous
derivative in &*. The left derivative tends to ¢'(S* ) #0, the right derivative tends to
$'1E**)=0. {b) Continuous derivative in * le. ¢(E* )=¢'(S**)=0. (¢) Here
lim_ .., #(&)=hm;_,, ¢"()=0.

We integrate the above equation with respect to ¢ from —x to &*,
where £* e (—ou, + ¢ ]. Thus for t.w.s. such that

Hl—x)=1 and E) =0 VEe[&*, +x]; (17)

the above equation, after integration, becomes
1 2 < ' 2
S [DHEN GOV, +c [ DEN#()] ds

1
-J g(w) D(w)dw=0. (18)
0

Now we analyse the above equality for the three hypothetical behaviours®
of ¢ sketched in Fig. 2.1. Each of them satisfy, for different values of £*, the
conditions (17). We write explicitly the first term of the last equality as

LID(G(EN) ¢'(EV TP, =2 D(B(E*)) ¢'(E*)]> — [ D(P(—oc ) ¢'( — o) ]

* The reason why we take just these three cases will be made clear later in this section.
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Since ¢'(— o) =0 and D(¢(—o0))=D{1) < o, the second term on the
right in the above equality is zero. Meanwhile for the first term on the
right, we have the following cases corresponding to Fig. 2.1:

. D(YE*))y=D(0)=0 and ¢'(&* )0 (finite)

2. D(p(&*))=D(0)=0 and ¢'({*)=0

3. D((E*))=D(0)=0 and ¢'(+x0)=0.

Therefore regardless of the exact behaviour of ¢, (18) simplifies to

N ol
c'f D(qﬁ(.s'))[qb’(s)]zds~J g{iw) D(w)=0,
L 0
hence

fo g(w) D(w) dw
o= >0. (19)
57 D(G(sH'(s)]* ds

We introduce the following definition

DerFINITION 2.2, If there exists a value of the speed ¢, ¢*, and a value of
& E*¥e(—oo, + o0 ], such that @¢(x — c*1) = (&) satisfies
1. D()¢" +c*¢' + D) ¢ 12+ gld)=0, Ve (—ou, &*),
2. ¢(—oc)=1, $(E*)=0 and ¢' <0, Vée(— oz, &*),
3. P(E*)= —c*/D'(0) and ¢(E)=0 VEe(E*, + ],

then the function wu(x, 1) = ¢(x — ¢*¢) is called a travelling wave solution of
sharp type for Eq. (12).

To study the existence of tw.s. for Eq.(12) we will analyse the corre-
sponding phase portrait of the ODE system associated with (15). Setting
v=¢" we have the following system of ODEs

¢ =v

(20)
D($)v' = —cv—D'(¢) v* — gl¢).

Since D(0) =0 this system possesses a singularity at ¢ =0. We can remove
it by introducing the parameter r {Aronson, {1980)) such that

dz 1 J(: ds

5= "=, bl

AL S 21
dE " D(PEN (b

Except at ¢ =0 where dz/df is not defined, dr/dZ > 0. Thus t has an inverse

7! which in principle can be obtained from (21). Then we have

HE)=(7()) and v(&) = v(t(&)) (22)
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and we obtain

de 1 dv 1

IE _—_— e . d JioE — . )

Y= D by M TG O b

Substituting ¢'(¢) and ¢'($) into (20) we have the new system without the
singularity?

(23)

(j)':D(q&) v=F¢, v)
i=—cv—D'($) v’ — g(¢)=G(g, v),

where the dot denotes differentation with respect to .

Note that systems (20) and (24) are topologically equivalent in the
positive half plane {(¢, v)|¢ >0, —o <v< +oc}. This occurs since (22)
defines a re-parametrization of the trajectories which, according with (23),
preserves the orientation.

Since D’(0)# 0 the system (24) has the following three equilibrium
points in the region {(¢,v)|0<¢ <), —xx <v<+x}: Py=(0,0), P, =
(1.0) and P_=(0, —¢/D'(0}). The local behaviour of the trajectories of the
system (24) can be obtained as usual by using the linear approximation of
{24) around each stationary point. The Jacobian matrix for all points (¢, v)
is

(24)

. D'(¢)v D(¢)
J[F, G]({t'.l‘)—I:_D//(¢)L,2_gr(¢) _(‘"‘2DI(¢)I‘}‘ (25)
If we evaluate (25) at P, we get
0 0 ;
‘][F’ G](U.O}:[_gl(o) —‘C:l, (26)

from which we have trJ[F G] 0, =—¢<0 and detJ[F, Gl 0, =0.
Hence the linear system is inadequate to give us the local behaviour
around P,. Since the eigenvalues of (26) are 4, =0 and A, = —¢, Py is a
non-hyperbolic point of codimension one (Arrowsmith and Place, 1990).
The corresponding eigenvectors are v, =(c, —g'(0))” and v,=(0,1)7,
respectively.

In order to determine the phase portrait of the system (24) around P, we
are required to use higher order terms in the Taylor series as well as the
Centre Manifold Theorem.

For the system (24) the second order terms are sufficient. Thus we have
the quadratic approximation to (24) around P, as

¢ = D'(0) pv = Fy(¢, v)

. (27)
t=—g'(0)p—cv+ G, v)=Ga(d, v),

*In fact, we resolve the singularity at ¢ =0 into two equilibrium points.
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where G,(¢,v)= —1g"(0)¢> — D'(0)v?. Now, we follow the technique
developed by Andronov etal (1973) (see Appendix A). For systems such
as (24) for which

oF oF
%(0,0)=5;(0,0)=0

it is necessary to define 7, ¢ and @ as

1
T=nKT, o=0¢, and ﬁ:;g'(O)(ﬁ—FL‘ (28)

where x is a non-zero constant. Using (28) and choosing x = —¢, the
system (27) takes the form

9 D0) O sl =Fi

dt ¢ ¢

di 2‘ ¢ <
Dy , o
_+___((1_..l['-51 + Gy, 7)

