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ABSTRACT 

A mathematical model is presented for the production of a growth inhibitory 
factor (GIF) within a multicell spheroid. The model is based on the assumption that 
the GIF diffuses within the spheroid in a nonlinear spatially dependent manner. This 
is in contrast with previous models, in which the nonlinearity was assumed in the 
production term. The results of the new model are compared with those of previous 
models and with experimental data. 

1. INTRODUCTION 

In vivo cancer growth is a complicated phenomenon involving many 
interrelated processes. Solid tumor growth is known to take place in two 
distinct phases-the avascular phase and the vascular phase. The transi- 
tion from avascular growth to vascular growth depends upon the crucial 
process of neovascularization, and in order to accomplish this the tumor 
cells secrete a diffusible substance known as tumor anglogenesis factor 
into the surrounding tissues. This has the effect of stimulating nearby 
capillary blood vessels to grow toward and penetrate the tumor, resup- 
plying it with vital nutrient [121. Invasion and metastasis can now take 
place. By the time a tumor has grown to a size whereby it can be 
detected by clinical means, there is a strong likelihood that it has 
already reached the vascular growth phase. In this paper we focus on 
the initial avascular stage of tumor growth and present a mathematical 
model for one of the processes involved. 

The initial avascular growth phase can be studied in the laboratory 
by culturing cancer cells in the form of three-dimensional multicell 
spheroids. It is well known that these spheroids, whether grown from 
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established tumor cell lines or actual in vivo tumor specimens, possess 
growth kinetics that are very similar to those of in vivo tumors. Typi- 
cally, these avascular nodules grow to a few millimeters in diameter. 
Cells toward the center, being deprived of vital nutrients, die and give 
rise to a necrotic core. Proliferating cells can be found in the outer 
three to five cell layers. Lying between these two regions is a layer of 
quiescent cells, a proportion of which can be recruited into the outer 
layer of proliferating cells. Many experimental data have been gathered 
on the internal architecture of spheroids, and studies regarding the 
distribution of vital nutrients (e.g., oxygen) within the spheroids have 
been carried out 18, 13-15, 18-23, 26, 40, 41, 44, 4.51. 

To incorporate all of the known and observed experimental results 
into a mathematical model would be a very formidable task indeed. 
Furthermore, from such a complicated model it would be difficult to 
focus on the roles of individual processes. Even deciding upon simplify- 
ing assumptions can be difficult. However, at minimum a realistic model 
of spheroid growth should include certain nonuniformities in the central 
processes of inhibition of mitosis, consumption of nutrients, and cell 
proliferation as well as the dependence of cell mitotic rate on growth 
inhibitor concentration, geometrical constraints, and central necrosis. 
Several papers [2-6, 11, 33, 39, 431 have focused attention on the 
chemical inhibition of mitosis within multicell spheroids, the main 
assumption of the modeling being that a growth inhibitory factor (GIF) 
is produced within the spheroid in some prescribed spatially dependent 
manner to reflect the observed cellular heterogeneity within spheroids. 

The existence and properties of chemicals that inhibit mitosis are 
very will documented [7, 17, 28, 30-32, 381. Indeed there is experimental 
evidence concerning the specific effects of extracts from necrotic areas 
in tumors. It has been demonstrated that these extracts possess the 
ability to reduce the proliferation of cultured cells [34] and also of 
monolayer tumor cells [18, 211, and the same effects have been pro- 
posed to occur in tumors in vivo [27]. In this paper we focus attention 
on the diffusion of a growth inhibitory factor within a multicell spheroid 
and its possible effect on cell mitosis and proliferation. To this end, 
instead of a nonlinear production term, we consider the effects of 
introducing a nonlinear, spatially dependent diffusion coefficient. 

