
Supplemental Information for: Spatial metrics of
tumour vascular organisation predict radiation efficacy
in a computational model

Software S1

Please find attached a zipped folder containing java implementation of the
mathematical model and MATLAB implementation of the analytic tools described in this
study. A thoroughly documented example of how to run the code is provided in the file
README.txt.

Text S1

In the following supplementary material, we: provide details of our numerical method of
solution of the oxygen transport equation; check our parameter choices using
dimensional analysis and some simple physical arguments; describe in detail our
choice of oxygen update time step and stability requirements; perform a sensitivity
analysis of the model parameters; provide details on the spatial statistic used in our
study and its correlation to carrying capacity; and show the correlation and p-values for
the plots in Fig 8.

Numerical solution. To solve equation (1) in the main text numerically, we discretise
space and time by letting tk = k∆t , where k ∈ N, and xi = i∆x and yj = j∆x where
i , j ∈ {1, ... , N} encode a square lattice of size N ×N, and ∆t is the oxygen update time
step. We approximate the oxygen concentration at time tk and position xi , yj by
ck

i ,j ≈ c(xi , yj , tk ). We use a central difference approximation for the Laplacian and thus
approximate equation (1) in the main document by
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i ,j is the cell-specific oxygen consumption rate defined in equation (2) in the
main text. Rearranging equation (1) to obtain a solution for ck+1
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At each oxygen time step, the oxygen concentration in a given lattice site is updated
using equation (2). To impose the zero-flux boundary conditions we modify equation (2)
in the cases where i , j ∈ {1, N}. For example, to calculate the oxygen concentration
experienced by a cell at the left-hand boundary (i.e. i = 1) from outside the domain (i.e.
i = 0) we discretise the no-flux boundary condition to obtain ck

0,j = ck
2,j , which we

substitute into equation (2). Note that lattice sites occupied by vessels have fixed
oxygen values (1 in the non-dimensional system), so we do not update them.
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Parameter estimation. We assume that normal (brain) tissue has an approximate
oxygen concentration of 35mmHg [1]. This value also agrees well with an estimate of
background tissue oxygen concentration of c0 = 1.7× 10−8 mol cm−2 (4.25× 10−13

mol cell−1) taken from Anderson and colleagues [2] after using the ideal gas law,
assuming body temperature of 310K, oxygen tension of 5300Pa [1] and cell volume of
125, 000µm3.

As each of these parameters has been estimated from different sources, we will fine
tune the basal oxygen consumption and physiologic vascular density for our specific
case using a well-studied tumour spheroid example. We utilize the observation that the
diffusion distance of oxygen to support cancer cells is approximately 10 cell
diameters [3] and information from the literature concerning the ratio of cancer to
normal oxygen consumption. To estimate the baseline oxygen consumption rate then,
we begin with the value rc = 2.3× 10−16 mol cell−1 s−1 taken from an in vitro study of
tumour spheroid growth [4] and then perform a virtual tumour spheroid assay (Fig. A) to
fine tune the value for our model system.

Figure A: Tumour growth in an avascular domain with oxygen diffusion from the
outside displays characteristics of tumour ‘spheroid’ growth. Here, an otherwise
empty domain is initiated with a single cancer cell. The oxygen at the edge of the
domain is set to c = 1. Cells (left) and oxygen concentration (right) are plotted at three
time points: before the onset of central necrosis (top), initiation of central necrosis
(middle) and later in progression (bottom) when a nearly constant sized proliferative
‘rim’ is observed. From this calibration, we find that the maximal oxygen uptake rate
most appropriate for our model is rc = 7.5× 10−4 s−1 which correlated with an
approximate 10 cell diameter thickness.
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Time scales and updates. The difference in time scales between the diffusion of
oxygen and the proliferation of cells is taken into account by updating the continuous
part of the model many times per cellular time step. This can become computationally
expensive in this explicit scheme, and therefore, we seek to minimize this number.
However, for stability, we require ∆tDc /∆x2 < 0.25 [5]. We therefore choose
∆tDc /∆2 = 0.1. In dimensional parameters, we then calculate

∆t =
0.1(50× 10−4 cm)2

1× 10−5 cm2 s−1 = 0.25 s, (3)

which equates to approximately 230, 400 times per cell cycle based on the parameters
chosen (see Table 1 in main text).While we assume the average cell cycle time to be
τ = 16 hours, it is well known that cells in tissues are not synchronized, and also that
cell fate decisions such as apoptosis are made on shorter time scales. To model this
heterogeneity in cell cycle time and to more accurately match the finer time scale
associated with cell death due to microenvironmental cues [6], we choose to update the
cellular portion of our model 100 times per cell cycle and refer to this as the cellular
automaton timestep, (of duration τ/100) and scale the rates for cell behaviour
accordingly (reduced by a factor of 100) so as not to affect the timescale of division.
Thereby reducing the oxygen calculations to 2, 304 updates per cellular automaton
timestep.