Denote by a(¢, 7) the divergence of the vector field defined in (29) at the
point (¢, ). Then we have a(0,0)=1 so that in a small neighbourhood
1,00.0) of the origin we can suppose that o(¢, #) #0. By continuity
arguments we have that of (5 r)>0 for all ((]5~ v)e V,0,0). Thus, by
Bendixon’s Test, V40, 0) contains neither closed paths nor loops. There-
fore the point P, is not a centre and it has no elliptic sectors. Hence there
must exist semi-trajectories of the system (29) that end at the equilibrium
point P,. Andronov etal give the qualitative behaviour around P, in
terms of the first non-zero coeflicient in the power series of the function
¥(¢), which is defined as

() =Fy(d, ($))

where (p(_rﬁ) is the solution of the equation 7+ G,(¢, ©)=0 ie., @(¢)+
G4, p($)) =0. Thus if

ll’((pv)=Am¢—m+Am+l¢_m+l + oy

where m>=2 and 4,,#0, then depending on whether the subscript m
is even or odd we have different phase portraits around the point Pj.
Specifically the above authors conclude®:

* Their theorem is stated in Appendix A.
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. If mis odd and 4,,>0, P, is a topological node.

2. If mis odd and 4,,<0, P, is a topological saddle point, two of
whose separatrices tend to P, in the directions 0 and =, the other two in
the directions n/2 and 3x/2.

3. If mis even P, is a saddle-node, ie., an equilibrium state whose
canonical neighbourhood is the union of one parabolic and two hyperbolic
sectors. If 4,, <0, the hyperbolic sectors contain a segment of the positive
horizontal axis bordering the point P, and if 4, >0 they contain a
segment of the negative horizontal axis.

Before we apply the method developed in Andronov etal. to our
particular case, for notational convenience we define 4, B, and E as
follows:

"0y 2¢'(0)yD'(0 3D'(0) g'(0
Azg()+g()() ()g()’
2c c c

and

Now let .7 : R?* — R be a function defined by

F(@, T) =7+ A$*> + Bdiv + Ei*

\l

From the definition it is clear that # satisfies:
1. #(0,0)=0.
2. 87 /2¢ and 0.7 /07 are continuous for all (@, 7).
3. éF/er0,0)=1.
Then, by the Implicit Function Theorem, there exists a neighbourhood

V.(0,0) of the origin in which the equality # (¢, 7) = 0 defines one unique
function ¢: V,(0, 0) — R such that #= @(4) satisfies:

1. (4, qo(¢ )=0
2. @)= 6¢3 8, EV(EF [87)( ¢, ©)
3 ¢0)= <p(0)—-0

We ensure that

508 117.2-4
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is such a function. Obviously ¢ satisfies 1. Since ¢ was obtained by solving
this equality. Also ¢(0)=0 and

246 + Bo(¢)

———__'—____—;_=> ’O =O.
585128009 70

9'($)=—
If we define y/(¢) as

V(@) = o4, (9)) = — E9 [wm—é’{@qs];
then, since ¥(0)=y/'(0) =0 but ¢"(0)=2Eg'(0)/c #0, we have that in the
power series of ¥ around ¢=0 the first term different to zero is 4,=
Eg'(0)/c =D'(0) g’'(0)/c. By hypothesis, D(u) >0 Vue (0, 1] with D(0)=0.
This means that D’(0) >0 and by assumption 1 we conclude that 4, > 0.
Hence by the result of Andronov et af. (see Appendix A), the point P, is a
saddle-node for the system (29). Since the last two equations in (28) define
a linear transformation from the ¢v-plane to the ¢i-plane we have that P,
is also a saddle-node point for (27) and therefore for (24).

To complete the analysis around P, we have, by a straightforward
application of the Centre Manifold Theorem® (Carr, 1981, and Arrowsmith
and Place, 1990), that the system (27) has a unique one-dimensional
invariant stable manifold locally tangent to the eigenvector v, = (0, 1)7 and
a one-dimensional invariant centre manifold locally tangent to the eigen-
vector v, =(c, —g’(0))”. Both of these manifolds contain P,. Moreover,
Carr’s theorems (see Appendix B) also guarantee that any trajectory of the
system (27) in the vicinity of P, except those on the stable manifold tend
rapidly to the centre manifold. In other words; the dynamics around P is
given by the dynamics on the centre manifold.

To find an approximation to the centre manifold we use Carr’s theorems.
The equation for the centre manifold of the system (27) takes the form

[MRY($) =R () D'(0) h(p) ] + £'(0) ¢ + ch()

g"(0)

+—2~¢2+D'(o)/72(¢). (30)

If we write i(¢) = o(¢*) for k > 1, Eq. (30) becomes

h = "(0
[MEY$) = o(d™) + £(0) ¢ + g + £ g2

“

¢ We state this theorem in Appendix B.
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42 b w A

¢? 7 w

FiG. 2.2. (a) Behaviour of the centre manifold for the system (27) when the speed ¢
changes. {b) Phase portrait of (*). (¢) The behaviour of the solutions (*) gives the dynamics
on the centre manifold.

If we choose 71(¢) as

- 1 "0y .,
h(¢)={ *§—~)¢“—g(0)¢}
c 2
then [ MA](#)=o(¢>*). Therefore, in a neighbourhood of the origin the
centre manifold for (27) (and therefore for (24)) can be approximated by
{(Theorem B.3, Appendix B)
I "0y L, .
/1((15):;[ —5'2—*05‘—8’(0)(15} + o(¢?).

Note the behaviour of the centre manifold A(¢) with respect to the
parameter ¢. As ¢ decreases, i{¢) becomes more negative in 0 < ¢ < 1; while
for ¢ large h(¢) tends to the horizontal axis (see Fig. 2.2(a)).

The flow on the centre manifold i1s given by the equation
D0 "0

= M ~E D g2 o0 ¢] +o(¢2*'+')}

W=



294 SANCHEZ-GARDUNO AND MAINI

whose first term, for ¢ sufficiently small, gives us the dynamics. In
Figs. 2.2{b) and (c) we sketch the dynamics from the equation

D'(0 (0 ,
;{v:_:_.z _g_(_)¢,3_g'(())¢~ . (*)

The above analysis shows that all trajectories of {27) with initial conditions
($os vo) such that /@2 + vl is very small;

1. tend to P, along the centre manifold for ¢, >0

2. move away from P, tending to the centre manifold for ¢, <0.