It is known that in spheroids normal structural associations (e.g., 
cell-cell junctions) are disrupted, and hence the possibility arises of 
normal intercellular signals being disrupted also. Nonlinear diffusion of 
the GIF within the spheroid is one possible and simple way to take 
account of this. In Section 2 we present a mathematical model for this 
and compare our results with previous models and also with the avail- 
able experimental data. These results are discussed in the final section 
as are the merits and demerits of both types of models. 
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2. THE MATHEMATICAL MODEL 

The control of mitosis in tissues can be modeled as a schematic 
mechanism in which self-regulating growth is achieved as a result of 
negative feedback from the growing tissue [391. In this approach mitosis 
is assumed to be controlled by a discontinuous switchlike mechanism, 
such that if the concentration of the GIF is less than some threshold 
level 0, say, in any region within the tissue, mitosis occurs in this region, 
whereas if the concentration is greater than 0, mitosis is completely 
inhibited. The differential equation describing the diffusion, production, 
and degradation of the GIF within a spheroid can be written 

%=DvzC+f(C)+hS(r), rER, (2.1) 

where C = C(r,t) is the concentration of GIF within the spheroid 
occupying the region KI E s3 and A is the inhibitor production rate 
(molecules per unit volume per second). A more detailed description of 
the background biology and the derivation of the above equation can be 
found in [2, 3, 18, 21, 31, 391. Previous papers make the assumptions 
that the GIF is produced throughout the tissue by the individual cells, 
modeled by a source function S(r), diffuses with a constant diffusion 
coefficient D, and is depleted everywhere at a prescribed rate f(C). 
Shymko and Glass [391 and Adam 12-41 use the function f(C) = - yC, 
where y is the decay or loss constant. Various forms for the source 
function S(r) have been used. In the original model of Shymko and 
Glass [39], the GIF is assumed to be produced at a constant rate 
throughout the tissue, yielding the uniform source function 

r inside the tissue, 
r outside the tissue. 

In an attempt to model more accurately the heterogeneity of cells 
within tumors, the models of Adam consider a norzunifonn source 
function of the form 

OsrsR, 

r> R, 

where r is the distance from the origin. However, as shown by Britton 
and Chaplain [6], the nonuniform source term of Adam [2-51 is unreal- 
istic from a biological point of view since S’(O) # 0, and they suggest a 
smooth source function of the form 

I-r2/R2, OsrsR 

r> R. 
(2.2) 
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If system (2.2) is studied in a spherical geometry with radial symme- 
try, that is, a sphere of radius R, where the GIF concentration depends 
only on the radial distance from the center of the sphere [C = C(r)], 
then it may be used to model mitotic inhibition within multicell 
spheroids. As stated in the introduction, there is a large body of 
experimental data available for multicell spheroids that can be used to 
study tumor microregions, the results of which can be applied to in vivo 
tumors [40, 421. Small spheroidal nodules of tumor cells can be grown in 
the laboratory, the growth kinetics of which closely follow the first 
avascular stage of in vivo tumor growth such as carcinomas. These grow 
to a diffusion-limited steady-state size a few millimeters in diameter. 
Cells at the center of the avascular nodule are starved of vital nutrients 
and die [26], forming a central necrotic core. A thin layer of live, 
proliferating cells three to five cell layers thick forms at the periphery of 
the nodule, while sandwiched between these two regions is a layer of 
quiescent cells. A proportion of the quiescent cells are reproductively 
viable and may be recruited into the proliferating compartment. 

One feature of spheroid growth that has hitherto not been treated in 
detail by mathematical models is the importance of cell-cell contacts. It 
is known that spheroids are held together by various surface membrane 
microprojections, extracellular matrix, and a variety of cell-cell junc- 
tions including spot desmosomes, tight junctions, junctional complexes, 
and gap junctions. It is possible that the loss of coupling between cells 
may play a critical role in the uncontrolled proliferation in cancer [351. 
In addition to this, whether through gap junctions or by other struc- 
tures, intercellular permeability may not be constant between cells at 
different stages of spheroid growth [l, 13, 291. These observatiosn 
suggest that diffusion of chemicals between cells may not be constant 
(cf. [20]). In this paper, therefore, we examine the effect of spatial 
nonuniformity not on the production term but on the diffusion coeffi- 
cient, and to this end the model we consider is 

