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Modeling Longitudinal Preclinical Tumor Size Data to
Identify Transient Dynamics in Tumor Response to
Antiangiogenic Drugs
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Experimental evidence suggests that antiangiogenic therapy gives rise to a transient window of vessel normalization, within
which the efficacy of radiotherapy and chemotherapy may be enhanced. Preclinical experiments that measure components of
vessel normalization are invasive and expensive. We have developed a mathematical model of vascular tumor growth from
preclinical time-course data in a breast cancer xenograft model. We used a mixed-effects approach for model
parameterization, leveraging tumor size data to identify a period of enhanced tumor growth that could potentially correspond
to the transient window of vessel normalization. We estimated the characteristics of the window for mice treated with an anti-
VEGF antibody (bevacizumab) or with a bispecific anti-VEGF/anti-angiopoietin-2 antibody (vanucizumab). We show how the
mathematical model could theoretically be used to predict how to coordinate antiangiogenic therapy with radiotherapy or
chemotherapy to maximize therapeutic effect, reducing the need for preclinical experiments that directly measure vessel
normalization parameters.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE

TOPIC?
� Antiangiogenic therapies alter the density and archi-

tecture of the tumor blood vessel network, and may

stimulate a transient window of vessel normalization

shortly after antiangiogenic treatment commences. The

efficacy of chemotherapy and radiotherapy may be

enhanced during the transient window due to increased

perfusion and decreased vascular permeability.
WHAT QUESTION DOES THIS STUDY ADDRESS?
� Can tumor size data alone be used to infer the transient

window of vessel normalization, in which the efficacy of

chemotherapy and radiotherapy may be enhanced?

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� A transient window of enhanced tumor growth occurs
during treatment with bevacizumab or vanucizumab for
KPL-4 tumor bearing mice. The window is identified
with precision using mixed-effects techniques.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
� Identification of the transient window of enhanced
tumor growth could reduce the need to measure normali-
zation parameters, and could reduce the chance of
obtaining inconsistent efficacy measurements when
comparing treatments to be administered alongside anti-
angiogenic treatment.

Angiogenesis is the process by which blood vessels form

from existing ones; it plays a key role in tumor growth and

progression. The initial development of antiangiogenic ther-

apies was based on the premise that pruning new tumor

vessels would reduce the blood supply to the tumor, and

inhibit the delivery of oxygen and nutrients to the tumor,

causing its growth to slow down or stop.1 However, it is

now clear that antiangiogenic therapy not only causes vas-

cular regression, but also affects processes including ves-

sel permeability, perfusion, diameter, tortuosity, and

pericyte coverage; and thereby normalizes the vasculature.2

It has been suggested that vessel normalization plays a

key role in tumor progression, since it may transiently

enhance the delivery of oxygen and nutrients to the tumor

microenvironment.3 There is evidence that antiangiogenic

drug induced vessel normalization transiently increases the

efficacy of chemotherapy and radiotherapy.4,5 If this normal-

ization window were identified for individual patients, then

combination treatment schedules could be designed in

which administration of chemotherapy or radiotherapy

would be coordinated with the normalization window to

maximize the therapeutic response.
Normalization has been observed in preclinical models of

antiangiogenic therapy both from histology6,7 and via real-
time imaging methods such as window chamber assays.8,9

For reviews on the role of normalization in neovascular devel-
opment, see refs. 10 and 11. Evidence from mouse xenograft
studies suggests that vessel normalization is a transient
effect that begins shortly after the onset of antiangiogenic
therapy and ends a few days later.12,13 Furthermore, some
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clinical studies are consistent with antiangiogenic therapy
stimulating a reduction in vessel permeability for glioblasto-
ma14 and rectal cancer.15 In both refs. 12 and 13, radiothera-
py was found to be most efficacious when administered
within the transient window of increased tumor oxygenation.
In particular, in ref. 12 a synergistic tumor growth delay was
observed when radiotherapy was administered 4–6 days
after the first dose of antiangiogenic therapy. It has also been
suggested that normalized vessels allow efficient delivery of
chemotherapy since improved perfusion allows effective
extravasation of small molecules.5,16