If we collect all the above analyses we conclude that the nodal sector of P,
is on the right side of the v-axis and the saddle region of P, is on the left
side of the v-axis. The phase portrait of (24) around P, is illustrated in
Fig. 2.3. Now we will complete the local analysis of the trajectories of the
system (24). Evaluating (25) at P, we obtain

(31)

0 D(1)
J[F*G](I.U)=|: },

-g(n  —c
from which it follows that tr JIF, G]},, )= —¢<0 and det J{F, G]},; o, =
g'(1) D(1) which, by assumptions 2 and 3 at the beginning of this section,

1s negative. Therefore P, is a saddle point. The roots of the characteristic
polynomial of (31) are

Aisda=3—c+ St —4g'(1) D(1)]

with 4, >0 and i, <0. The corresponding eigenvectors are v, =(1, A,)"
and v, = (1, A,)7, respectively.

F1G. 2.3. Local behaviour around the non-hyperbolic point P,. This shows the centre
manifold of the system (27) and the nodal and saddle regions of P,.
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The Jacobian matrix at P_is

—¢ 0
JLF. Gl cpvon=| D" (0)e* . (32)
== g0) ¢
(D'(0))*

Setting ¢, = —¢/D'(0), we have tr J[F, G],,,=0 and det J[F. G], . ,=
—¢*<0. Hence P, is also a saddle point. The eigenvalues of (32) are
7, = —c and /,=c. The associated eigenvectors are v, = (1, —r/2¢)7 and
v,=(0, )7, where r= —D"(0) */(D'(0))* — g'{0).

The local behaviour around P, and P, is sketched in Fig. 2.4. The par-
ticular cases discussed in Aronson (1980), Murray (1989) and de Pablo
and Vazquez (1991) as well in our Example 2.1 (which is below) provide
insight to the global behaviour of the trajectories of (24). All of them
suggest the existence of a unique bifurcating value of the speed ¢, c*, such
that:

1. For 0 < ¢ < c* the system (24) has no heteroclinic connections and
therefore there are no travelling wave solutions for Eq. (12).

2. For ¢=c* the system (12) has only one heteroclinic connection
between the points P, and P_ (saddle-saddle connection) and so equation
(12) possesses a unique travelling wave solution of sharp type.

3. For each ¢ > ¢* the system (24) possesses only a heteroclinic con-
nection between the points P, and P, (a saddle—saddle-node connection)
and therefore the reaction-diffusion equation (12) has for each ¢ a travel-
ling wave solution of front type satisfying ¢(—oc)=1 and ¢( + o) =0.

Unfortunately we do not yet have a result which gives us the conditions
under which there exists a saddle-saddle connection. There are particular

Fi6. 2.4. Local behaviour of the trajectories of the system {27) around P, and P,.
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cases, which will be discussed later (in fact, the equations discussed by the
above authors belong to the class of our equation), which show us the
possibility of the above behaviour. At the moment, we will present a
general uniqueness result which is only a partial solution to the whole
problem.

We start by writing the first order ODE for the trajectories of (24):

dv_ —cv—D'(¢) v?— gl(¢d)
dp D(¢)v

(33)

and note that v =0v(¢) also satisfies the condition v(1)=0.

Let v,(¢) and v,(¢) be two solutions of (33) corresponding to two values
of ¢, ¢, and ¢,, respectively. Suppose that v, and v, satisfy v,(1) =uv,(1)=0.
Thus we have

dv, _('ll’l_D/"d’)"f_g((ﬁ)

= 34
b g, 4
dv, =3ty — D'(9) v~ g(d) 35)
d¢ D(¢) v,
Subtracting (34) from (35) we obtain
S R e ':l“‘)—l‘%’ D' + (v, —v 4
l‘,z_ullz(‘l Co) vy y + {070, 300) D'(¢) + (v, 11)&(‘15). (36)
Dig) e, e,
Now we define the function %(¢) as
st (e, —r3e,) D'(s) + gls) v, —vy)
K] =(Ury—U - = l N 37
(91 =2 ll)exp{ J«F vyl — ) Dis) “} 30

where ¢ (0, 1) and é is an arbitrary point.
The following proposition holds:

ProPOSITION 2.1.  Let vy and v, be tvo solutions of (33), corresponding to
the speeds ¢, and ¢, satisfving: (1) v (1) =1v,(1)=0 and (i) v,(¢P) v.(¢) >0
Sor all (0, 1). Then 4(d) =0 when ¢ — 1.

Proof.  The integral in (37) can be decomposed into the sum of two
integrals:

¢ (v <
[rinnmnnl 2, (38)
F Uyvs{v, — vy ) Dis)
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and
J"’ g(sHvy—vy)

B e 7 11
7 Uty —1y) D(s)

We observe that
2 2
(Lluz—vzvl)_
vy 05(v; —vy)

and, using this equality in (38}, the sum of the two above integrals becomes

¢D(v ¢ gls)
D(s f,; v, U; D(s)ds

g(s) ds.

=-1nD¢)+1nD(¢)+f TR
1v2

Using the above, (37) can be written as

D ¢
a1 ={1otp)—nion g exp { - [ £,

Since (@) (¢} >0, g(¢)>0 in the interval (0, 1) and D(¢)>0 for all
¢ e(0, 1], the primitive of g(¢)/v,(¢) vo(¢) D(¢) is greater than zero and so
the last exponential is bounded. Therefore the /imir of the exponential as
¢ — 1 exists, and since the limit of the other term enclosed in braces also
exists, we have

(o) —vi(p)] D(g)) .. ¢ gls)
GUd) = _ (88
;1{111 G(p) = lnm { Did) }hTffp{ J:; T o, D(s) ds} 01

The following Lemma gives us a monotonicity property of the solutions
of equation (33) with respect to the speed ¢ for ¢ close to 1.