~=V.[D(r)VC] +f(C)+ AS(r), rER, (2.3) 

dC -= 
dr 0, r = 0, (2.4) 

D(r)$+PC=O on dlR, P>O, (2.5) 

where we assume that production of GIF is via the uniform source 
function; P is the permeability of the tissue surface, and the diffusion- 
coefficient D(r) in (2.3) is now assumed to be spatially dependent, that 
is, it varies throughout the interior of the spheroid, for which there is 
experimental evidence [201. Thus the observed cellular heterogeneity 
within spheroids, the heterogeneous intercellular permeability and the 
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composition of the extracellular matrix, is accounted for via nonlinear 
diffusion. The boundary conditions (2.4), (2.5) have been dealt with at 
length elsewhere [2, 6, 391, and we do not discuss their derivation here. 

Considering the spherical geometry described in the introduction and 
assuming radial symmetry, the above system reduces to 

ac 1 d, _=-_ 
at r2 dr r2D(rpg -yC+ A, rsR, (2.6) 

aC 0 dr= > r = 0, 

D(r)%+PC=O, r = R. 

(2.7) 

(2.8) 

To facilitate analysis of the above system it is convenient to nondi- 
mensionalize, and hence we choose appropriate reference variables. 
The obvious variables to choose (cf. [ll]) are, as the reference length, 
R, the radius of the spheroid under consideration; as a reference GIF 
concentration, 0, the critical threshold level of C; and as a reference 
time, R2/D. Thus we define new variables 

We also assume that we can write 

D(r) = Dd(r), (2.9) 

where D is a constant. The system now becomes, upon dropping the 
tildes for notational convenience, 

dC 1 d -=_- 
dt r2 dr ( 

r’d(r)$j -L2C+aL2, 
1 

dC -= 
dr 0, r = 0, 

d(r)$j+$C=O, , r=l 

(2.10) 

(2.11) 

(2.12) 

where ~~ = y/D, L = KR, a = A/y0 and n =(YD>“~/P. With this 
nondimensionalization we see that once the parameters for a particular 
spheroid are determined, the only undetermined parameter is the 
radius R. The solutions to (2.10) can therefore be monitored for 
spheroids of various sizes. Thus we can analyze the system using 
different values for the spheroid radius R while holding constant the 
various observable parameters associated with the system, that is, D, y, 
P, and h/8 (cf. [391X It is our intention to discover if a concentration 
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profile of GIF inside the spheroid can be found corresponding to the 
observed pattern of necrosis seen experimentally. 

Since it is known that rapidly growing tumors enlarge at a rate on the 
order of 0.4-0.7 mm/day [9] while diffusing chemical substances, with 
diffusion coefficients on the order of 10ph cm*/s, and reach steady state 
on a time scale of the order of a few minutes, then it is sufficient to 
consider the corresponding steady-state equation given by 

(2.13) 

together with the boundary conditions (2.11), (2.12). To accomplish this, 
(2.10) was solved using the NAG routine D03PBF, with zero initial 
conditions C(r,O) = 0. The steady-state solutions evolved on a time 
scale of O(1). Various forms for the function d(r) were considered, 
which we assume is some monotonic function of r. Both monotonically 
increasing functions of d(r) [d(O) < d(l)] and monotonically decreasing 
functions [d(O) > d(l)] were investigated. For our purposes we chose 
d(r) = 0.8 + 0.2r2 as an example of the former and d(r) = 1.0 - 0.2r2 as 
an example of the latter (variability in diffusion constants between 
spheroids grown from different cell lines has been verified experimen- 
tally [201). 