Bevacizumab is an antivascular endothelial growth factor
(VEGF) antibody that has been approved for treatment of
numerous cancers including renal cell carcinoma, non-
small-cell lung cancer, and colorectal cancer. Vanucizumab
is a bispecific antibody that recognizes VEGF with one arm
(based on bevacizumab) and angiopoietin-2 (Ang-2) with
the other arm (based on LC06, an Ang-2-specific antibody).
Vanucizumab is currently in phase II trials to treat locally
advanced or metastatic solid tumors (NCT01688206), and
in combination with FOLFOX for metastatic colorectal can-
cer (NCT02141295). It is thought that since both VEGF and
Ang-2 promote angiogenesis, simultaneous inhibition of the
ligands will result in an additive or even synergistic effect
on tumor vessel regression.7 Antiangiogenic therapies are
principally used in combination with cytotoxic therapies or
radiotherapy. It has been shown that the timing of such
concomitant treatments is important for the therapeutic out-
come in preclinical experiments.4,5 In order to further eluci-
date some of the mechanisms by which antiangiogenic
therapy can improve treatment outcome when administered
alone or in combination with chemotherapy, we have devel-
oped a mathematical model of vascular tumor growth. Our
model can be used to identify a period of enhanced tumor
growth that could correspond to the vessel normalization
window within which cytotoxic or radiotherapeutic efficacy
may be increased.

The development of mathematical models of angiogene-
sis has been driven by experimental results. Continuous,
discrete, and hybrid models can be used to represent ves-
sel growth dynamics, and tumor growth, in one, two, or
three dimensions and may account for intricate biological
details17–21 (for a review, see ref. 22). Without suitable
experimental data, these models can yield qualitative mech-
anistic insight; with appropriate data, the models can be
validated and parameterized and, thereby, their predictive
power increased. Mathematical models can also be used to
investigate the impact of mechanistic perturbations to
angiogenesis and to formulate hypotheses about optimal
therapy regimens.

For model development and parameterization, nonlinear
mixed-effects (NLME) modeling enables a data-driven
approach.23 A maximum likelihood approach is used to esti-
mate population and individual parameters from experimen-
tal data. The method has been used widely to integrate
tumor growth data with ordinary differential equation (ODE)
models that characterize tumor growth kinetics in the pres-
ence and absence of cytotoxic treatments.24–28 Typically
these models comprise a term that represents an empirical
tumor growth law (e.g., logistic, Gompertzian, or exponential

growth), and another term to represent tumor growth inhibi-

tion due to chemotherapy. For example, in ref. 24 a two-

phase tumor growth law (exponential followed by linear) is

modified to account for a cytotoxic therapy which acts direct-

ly to kill the tumor cells. This model is extended in ref. 29 to

account for antiangiogenic therapy, which is assumed to indi-

rectly slow the tumor’s growth rate; however, there is no vari-

able for the tumor’s vascular density.
Building on these models, Hahnfeldt et al. proposed a

simple model of vascular tumor growth in which the tumor

and the vasculature are treated separately. Vascular density

is assumed to regulate the equilibrium size of the tumor

while the tumor is assumed to promote angiogenesis.30 In

ref. 31, Ouerdani et al. develop a model of vascular tumor

growth in which a logistic tumor growth law is assumed,

and the equilibrium tumor size is the vessel-dependent car-

rying capacity. The authors use preclinical and clinical data

to parameterize the model in the presence and absence of

the tyrosine kinase inhibitor pazopanib which blocks several

kinases to interfere both with angiogenesis and tumor cell

growth. Similarly, in ref. 27, Wilson et al. present a logistic

tumor growth model with a dynamic carrying capacity term

that is parameterized for administration of antiangiogenic

therapy alone and in combination with chemotherapy. The

authors use their model to predict an optimal time for the

administration of chemotherapy following administration of

antiangiogenic therapy. They suggest that vascular normali-

zation could play a key role in the identification of the opti-

mal treatment schedule, although normalization is

neglected in their model.
It is clear that vessel normalization plays a key role in