LEMMA 2.1.  Let v(¢) and vyo(¢) be two solutions of (33) corresponding
to ¢, and ¢, respectively. Suppose that v, and v, satisfy: (a) (1) =1¢v.(1)=0
and (b) vy(@) v-ApY >0 for all ¢. Then for all ¢ in the interval (0, 1):

Loridp)=ry) if c,=c¢,
2 nig)>ed) if ¢y > e,
3 vld)<vod) if ¢y <y,
Proof. From (37} and using (36} we have

@' R
(¢) = ¢

)e % Jl’(l lw—l’v ])Dl‘)+g5) )l’}
Xp{ — : —ds
P 7 1'112(1'1_171)1)(“')
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v ﬁ (a) v A (%)
U% ¢ 7_ ;

Fig. 2.5. (a) Geometrical interpretation of the result given in Lernma 2.1. (b) The supposi-
tion in the demonstration of Lemma 2.2 leads to a contradiction (see text for details).

Consider (1) to {3) separately. If ¢, =c,, %'(¢)=0 which implies that
4(¢) = constant, for all ¢. Using Proposition 2.1 we have 4(¢)=10 for all
¢, and by (37) we conclude (1). If ¢, > ¢, the derivative 4'(¢) is positive,
but since %(¢)— 0 when ¢ — | this means that %(¢) <0 for all ¢ (0, 1).
Hence v,(¢)>uv5{¢). If ¢, <c,, 4'(¢) <0 thus 4(¢) is decreasing for all
¢ €(0, 1) and using the behaviour of % when ¢ — 1 we have that 4(¢) >0,
therefore v,(¢) <vy(¢) for all ¢ such that 0O<gp<1. |

Remark 2.1. In geometrical terms, Lemma 2.1 gives us the relative
position of the graphs of v,(¢) and v,(¢) for ¢ <1 with (¢ —1)x0. For
example if ¢, >¢, (both positive) the corresponding graphs are as
illustrated in Fig. 2.5(a).

Remark 22, Lemma 2.1 can be verified, for instance along the left
unstable manifold of P,, on which v and ¢ are related by

—c+ S ag () D)
L.(d,):[é....}/ B _”} (¢ —1)

Thus for fixed ¢ in a neighbourhood of P, we have

dv_(¢—1)[ e ~4g(1)D( )}
de 2 \/( —4g(yD(1y I’
from which, for ¢ < 1, dv/dc > 0.

With Lemma 2.1 and Remark 2.1, we can demonstrate the following
result on uniqueness of the heteroclinic trajectory for the system (24)
connecting P, with P_.

LEMMA 2.2, There exists at most one heteroclinic trajectory for the
system (24) connecting P, with P_.
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Proof. Suppose that v,(¢) and v,(¢) are two solutions of equation (33)
corresponding to the speeds ¢, and ¢, respectively. and satisfying the
boundary conditions:

¢ Ca

S(D=1,(1)=0 and 0y = — . : —_
vl =r,1) an v, (0) 0] 50 D0)

Without loss of generality consider ¢, > ¢,. By Lemma 2.1 the graph of v,
is below that of v, as in Fig. 2.5(b). Now, the local analysis around P, tells
us that the relationship between v and ¢ along the right stable manifold of
P, is

¢ D"(0) + g'(O)(D’(O))T p—-
D'(0)

M= TS (Do)

For fixed ¢, we have

de _ cD'0O) o g0, 1
de” 2(D'(0))? 202 D'(0Y

from which dv/de - —(1/D'(0)) <0 as ¢ — 0. Hence v(¢) along this
manifold is decreasing and therefore the graph of ¢, is below that of r, (as
can be seen in Fig. 2.5(b}). This means the existence of at least one point,
(¢*, v*), in the semi-strip {(¢,v}|0<¢p <1, —ox <v <0} in which both
graphs intersect tranversally. This contradicts Lemma 2.1, hence our
hypothesis at the beginning of the proof is false. If ¢, <¢,, the role of the
graphs is reversed. Therefore, if there exists a heteroclinic trajectory of {24)
between P, and P, it must be unique. |}

Remark 2.3. If there exists a value of ¢, ¢*, for which the system (24)
possesses a heteroclinic connection between P, and P_ then, since equation
(33) is invariant under the transformation v — —v, ¢ —» —c, it follows that
for ¢ = —c* the system (24) has a trajectory which goes from P to P,, ie.,
a solution of (33) satisfying the boundary conditions ¢(0) = ¢*/D'(0) and
r(1)=0.

For ¢* as above, we have the following theorem whose proof is a conse-
quence of Lemma?2.2:

TueoreM 2.1 If the functions D and g in (12) satisfy the conditions
given ar the beginning of this section, then the reaction-diffusion Egq.(12)
possesses at most a travelling wave solution u(x, t) = ¢{x — c*t) of sharp type
such that:
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l. For ¢*>0: ¢(—x)=1, ¢E=0 for E=E*, ¢'(—0)=0,
(E* )= —c*/D'(0), ¢’(é*+)=0 and ¢'(&)=0 for é>é*.

2. For —c*: ¢(&)=0 for —oo<E<E*, ¢p(+x)= ,¢' +o0)=0,
#'(&)=0 for —oc <5<C*, ¢ (E* T ) =c*/D'(0) and ¢'( f =0.

ExampLE 2.1. Consider the degenerate parabolic equation

ou 9 ,. Ou
a—t_a[(ﬁquu)é;}—l—u(l—u), (39)

where 0. Clearly the functions D{u)=(fu+u?) and g{u)=1(l —u)
satisfy the conditions imposed in this section and therefore all the above
results hold.

Suppose that (39) has a travelling wave solution u(x, t)=¢(x —ct)=
#(&). Setting v =¢'(£) we have that the second order ODE for ¢ can be
written as the following singular system

¢ =v
(40)

’_—_L_. — D — 72-— —
1,:_(ﬁ¢+¢2)[ co—(f+2¢) v —¢(1 —¢)].