As stated above, once the observable parameters have been fixed, the 
concentration profile for different sized spheroids can be easily ob- 
tained from the steady-state solutions of (2.10) simply by varying one 
parameter, namely the spheroid radius R. Mathematical models for this 
stage of spheroid growth involving the dynamic evolution of the radius 
R(t) are given by, for example, Burton [lo], Greenspan [24-261, 
McElwain and Ponzo [36], and Maggelakis and Adam [37]. In these 
models, since the initial growth of the spheroids is avascular, they grow 
to a finite, diffusion-limited size a few millimeters in diameter. Mathe- 
matically, as t + m, R(t) + R*. Thus by varying (i.e., increasing) the 
value for R in (2.10) from an initial value R(O), say, up to R*, we can 
effectively follow the development of the GIF concentration profile 
within the spheroid as the spheroid grows. This seems intuitively more 
appropriate than letting R +m, which does not happen in practice. We 
also note that a consequence of the nondimensionalization is that in 
each case the critical threshold level for mitosis occurs at C = 1. 

3. RESULTS 

The results presented in this section are compared with the experi- 
mental data of Folkman and Hochberg [16]. In order to compare and 
contrast our results with previous mathematical models, following 
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Shymko and Glass [39] and Chaplain and Britton [ll], we choose 
D = 5 X 10m7 cm’/s, P = 10m4 cm/s, and y = 5 X 10P5/s-‘. Corre- 

spondingly, K = 10 cm- ’ and n = 0.05. We note that in accordance with 

our assumption of a spatially varying diffusion coefficient [cf. (2.9)] the 
value of D given above will hold only at r = 1, that is, the tumor edge. 
The value of the diffusion coefficient in the interior of the spheroid will 
vary according to the prescribed function d(r). To find a value for the 
parameter u, we follow the procedure of Chaplain and Britton [ll] and 
use the experimental observation of Folkman and Hochberg [16] that 
when the spheroids are approximately 0.05 cm in radius, the volume of 
the active mitotic zone is 0.6 of the total volume of the tissue. A simple 
calculation then shows that the size of the inner radius of the necrotic 
core must be 0.037cm (cf. [ll]). In terms of the nondimensionalized 
variables, we therefore require that C = 1 when r = 0.74, L = 0.5, 71 = 

0.05. Equation (2.10) was solved numerically with various values of the 
parameter a and allowed to evolve to steady state. Figure 1 shows the 
steady-state profiles achieved with a value of a = 32.5, that is, h/8 = 
1.625 X lop3 s-r for (i) a monotonically increasing and (ii) a monotoni- 
cally decreasing diffusion coefficient. It can be seen from Figure 1 that 

I .8 

Distance from came 

FIG. 1. Plot of GIF concentration profile throughout multicell spheroid of size 
R = 0.05 cm; D = 5 X 1O-7 cm’/s, P = 1O-4 cm/s, y = 5 x 10m5 s-‘. (i) d(r) = 0.8+ 
0.2r2 (monotonically increasing); (ii) d(r) = 1.0 - 0.2r2 (monotonically decreasing); 
constant source term. 
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this value of a (approximately) satisfies the above experimental con- 
straint. Exact agreement could not be easily obtained since the analytic 
solution of (2.10) is not known. 

Figure 2 shows the steady-state GIF profiles within a spheroid 4 mm 
in diameter, that is, the diffusion-limited size. Once again the two 
curves correspond to (i) a monotonically increasing and (ii) a monotoni- 
cally decreasing diffusion coefficient. 

The horizontal line drawn at C = 1 in all figures is the threshold 
value for the GIF. Hence in any region of the spheroid where the GIF 
concentration is greater than 1, mitosis will be inhibited here. This 
enables regions within the spheroid where mitosis is taking place and 
those where mitosis is inhibited (necrotic core) to be easily distin- 
guished. As can be clearly seen from Figure 2, the final steady-state 
GIF profile achieved is in good agreement with the experimental data 
of Folkman and Hochberg [16], where at the stable, diffusion-limited 
size there was a narrow layer of one or two cells that was mitotically 
active surrounding the necrotic core. These results also parallel those of 
Chaplain and Britton [ill. 