vascular tumor growth, although parameters associated

with normalization are rarely measured. While existing

mixed-effects models have not explicitly considered the

dynamics of vessel normalization, in this article we are

motivated by the transient dynamics apparent from the

experimental data in the KPL-4 preclinical mouse (xeno-

graft) model of breast cancer to extend existing mathemati-

cal models of vascular tumor growth under antiangiogenic

therapy to account for these dynamics. Our primary goal is

to combine mixed-effects modeling with tumor size data

from KPL-4 mouse xenografts to characterize the transient

window of increased tumor growth following exposure to

antiangiogenic therapy. The same model could be used to

characterize normalization in clinical studies. To conclude

our study, we demonstrate how the model can be used to

predict the optimal time, relative to the transient window, to

schedule chemotherapy.

METHODS
Preclinical data
Female SCID beige mice, age 8 weeks, were housed in

specific-pathogen-free conditions according to committed

guidelines (GV-Solas, Felasa, TierschG) and injected with a

suspension of 3 3 106 KPL-4 tumor cells into the right, pen-

ultimate, inguinal mammary fat pad. Treatment started 38

days after tumor cell injection, when tumors had reached a

mean size of 70 mm3, and mice were randomized into control
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(omalizumab), bevacizumab treatment, and vanucizumab

treatment groups with 10 mice per group.
Bevacizumab is an anti-VEGF antibody, vanucizumab is

a bispecific anti-VEGF/anti-Ang-2 antibody that neutralizes

both ligands, and omalizumab was included as an isotype

control. Each antibody was administered via i.v. injection at

a dose of 10 mg/kg, once per week, starting 38 days after

inoculation for a total of 5 weeks.
Tumor volume, T, was calculated using the formula

T 5
length3width2

2 , where the length and width of the tumor

were the longest and shortest dimensions of the tumor lying

at 90� to the longest, respectively. These measurements

were taken twice per week for the treatment period, resulting

in a total of 10 tumor size measurements per animal. The

data are presented in Figure 1.

Model development
Untreated tumors. The structural model that we present

comprises two ordinary differential equations (ODEs) to

describe time-dependent tumor growth and associated

vessel-dependent carrying capacity and is inspired by a

model devised by Hahnfeldt et al.30 The tumor size is the

observed variable; the vessel-dependent carrying capacity

has not been measured experimentally. We assume that all

individual parameters are distributed log-normally, which is

generally accepted for growth rates and reaction rates.32

The biological interpretation of the carrying capacity is

the maximum tumor size that can be supported by the

associated vasculature. The antiangiogenic therapies that

we consider affect vessel growth, but are not directly cyto-

toxic. Therefore, we view tumor volume, T (measured in

mm3), and the carrying capacity, V (also in mm3), as

distinct dependent variables. A simple logistic growth model
for T was chosen for the untreated case (see Eq. 1). Tumor

growth was represented using a logistic or generalized
logistic growth term in several related models.25,27,31 Fol-
lowing ref. 30, we assume that the carrying capacity, V, of

the tumor depends on the local vascular density and archi-
tecture. In recent publications,27,31 the evolution of the car-

rying capacity was assumed to depend only on T. We
propose that it is realistic to take into consideration the
existing vascular density, since new vessels grow from

existing ones. The untreated model of tumor size and
dynamic carrying capacity can be written:

dT
dt

5aT T 12
T
V

� �
; (1)

dV
dt

5aV T b V c; (2)

where aT is the maximal tumor growth rate, and aV is the

growth rate of the vascular-dependent carrying capacity.
Since in Eq. 2 the exponents b and c are not identifiable

via model simulations, we fixed them at physiologically
based values. Vessel growth is stimulated by growth factors
(such as VEGF) that are released by tumor cells in

response to hypoxia and, by a simple geometrical argu-
ment, we may assume that the proportion of the tumor vol-
ume that is hypoxic is proportional to its surface area. This

assumption is consistent with the pO2 gradient in tumors
described previously.33 Accordingly, we fix b5 2