Introducing the new parameter 7 as in (21) with D(¢) = ¢ + ¢, we get a
new system without singularity

¢=(fd+¢)
= —ct—(f+2¢) > —p(1 —¢)

(41)

whose equilibrium points in the region {(¢, 1)|0<P <], —x <v <+ }
are P,=(0,0), P,=(1,0) and P, = (0, v*) where v*= —¢/f.

In Fig. 2.6 we show the phase portraits of the system (41) for =2 and
for different values of ¢, which, of course, agree with our results. In par-
ticular, for values of ¢ close to 1.1 one can suspect that Eq. (39} possesses
a travelling wave solution of sharp type which, according to Theorem 3.1,
must be unique (see Fig. 2.6(b)). Figures 2.6{a), (c) show the other two
behaviours which have been predicted by the analysis of this section.

Fis. 2.6, Phase portraits of the system (41). (a) Behaviour for 0 < ¢ < 1.1. Here we take
¢=0.81. (b) Behaviour for ¢ = 1.1. (¢) Behaviour for ¢ > 1.1, Here we take ¢ = 2.
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3. A RESULT ON EXISTENCE OF SOLUTIONS OF FRONT-TYPE
FOR SOME DEGENERATE EQUATIONS

The constraints D'(0)# 0 and D"(0) #0 in the previous section led to a
result on unigueness of the travelling wave solution of sharp type for
equation {12).

In this section we will consider the degenerate parabolic equation {12) in
which the reactive part g satisfies the conditions (1) and (2} and the
density-dependent diffusion coefficient, as well as satisfying condition (3)
and the first part of condition (4) at the beginning of Section 2, must also
satisfy:

D'(0)=0 and D"(0) #0.

We will investigate the existence of tw.. for such a reaction—diffusion
equation using the same methodology employed in Section 2.

The system (24) now has only two equilibrium points: P,= (0, 0) and
P, =(1,0). The analysis at the beginning of the last section holds here. In
particular the eigenvalues and the eigenvectors at P, are unchanged which,
of course, is also a non-hyperbolic point. The first difference appears in the
h.o.t. in the Taylor series. Since the first non-zero term is that of third order
in the first equation of the system (24), we have the following non-linear
system

. D/l 0 ,
¢:~- ;)(—l(ﬁ_l’EFl‘d), l*)

= " (42)
f=—g(0)g—w— T4 =Gilh )

which approximates (24) in a neighborhood of P,.
Following the methodology developed by Andronov eral., we can still

use the transformation (28) for this case. Thus, using (28) with ~ = —¢, the
system (42) becomes
id - = -
@;:Alf 2+ A,p°=F,\(¢. 1)
dT7
I (43)
%=f+3,¢33+82f7+B1¢3‘EF+G,443 7)
where
_ D"(0) _D"(0) g'10) _g"0)
A= Ar==35 Bi="
rODer rO ZDUO
B, = g(),() and Bl_gg(ﬁ))} (0)
2c" 2¢°
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By the same arguments given in Section 2, in a neighbourhood of the point
P, there are no closed paths of the system (43) (likewise for (42)), so the
trajectories cannot be spirals. Therefore there must exist semipaths of (43)
{or of (42) and so of (24)) which end in the equilibrium P,.

Now we will determine the local behaviour of the trajectories of (43) and

so of (42). To do this, consider the function .# : R* — R such that for (¢, ©)
F(p.C)=F+ B,¢* + B,ip> + B.§".

From its definition, .# satisfies the hypothesis of the Implicit Function
Theorem in a neighbourhood of P, and hence the equality # (¢, ) =0
defines a unique solution #= () which satisfies several conditions (see
Section 2). In this case

_ —B,¢*— B¢’
o f) = 19 - 7:¢
(1+B,¢7)
Now we define i as
- = - - T _BI¢FZ_B3¢_3- 3
(9)=F(d, p(d))=A “{—ﬁ——_,— +A4.¢".
Yig 9. p(¢ 19 O+ B¢ ¢
It can be shown that ¥(0)=¢'(0)=y"(0)=0, but
3D"(0) g'(0
lpm(o):__(_)zg;(_);éo

¢

Therefore the first term different to zero in the power series of ¥ around
¢ =0 is of third order. By the hypothesis g'(0) > 0 the sign of

_l//II/(O):DH(O) gV(O)
T6 2¢°

4,

is the same as that of D"(0). As the first term in the series of  is of odd
order the behaviour depends on the sign of 4, (Andronov et al, 1973).
Thus it is necessary to distinguish the following two cases:

1. If D"(0)>0 then the point P, is node-like (in the topological
sense).

2. If D"(0) <0, the point P, is saddle-like, two of whose separatrices
tend to P, in the directions z/2 and 3x/2, respectively.

In order to complete the analysis around the point P, we observe that the
Centre Manifold Theorem (see Appendix B) implies that the system (42),
under the new assumptions at the beginning of this section, possesses a
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one-dimensional invariant centre manifold locally tangent to the eigen-
vector v, = (¢, —g'(0))” and the whole dynamic of the system (24) around
P, is given in terms of the dynamic on its centre manifold. From Carr’s
Theorems (see Appendix B) the equation for the centre manifold for (42)
is
"(0) , = g"(0) ,
(M) =F18)| 2522000 |+ €010+ gy + 52

Setting l?(d)‘) = o(¢*) with k> |, this equality takes the form

£"(0)
2

[MR)($) = g'(0) ¢+ chid) + 55— §7 + o™ )

and if we take
Fore L oy g4 810 4
lz(¢)—v2[g(0)¢+ 3 ¢J

then, by Carr’s Theorems, we have the following approximation to the
centre manifold:

1 "
/z<¢>=;[~5‘—¢ ¢}+o<¢““). (44)

The flow on the centre manifold is given by the equation

’, ¢ V(O)¢ :l +() ¢_A+l

P

DIIO H‘O'
F\(6. h(d)) ( )[ g

A_

For ¢ very close to zero, the dynamic is given by the ODE
. D"(0) _g”(O)
W=— —

“~ P

¢‘-g’(0)¢-‘}‘ (45)

The phase portrait for (45) is sketched in Fig. 3.1(a), and Fig. 3.1(b)
ilfustrates the qualitative behaviour of the solutions of (45) for D"(0)> 0.
The corresponding behaviour for D”"(0) <0 can be seen in Figs. 3.1(c)
and (d).