Sensitivity analysis. To assay the model for sensitivity to parameters, we measure
the cellularity and cellular-oxygen distributions for the regular vascularity example
reported in the centre panel of Figure 2, with Θ = 0.0027 (or a regular spacing of 14 cell
diameters). From the parameter set modelled in Figure 2
(Dc = 0.1, rc = 1, Km = 0.01and cap = 0.1) we vary each parameter by ≈ three orders of
magnitude and report the ranges for each mode of cellular oxygen distribution and
cellularity in Table S1.

As expected, increasing cellular oxygen consumption (rc) strongly influences the
ability for a given vascular architecture to support cells, with greater consumption
correlating with decreased cellularity. The mean oxygen concentration experienced by
cells goes down and then up slightly as the number of cells decreases drastically.
Variation in the diffusion coefficient, Dc , strongly affects the ability for a domain to
support cells, and also the mean and skewness of the resulting oxygen distribution, but
affects the standard deviation relatively little. Our choice of threshold for apoptosis, cap,
intuitively has a strong effect on the cellularity, and then inversely on mean cellular
oxygen as fewer and fewer cells are competing for the same oxygen. The standard
deviation is affected little, and the skewness decreases at first and then increases as
the number of cells becomes smaller and smaller.

Spatial statistics. To measure the variation away from homogeneity, we utilise a
measure derived from Ripley’s K function. To begin, we have

K̂ (r ) = λ−1
∑
i 6=j

I(dij < r )
n

, (4)

where λ is the average density of points in the domain, I is the indicator function which
yields

I(dij < r ) =

{
1 if the Euclidian distance between vessels i and j is less than r ,
0 otherwise.

(5)
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Table 1. Sensitivity analysis.

Parameter Value Cellularity Mean cellular-
oxygen

Std cellular-
oxygen

Skewness cellular-
oxygen

Dc

0.001 0.0015 0.5198 0.0286 -0.333
0.01 0.0449 0.4623 0.0916 0.0197
0.1 0.4336 0.2346 0.1029 1.5947
0.2 0.8489 0.1931 0.0917 2.2165

rc

0.01 0.9969 0.9796 0.0023 2.2728
0.1 0.9969 0.7969 0.0227 2.273
1 0.4336 0.2346 0.1029 1.5947

10 0.0517 0.3398 0.1296 0.0338
20 0.0265 0.3716 0.1458 -0.3105

Km

0.001 0.398 0.2705 0.1018 1.4904
0.01 0.4338 0.2346 0.1029 1.5947
0.1 0.6862 0.1817 0.0926 2.2194
0.2 0.9448 0.1702 1.0872 2.494
0.5 0.9969 0.2816 0.0772 2.3861

cap

0.001 0.8674 0.054 0.0924 2.8366
0.01 0.6088 0.0849 0.1016 2.3506
0.1 0.4336 0.2346 0.1029 1.5847
0.2 0.3495 0.3668 0.0952 1.495
0.5 0.1883 0.6399 0.0617 1.634

We utilize the variance stabilized version of this measure, L̂(r ), which is given by

L̂(r ) =
K̂ (r )
π

1/2

, (6)

which has an expected value of L̂(r ) = 1 for homogeneous data. To correct for edge
effects, we implement the correction suggested by Ripley [7], which changes the value
of the indicator function, for points assayed within r of the edge, to the reciprocal of the
proportion of the circle (of radius r ) which falls outside the study area.
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Figure B: Ripley’s L function versus carrying capacity. We plot nine scatter plots showing the relationship in each of the
500 simulations represented in Fig. 5 for a given initial vessel density between cell number at equilibrium (x-axis) and
Ripley’s L (y -axis). We find that there is a significant negative correlation in the low vessel densities which loses predictive
capability as the domain becomes entirely filled and all of the data points align at the full carrying capacity.
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Figure C: Surviving Fraction after 2 Gy as a function of vessel density. We plot the surviving fraction of cells after 2Gy
of simulated radiation in each simulation as calculated using, from the main text, equation (5) modified by the OER from
equations (6) and (7) versus the number of vessels in each case for each of the 500 simulations with constant vessel number,
but random placement, on domain size 73× 73 at dynamic equilibrium. The edges of the boxes represent the 25th and 75th
percentile, the whiskers extend to the most extreme data points not considered outliers. Outliers are defined as any simulation
outside approximately 2.7 standard deviations, and they are plotted as red crosses. We note that the mean is monotonically
decreasing, as would be expected from the increasing mean oxygen, but also that this does not capture the dynamic interplay
between supported tissue size and vascular architecture, and does not tell us about tumour control probability.
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Figure D: Correlation and p-value for Ripley’s L function vs. surviving cells after radiation. Here we plot the
correlation coefficient (Left) vs. vessel density for all families of simulations and the corresponding p-value (Right). We notice
that the correlation coefficient changes sign at 70 vessels, and the p-value briefly rises to insignificant (≈ 0.5) at the time of
the sign change.
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