3. We use a

value of c512b5 1
3 to ensure that vessel growth is expo-

nential at long times. We note that there are several values

Figure 1 Individual tumor size data for (a) control tumors (n 5 10), (b) bevacizumab treated animals (n 5 10), (c) vanucizumab treated
animals (n 5 10), (d) mean tumor volume of individual groups. Treatment times are shown by vertical arrows in plots (b–d).
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for b and c that could feasibly represent vessel-dependent

tumor growth: the values chosen here are based on geo-

metrical arguments.

Tumors treated with antiangiogenic therapy. We assume

that antiangiogenic therapy has two effects: (1) it causes

blood vessel regression and (2) it leads to a transient peri-

od during which tumor growth is enhanced due to

increased blood flow. We start by taking only effect (1) into

account, and then suppose both effects are active. We

incorporate effects (1) and (2) into our mathematical model

by including a term for vessel regression and a function

that transiently increases the carrying capacity (this change

being stimulated by increased tumor perfusion during the

transient normalization window).
In the absence of pharmacokinetic data from the experiment

and to avoid introducing further unknown model parameters,

we do not explicitly model drug levels in the tumor microenvi-

ronment; we assume that from the onset of treatment, the con-

centration of each antiangiogenic drug in the blood stream is

maintained at a high enough level to ensure maximum efficacy.

The long half-life (around 8 days in preclinical models) of beva-

cizumab supports this assumption,34 and we assume that

vanucizumab has a similarly long half-life. Data presented in

refs. 34 and 7 show that a weekly dose of 10 mg/kg of bevaci-

zumab or vanucizumab results in maximum efficacy with

respect to tumor growth inhibition in mice, further supporting

our argument. The full model can be written:

dT
dt

5aT T 12
T

N3V

� �
; (3)

dV
dt

5aV T 2=3 V 1=32dV V ; (4)

NðtÞ5
1 for t � tnorm1 and t � tnorm2;

Nmax for tnorm1 < t < tnorm2;

(
(5)

where the constant dV corresponds to the vessel death

rate, tnorm1 and tnorm2 are the start and end times of the

window of enhanced tumor growth, respectively, and Nmax � 1

is the maximum factor by which the carrying capacity is

enhanced during the transient window. For the first case,

where only effect (1) is accounted for, Nmax 5 1 for all time.
The initial condition for T is the experimental value of the

tumor volume at the first measurement time (day 38). We

estimate the initial value of V via the parameter K 5 T0

V0
, where

T0 is the observed initial tumor volume and V0 is the initial

vessel-dependent carrying capacity. As such, we assume

that V0 is linearly related to T0 for individuals through the

parameter K, which is estimated for individuals. Typical mod-

el simulations for various values of dV and Nmax are pre-

sented in Figure 2. We include a short simulation study in

Supplementary Material 1 that demonstrates the benefit of

rich datasets for parameter identifiability. Our study showed

that there is a large uncertainty associated with the parame-

ter Nmax. The mathematical explanation for the uncertainty is

that as N !1; aT T 12 T
NV

� �
! aT T . Therefore, large esti-

mates for Nmax will give similar simulation results.