We summarize all the above analyses as follows:

For D"(0) > 0 all the trajectories of (24) (including the hypothesis made
at the beginning of this section) tend to P, along the centre manifold and
P, looks like a node. For D"(0) < 0 the centre manifold acts as the unstable
manifold (left and right) of P, which looks like a saddle point. In a
neighbourhood of P, except on the v-axis (the stable manifold of P,), all
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w (a) w J//(b)

,
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g
-y~
—_
Q,
=

/

7 )
FiG. 3.1, (a) Graph of {45) for D"(0) > 0. (b) Solutions of (45) for D"(0)> 0. {¢) Phase
portrait of (45) for D"(0) < 0. (d) Behaviour of the solutions of (3.43} with D"(0) <.

the trajectories of (24) leave P, through the centre manifold. We sketch the
qualitative behaviour around P, in Fig. 3.2 for both cases.
To continue our local analysis, we evaluate (25} at P,:

0 D1
J[F, G](Lo,z{ . )} (46)
-gy —c
from which trJ[F, G],, ¢,=—c¢ and detJ[F, G],, o, =g (1) D(1). The

eigenvalues of (46) are

A da= =t JSE—4g(1) D(1)] (47)

and the corresponding eigenvectors are v, = (1, 4,)7 and v, = (1, 1,)".
Here it 1s necessary to consider the following two sub-cases:

Sub-Case 1. D(0)=D'(0)=0 and D"{(0)>0. With these properties D
has a local minimum; but since D(u) >0 for all we (0, 1], it is, in fact, the
absolute minimum. As g'(1) <0 and D(1) > 0, the eigenvalues (47) are real
with 4, >0 and 2, <0 so P, is a saddle point. With this we have finished
the local analysis for this sub-case, and we will start the global analysis.

From the above analysis we have concluded that P, is qualitatively a
node and P, is a saddle point. With this observation we can draw an
analogy with the analysis made by Hadeler (1981) and attempt to
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Fi6. 3.2, (a) Dynamics around P, for D"(0)> 0. {(b) Dynamics around P, for D"(0) <0
(see text for details).

construct a positive invariant set for the system (24) under the present
conditions on D. For this purpose we define a function p: R — R such
that p(0)=0, p(1)>0, p(¢)>0 in the interval (0, 1), p'(qb)eCEO»,] and
p'(0)>0. We define the region # as

A={(d,0)|0<¢p <1, —p(d)<v<0}.

In addition we require that in a neighbourhood of ¢ =0 the graph of —p
is below the graph of the centre manifold (44) (see Fig.3.3). As the
arguments are the same as in Hadeler (1981), we will check only that any
trajectory of (24) which attains the curve P,Q in Fig. 3.3 remains in the
region #. One necessary and sufficient condition for this is that the inner

FiG. 3.3. Construction of an invariant set for the system (24) together with the conditions
of this section.
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product (p'(#), 1)-(¢, v) is greater than or equal to zero for all points
(¢, —p(d)) with 0 < ¢ < 1. Thus we have

Ny (. 8)=(p'(@) 1)-(—D(@) p(9), cp(d) ~ D'($) p*($) — g(¢))

= —p'($) p(¢) D(P)+ cp(d) — D'($) p() — g($)
SC

Nine (6, 6) 20 < [ —p'(¢) p(¢) D(@) + cp($) — D'(¢) p*($) — g(¢)] >0,
where n,, 1s the inward pointing normal on the boundary.

This inequality leads to the following condition on c¢:

c>[p (¢)D(¢)+D(¢)p(¢)+p(¢)

or

a é’@l}
c>{d¢[p<¢)0(¢)]+p(¢) :

Thus if we choose ¢ such that

d g(e)
Sl e + 500 (48)
where the sup is taken on ¢e(0, 1], then the region # i1s a positive
invariant set of (24) and so any trajectory of such a system which enters
# remains there. This is true, in particular, for the trajectory leaving P,
through its left unstable manifold. This trajectory enters the point P,
through the centre manifold calculated before. This follows by a direct
application of the Poincaré-Bendixon Theorem and previous analysis.
Moreover, by considering the set of functions p satisfying the above
conditions we can characterise the lowest bound ¢, of ¢ for which there
exists a saddle (P,)-node (P,) connection as the variational problem
d g(d))}

¢, =1nf sup {dqﬁ [p(¢)D(p)]+/—7(¢—)

where the inf is taken on the set of functions p.

c>sup{

We summarize the above results in the following theorem:

TreOREM 3.1, If the functions D and g in Eq. (12) satisfy the conditions
(1)-(3) in Section 2, and D e C%O_ 1 such that D'(0) =0 but D"(0)+#0, then
for each ¢ = c, satisfving (48) there exists a heteroclinic connection for the
system (24) from P, to P, and hence the corresponding travelling wave
solution for the reaction-diffusion Eq.(12) is of front type satisfying the
boundary conditions

d—oc)=1 and ¢+ o0)=0.

505.117 2-5
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We illustrate the application of this theorem by the following example.

ExampLE 3.1. Here we will study the non-linear diffusion equation
(711_ 6 ('u
r dx
As usual, suppose that w(x, 1) =@(x — 1) =@(&) is a travelling wave solu-
tion of (49). Substituting in (49), writing the corresponding singular system
of ODEs and introducing the parameter 7 as in (21) with D(¢) = ¢7, we get
a new non-singular system
b=¢=Fg. )
= —cv—2¢v° — (1 —g)=Gi¢g, v

with equilibrium points P, =(0,0) and P, =(1, 0). By the analysis of this
section, P, is node-like and P, is a saddle point.

+u(l —u). (49)

(50)

For this particular case it is easy to construct a positive invariant set 4
for (50) in a more elementary way instead of choosing the function p as
mentioned above. First, we draw the vector field defined by (50). This is
sketched in Fig. 3.4(a).