0’ I 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.X I 

Distance from centre 

FK. 2. Plot of GIF concentration profile throughout multicell spheroid of 
ultimate size R = 0.2 cm; D = 5 x lOA7 cm’/s,P = 10m4 cm/s, y = 5 x 10m5 s-l. (i) 
d(r) = 0.8 +0.2r2 (monotonically increasing); (ii) d(r) = 1.0 -0.2r2 (monotonically 
decreasing); constant source term. 



GIF NONLINEAR DIFFUSION IN MULTICELL SPHEROIDS 9 

We now also consider solving the above system with the constant 
source t&m being replaced by a spatially nonuniform source function of 
the type suggested by Britton and Chaplain [6l, that is, 

S(r) = 
1-r2/R2, OsrsR, 

o 

9 i->R. 
(3.1) 

After nondimensionalization, the model equation now becomes 

ac -= 
dt 

+-$ ?d(r)!g 
( ) 

-PC+aP(l-r2). (3.2) 

Figure 3 shows the steady-state GIF concentration profiles obtained 
with a value of a = 65 for (i) a monotonically increasing and (ii) a 
monotonically decreasing nonlinear diffusion term. Once again this 
value for a enables the experimental observation of Folkman and 
Hochberg [16] concerning the ratio of the volume of the active mitotic 
zone to the total tissue volume to be satisfied. Figure 4 shows the 

c 

I 

c 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 I 

Distance from centre 

FIG. 3. Plot of GIF concentration profile throughout multicell spheroid of size 
R = 0.05 cm; D = 5 X lo-’ cm* s, P = 10e4 cm/s, y = 5 X 10m5 s-‘. (i) d(r) = 0.8+ 
0.2~’ (monotonically increasing); (ii) d(r) = l.O-0.2r2 (monotonically decreasing); 
nonlinear source term. 
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-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 I 

Distance from centre 

FIG. 4. Plot of GIF concentration profile throughout multicell spheroid of 
ultimate size R = 0.2 cm; II = 5 X IO-’ cm’/s,P = 10m4 cm/s, y = 5 X lo-” s- ‘. (i) 
d(r) = 0.8 + 0.2r2 (monotonically increasing); (ii) d(r) = 1 .O - 0.2r2 (monotonically 
decreasing); nonlinear source term. 

corresponding steady-state GIF concentration profiles for a spheroid of 
ultimate size 0.4 cm diameter. Again these show good agreement with 
the experimental observations. 

We note for completeness that results similar to those of Britton and 
Chaplain [6] can be obtained upon straightforward application of the 
maximum principle to (2.10)-(2.12) and (3.2). Using these techniques it 
is easily shown that, qualitatively, the final GIF concentration profile 
depends only on the qualitative form of the function d(r), which can be 
chosen to model the interior heterogeneity of the spheroids. 

4. CONCLUSIONS 

We have shown that using a nonlinear, spatially dependent diffusion 
coefficient, which reflects the cellular heterogeneity of the interior of 
multicell spheroids and the heterogeneous intercellular permeability, is 
alone sufficient to produce a GIF concentration profile within the 
spheroid that is not incompatible with available experimetnal evidence. 
We have also shown that a combination of nonlinear diffusion with a 
nonlinear source term can also account for the experimental observa- 
tions. Hence we have shown that a nonuniform source function is not 
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the only way to produce qualitatively correct GIF concentration profiles 
within multicell spheroids. Therefore, mathematically it is not possible 
to distinguish between the effects of nonlinear diffusion and a nonlinear 
source term. We conclude that more experimental work on the precise 
mechanisms governing cell cycle kinetics (cf. [14, 15, 19, 451) must be 
done to elucidate the underlying tissue heterogeneity. 
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