Modeling techniques
Our nonlinear mixed-effects model was implemented using
Monolix software, which allows estimation of population
parameters, interindividual variability (IIV) via the Stochastic
Approximation to Expectation Maximization (SAEM) algo-
rithm, and also individual parameters.35

For mixed-effects modeling, it is assumed that the
observed data, y, can be represented as a function of pop-
ulation and individual parameters and the experimental
error on measurements. The structural model, f, describes
the deterministic processes that give rise to the data and
depends on time and the underlying model parameters.
The error model, g, describes how measurement errors
made during data collection change over time and their
dependence on underlying parameters. Measurement j for
individual i may be written:

yij 5f ðtij ;/iÞ1gðtij ;/iÞ�ij ; (6)

where the vector /i contains the parameters corresponding
to individual i for the structural model, tij is the time of mea-
surement j for individual i, and �ij is the residual error of the
measurement.

We use a proportional error model defined by gðtij ;/i Þ5
bf ðtij ;/i Þ where b is a positive constant. For our model, /i

contains the parameters aV ; aT ;K ; dV ;Nmax; tnorm1; tnorm2

and b, the error model parameter, the size of y is 30 3 10
(total number of individuals 3 number of measurements
per individual). The observed and simulated data y and f,
respectively, are tumor size measurements for 30 animals
at 10 time points.

Model selection is performed by comparing the Bayesian
Information Criterion (BIC) for each model, alongside visual
predictive checks (VPC) and residual standard error (RSE)
of population parameters and IIV. The BIC is a penalized
likelihood criterion calculated by the formula BIC5

22LLy ðhÞ1logðnÞd , where LL is the log-likelihood, n is the
number of observations, h is the vector containing the pop-
ulation parameters, and d is the total number of
parameters.

RESULTS
A simple monotonic vessel inhibition model does not
capture transient dynamics
Model simulations that account for drug-induced vessel
regression, but not normalization (see Eqs. 3–4 with
Nmax 5 1), produced a poor fit to the experimental data; the
fit could be improved by accounting for the transient
dynamics of tumor growth. The individual fits and residuals
are presented in conditional weighted residuals in Figure 3.
From Figure 3h, it is clear that the tumor volume is almost
always underestimated at day 52, and almost always over-
estimated at days 59 and 63. This is due to a steep
increase in the tumor growth rate between these times. In
the next subsection we improve the model by accounting
for the transient tumor growth dynamics. The BIC for the
monotonic model without normalization is 2,759. The
results for the model parameters estimated for the mono-
tonic model are presented in Table 1.
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Model selection: identifying the transient window of

enhanced tumor growth
Following ref. 12, we assume that the duration of the tran-

siently enhanced tumor growth window is similar for all ani-

mals injected with a given tumor cell line and receiving a

particular antiangiogenic treatment. Therefore, in our model

selection process we fix the variance of the population dis-

tributions for tnorm1 and tnorm2 to 0.1 and allow individual

parameter values to be chosen within this predefined distri-

bution. Since we assume that the transient window of

enhanced tumor growth is caused by vessel normalization,

we base further assumptions on experiments from ref. 13,

where the time frame in which vessel normalization

occurred was similar for all animals treated with bevacizu-

mab. Based on experiments in refs. 13 and 12, we assume

that the normalization constant remains at control levels

before and after the transient window.
When assuming the antiangiogenic treatment stimulates

both vessel regression and normalization, Eqs. 3–5 were

used to estimate population and individual parameter values.

During model selection, we tested several assumptions

regarding the treatment parameters dV ;Nmax; tnorm1, and

tnorm2 (see Supplementary Material 2). The model that

gave the best fit to the experimental data assumed different

values of dV for both treatment groups, and the same values

of Nmax; tnorm1, and tnorm2 for both treatment groups. The

parameter estimates, along with their RSE values and

shrinkage, are listed in Table 1.
The individual fits and residual errors for the final model

are shown in Figure 4 and the visual predictive checks

(VPCs), split by experimental group, are shown in Figure 5.