Let v,(¢), i=1, 2 be functions such that G{¢, v;) =0 for all ¢ in the inter-
val (0, 1], ie,

v,(9) = [—(+/( —8¢%(1 — )]

and
va{) = ~(—\/( —8¢ l—¢)]
4(15
. ®
d
P g —
AR O R -
PR -.\é(
. AV \
f SRRV RN X
)T
//’
I’
/
’/
‘
[}
!
!
1

Fii. 34. (a) Vector field defined by (50). (b} An invariant set for the system {50).
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the geometrical properties’ of v; will be useful in order to construct the set
A. Now we take a small neighbourhood of P, and we consider a closed
region # in the ¢r-plane, as can be seen in Fig. 3.4(b), where the segments
QR and ST are such that QR is on the left stable manifold of P, and ST
is on the straight line = max v,(¢). Here the maximum is taken on the
interval (0, 1]. Denote by n the exterior normal vector for each segment of
the boundary of #. It is easy to verify that the inner product [n- (4, ¢)] is
negative on the segments PQ, RS, and ST. On the segments TP and QOR,
[n-(¢.6)] =0. Therefore # is a positive invariant set of (50). Conse-
quently, all trajectories which attain # remain there®. The trajectory which
leaves P, through its left unstable manifold has this property. By a
straightforward application of the Poincaré-Bendixon Theorem, such a
trajectory must end in P, and therefore we have a heteroclinic connection
between P, and P, whose corresponding travelling wave solution (of (49))
satisfies the boundary conditions ¢(—oc)=1 and ¢(+oc)=0. In
Fig. 3.5(a) we show this heteroclinic trajectory for rz\/37,"24 = 1.08866.
Note the behaviour of the trajectory from P, to P, when the speed ¢ varies
(Figs. 3.5(b)-(d}).

Sub-Case 2. D(0)=D'(0)=0 and D"(0)<0. Here D has a relative
maximum at #=0 which implies that, at least locally, D(u) must be
negative. In spite of the unphysical meaning of this negative diffusion term,
for mathematical completeness we will suppose that D(u) <0 for all
ue(0,1]. (In such cases, the partial differential equation problem may
be ill-posed.} The local behaviour around P, can be characterized as
follows:

1. If [¢?=4g'(1)D(1)]=0, 2, and A, are negative and so P, is an
asympotically stable node.

2. If [('2 —4g'(1)D(1)] <0, 4, and 1, are complex with negative real
part. Thus P, is an asymptotically stable focus.

For the global behaviour in this sub-case we suspect that for certain values
of the speed ¢ the trajectory which leaves P, through the centre manifold

" Functions v, are defined for all ¢ € (0, 1] if and only if the parameter ¢ is chosen such that
¢ zmax P(¢)=32,27 where ¥($)=8¢(1 —¢). For these values of ¢, v,(¢) and r.(¢) have
the properties:

I r(d)r<0forall ge(0,1].
20 elh)y=0and vy{l)= —¢/2.
3. lim, L4 )¢} =0 and lim, ., va(¢) = — .

“ Trajectories on the segments QR and TP actually remain on them; but on the segments
PQ. RS, and ST the trajectories enter .#4.
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enters the point P,. In fact we have numerical evidence in some particular
cases for this possibility for (1) and (2). The oscillating heteroclinic connec-
tion between P, and P, for (2} is remarkable here. Its significance, in terms
of travelling wave solutions for (12), is that corresponding to this type of
heteroclinic connection we have an oscilluting travelling wave solution
which satisfies the boundary conditions ¢( —o0) =0 and @¢{ + ) =1. The
following example shows the behaviour in this sub-case.

ExampLE 3.2. Consider the equation

du 0 [ , Ou

R —ll"g;J‘i’ll(l‘u) (51)

whose travelling wave solution u{x, t) = ¢(x — ¢t) satisfies a singular second
order ODE. The reparametrization (21} with D(u)= —u? removes the
singularity, but changes the sense of the trajectories of the corresponding
system of ODEs. Thus, we have the non-singular system

b= —¢>v=F¢,v)
b= —cv+2¢v° — (1 — )= G(, v)

(52)

which has two equilibrium points P,=(0,0) and P,=(1,0). By the
analysis in this section, P, is a saddle-like point, while P, has different
features depending on the eigenvalues of the Jacobian matrix

0 -2
J[F, G](l,()):[ } (53)

1 —¢
whose tr J[F, G],, o= —c and det J[ F, G],, ,, =2. The eigenvalues are

;Ll,).z=%[—(’i,/(‘2—4].

Since ¢ >0, P, is asymptotically stable; and

1. It is node-like if (¢*—4)=0.
2. It is focus-like if (¢ —4)<0.

In Fig. 3.6 we show the phase portrait of the system (52) which was
obtained by numerical simulation. This suggests the existence of different
types of travelling wave solutions for Eq. (51) (Fig. 3.7) in particular those
of oscillatory type.

FiG. 3.6. Phase portrait of the system {52). (a) For ¢>2. Here ¢=3. (b} For ¢=2.
(¢} For0<c<2 Here c=1.
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Fi6. 3.7. Different travelling wave solutions for (51). (a) Monotenic front. (b} Damped
front. (¢) Damped oscillating front.

4., CONCLUSIONS

In this paper we have proved an uniqueness theorem for t.w.s. of sharp
type for the generalized reaction-diffusion Eq. (12) with D(0)=0 but
D'(0)£0 and used numerical simulations to show the existence of such
solutions for particular cases. As far as we know, our result on uniqueness
is new in the literature, while the numerical evidence for existence extends
previous work by Aronson (1980) and Murray (1989).

We have also stated sufficient conditions on the speed ¢ for the existence
of tws. of front type for equation (12) with D(0)=D'(0)=0 and
D"(0)>0. Here we generalized the method developed by Hadeler (1981).
Furthermore we stated sufficient conditions on the diffusion coefficient D
for the appearance of tw.s. of oscillatory type for equation (12) with
D(0)=D'(0)=0 but D"(0)<0 and analysed one example in particular.
This phenomenon is not common in the literature.