These results show that the transient dynamics model

(Eqs. 3–5) describes individual and population data well for

all groups. We performed a likelihood ratio test (LRT) and

found that the results agreed with the Wald test that the data

are better described using a proportional error model than a

constant error model (2D2LL5232764:61).
We selected the transient dynamics model as the most

appropriate to represent the experimental data based on

the diagnostic plots, shrinkage, parameter estimates, and

RSE values, compared to the monotonic model (Eqs. 3–5

with Nmax 5 1). The BIC for the transient dynamics model,

Figure 2 Typical model simulations with arbitrary parameters that are order of magnitude estimates. Curves on the left (a,c,e) repre-
sent the tumor volume T(t) and corresponding curves on the right (b,d,f) represent the vessel dependent carrying capacity V(t).
(a,b) Control simulations (Eqs. 1, 2) with aT 50:1 day21; aV 50:09 day21, K 5 2, T0 5 70 mm3. (c,d) Treatment model simulations (Eqs.
3–5) with Nmax 5 1, dV values 0:04 day2120:12 day21 and all other parameters the same as (a,b). (e,f) Treatment model simulations
(Eqs. 3–5) where tnorm1 5 52 days, tnorm2 5 62 days, Nmax values 2221; dV 50:1 day21 and all other parameters the same as (a,b).
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BICT, was larger than the BIC for the monotonic model,

BICM, (BICT 52865;BICM52797). However, we do not

reject the transient dynamics model based on the BIC, and

we propose that the other evidence for model appropriate-

ness (diagnostic plots, RSE, shrinkage) suggests that the

normalization model best describes the data.
The estimated value of the population parameter

Nmax 5 6.7. An interpretation of this result is that, during the

transient window, the vasculature provides sufficient oxygen

and nutrients to support a tumor 6.7 times larger than it

was able to support before the period of enhanced tumor

growth.

Verification with histology data
We compared the histology results for vessel density (mea-

sured in vessels per mm2 tumor tissue) at day 71 with the

simulated results for vessel density (V/T) at day 71. Details

of the comparison are given in Supplementary Material 4.

We observed that there is good qualitative agreement

between the histology and the simulated data.

Theoretical administration of chemotherapy
We now simulate the administration of a cytotoxic drug,

C(t), in order to examine whether the model predicts a

more pronounced difference in tumor volume when chemo-

therapy is administered during the normalization window.

We assume that the cytotoxic drug is delivered to the tumor

at a rate proportional to N 3 V, and that it acts to kill tumor

cells at a rate proportional to its concentration in the tumor.

The chemotherapy model is based on the model proposed

previously,28 which investigates the effects of docetaxel and

capecitabine on tumor growth. For simplicity, we based our

parameter estimates on the population parameters from

this model. The equations for vascular tumor growth in

response to combined antiangiogenic and chemotherapy

are given by:
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Figure 3 Monotonic model results from simulations of Eqs. 3–5 where Nmax 5 1. (a)-(f) Typical individual fits selected at random for
(a,b) control, (c,d) bevacizumab, and (e,f) vanucizumab groups using experimental data. Blue “1”: experimental data; solid black
lines: predicted tumor volume, T, using individual parameters estimated by Monolix. (g) Experimental (observed) results for tumor vol-
ume plotted against predicted results for tumor volume for individuals and colored by group. (h) Conditional weighted residuals
(CWRES) plots for the transient dynamics model. The mean CWRES for each experimental group is shown by a solid line of the corre-
sponding color. Blue circles: control; green stars: bevacizumab; red dots: vanucizumab. The plots show that the tumor volume is con-
sistently underestimated for the treatment groups at day 52 and overestimated at days 59 and 63.
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Table 1 Population parameters and interindividual variability (IIV) for the monotonic (Eqs. (3–5) with n 5 1 for all time) and final (Eqs. (3–5)) structural models

Parameter Units Description

Monotonic model

population

parameter

(RSE%)

Monotonic

model

IIV (RSE%)

Monotonic

model

shrinkage (%)