Some natural extensions to our work are the analysis of existence of
t.w.s. for (12) when both the kinetic part g(«) and the diffusion coefficient
D(u) have different shapes. A typical example is g(u)=u(1 — u)(u—x) for
suitable values of a with changes in the sign of D corresponding to
aggregation-diffusion phenomenon (Sanchez-Garduio and Maini, in
preparation). Also the analysis in higher dimensions and in coupled non-
linear reaction-diffusion equations could be of interest.



TRAVELLING WAVE PHENOMENA 315

APPENDIX. A: BEHAVIOUR AROUND A PLANE-NON-HYPERBOLIC POINT

Here we will consider the system
X=ax+by+ Psy(x, y)

. (54)
F=ox+dy+ Qyx, y),

where P, and @, are analytic functions in a neighbourhood of the origin
and their series expansions involve only terms of higher or equal to second
order. In addition we suppose that the origin is the unique isolated
equilibrium point of (54) and that

trfA]=a+d#0 and det[A]) = (ad — bc) =0.
When «=5b=0, the non-singular linear transformation Y=y, j=
{c/d) x + v reduces the system (54) to the form

de _ _ _

—=PyX, y)

df

N (55)
ay —

LA _+ " T

el QL% ¥)

where 7 =nxt with x a constant and P, and Q, satisfy the same conditions
as P, and Q,. For notational convenience we suppress the bar and we
write

X=P,(x, y)
(56)
Y=+ 0ux, y)
Consider the equality
¥+ 0s(x, 3)=0. (57)

By the Implicit Function Theorem, (57) defines a unique solution y = ¢{(x)
in a small neighbourhood of the origin, where @ is an analytic function
such that ¢(0) =0, ¢'(0)=0.

We define the function

Y(x) = Py(x, ¢(x)). (58)
The function ¢ does not vanish identically since if y(x)=0 then all the
points of the curve y = ¢(x} are equilibrium points of (56}, but we suppose

that the origin is an isolated equilibrium point of (54) (and therefore of
(56)). Hence the expansion series of ¢ has the general form

Y(x)=4,x"+ -, (59)
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where m =2, 4, #0. Now we will state the theorem used in Sections 3.1,

»

3.2 and 3.3. Its proof can be found in Andronov ¢t al. (1973).

THeorREM Al Let (0, 0) be an isolated equilibrivm point of the system
(56) and let vy = @(x) and Y(x) be as above. Then:

t. If mis odd and A, >0, the origin is a topological node

2. If mis odd and A,, <0, the origin is a topological saddle point, two
of whose separatrices tend to (0,0} in the directions 0 and 7, the other two
in the directions n/2 and 3m/2

3. If mis even, (0, 0) is a saddle-node, i.e., an equilibrium point whose
canonical neighbourhood is the union of one parabolic and two hyperbolic
sectors. If A, <0, the hyperbolic sectors contain a segment of the positive
x-axis bordering the origin and if" 4,,>0 they contain a segment of the
negative X-axis.

”

APPENDIX B: THE CENTRE MANIFOLD THEOREM

Let F: R"— R" be a smooth vector field with a non-hyperbolic point at
the origin te., F(0)=0 and the Jacobian matrix J{ F], has at least one
eigenvalue with zero real part. The Centre Manifold Theorem and related
results:

1. ensure the existence of an invariant manifold (centre manifold) of
the flow defined by the vector field F containing the point 0, and locally
tangent to the eigenspace formed by the direct sum of the eigenspaces
generated by the eigenvectors associated with the eigenvalues with zero real
part

2. give the local dynamics (around the origin) in terms of the
dynamics on the centre manifold

3. give an approximation to the centre manifold with sufficient
degree of accuracy.

We will state the theorems without their proofs (see Carr, 1981, and
Arrowsmith and Place, 1990 for full details). For our purpose we consider
the system:

N=Ax+ f(x, y)
(60)
y=Byr+glx, y),

where x € R", y€ R" and A and B are constant matrices. All the eigenvalues
of A4 have zero real parts, while all eigenvalues of B have negative real
parts. The functions f and g belong to C? and satisfy:
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L. f10,0)=0, J[f]4.0,=0.
2 20,0)=0,J[g]0 =0

THEOREM B.1.  There exists a centre manifold for (60) y =h(x), |x| <o
where h is C*.

The flow on the centre manifold is given by the n-dimensional system
= Au+ f(x, h{u)). (61)

The next theorem tells us that the system (61) contains all the information
to determine the local behaviour of the system (60) in a small
neighbourhood of the origin.

THEOREM B.2. (a} Suppose that the zero solution of (61) is stable
(asymprotically stable) (unstable). Then the zero solution of (60) is stable
{asymprotically stable) (unstable). (b) Suppose that the zero solution of (61)
is stable. Let (x(t), p(1)) be a solution of (60) with (x(0), w(0)) sufficiently
close to the origin. Then there exists a solution u(t) of (61) such that as
t— L

x(ty=u(t) + ole ")

yy=h(u(t))+ole ),

where v >0 is a constant.

If we substitute y(¢) = A(x(t)) into the second equation in (60) we obtain
the equation for the centre manifold:

A Ax+ fix, h(x))] = Bhix)+ glx, h(x}) (62)

which in general cannot be solved.
For functions ¢: R"— R™ which are C' in a neighbourhood of the
origin, if we define

[Mp1(x)=¢"(x)[ Ax + f(x, p{x))] — Bp(x) — glx, $(x)) (63)

then, by (62), [MA](x)=0.
The following theorem tells us that in principle the centre manifold can
be approximated to any degree of accuracy:

THEOREM B.3. Let ¢ be a C' mapping of a neighhourhood of the origin
in R" into R" with $(0)=0 and J[¢],,=0. Suppose that as x— 0,
[ M@ ](x)=o(|x|*) where k > 1. Then as x — 0, |h(x) — ¢(x)] = o |x|*).
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