Final model

population

parameter

(RSE%)

Final model

IIV (RSE%)

Final model

shrinkage (%)

aT day21 Tumor growth rate 0.11 (25) 0.134 (274) 212 0.109 (12) 0.422 (25) 26

aV day21 Vessel growth rate 0.0886 (20) 0.345 (47) 24 0.119 (7) 0.177 (34) 6

K dimensionless Initial ratio of V/T 1.26 (20) 0.941 (16) 16 1.14 (15) 0.711 (15) 9

tnorm1 days Start time of normalization window — — 53.4 (4) 0.1 FIX —

tnorm2 days End time of normalization window — — 59.2 (3) 0.1 FIX —

Nmax dimensionless Maximum normalization constant — — 6.7 (27) 0.55 (41) —

dV (bev) day21 Vessel kill rate (bevacizumab) 0.0633 (33) 0.674 (2.3e3) 0.113 (11) 0.208 (47) —

dV (van) day21 Vessel kill rate (vanucizumab) 0.0733 (32) 0.219 (176) 0.115 (12) 0.293 (33) —

b % Proportional error parameter 22.7 (5) — 18.5 (5) — —

The IIV given is the standard deviation x estimated using Monolix sofware and the relative standard error (RSE) is a measure of the precision of the parameter

estimates. Shrinkage is a measure used to compare the distribution of the individual parameters to the population parameters and is calculated via the formula:

Shrinkage512
Var ĝð Þ

x2 where Var ĝð Þ is the variance of the estimated individual parameters and x2 is the estimated variance of the population parameters. A pro-

portional error model was used and the percentage error is listed as parameter b. Parameters marked “FIX”’ were held at stated values, and not estimated.
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dT
dt

5aT T 12
T

N3V

� �
2 dT C Te2kt ; (7)

dV
dt

5aV T 2=3 V 1=32dV V ; (8)

C5aCðtÞNVe2k modðt ;1Þ; (9)

NðtÞ5
1 for t � tnorm1 and t � tnorm2;

Nmax for tnorm1 < t < tnorm2;

(
(10)

and

aCðtÞ5
0 for t � tCon and t � tCoff ;

~aC for tCon < t < tCoff

(
(11)

where C is the concentration of the cytotoxic drug in

mg ml– 1 inside the tumor. We use the population values

for the model parameters in response to vanucizumab, and

fix the new parameters so that ~aC51 mg ml21mm23;

k50:9 day21; dT 50:12 mg21ml day21; k50:08 day21. We

consider three situations. First, chemotherapy is adminis-

tered once daily for a 1-week period before the transient

window, so that ðtCon; tCoff Þ5ð42; 49Þ; in the second case,

chemotherapy is administered once daily for 1 week during

the transient window, so that ðtCon; tCoff Þ5ð54;61Þ; and in

the third case, chemotherapy is administered for a 3-week

period that starts on the same day as antiangiogenic therapy,

so that ðtCon; tCoff Þ5ð38;59Þ. The third case is likely to be the

most realistic regimen administered to patients, and repre-

sents treatment when the timing of the normalization window

is not known. The results of our simulations are shown in

Figure 6. When chemotherapy is administered before the

transient window, tumor growth is reduced, but chemothera-

py is more efficacious when administered during the transient

window, leading to a more pronounced decrease in tumor

volume. Interestingly, our model predicts that chemotherapy

administered both before and during the normalization win-

dow (Figure 6d) leads to a smaller reduction in tumor vol-

ume than chemotherapy administered only within the

normalization window.
The simulations in this section are based on the assump-

tion that resistance to chemotherapy emerges. The resis-

tance term, e2kt , in Eq. 7 reduces the efficacy of the

chemotherapy agent at long times, and this is likely to influ-

ence the reduction in tumor volume in Figure 6d, com-

pared to Figure 6c. We show that changes in the

resistance parameter k or 620% do not change the conclu-

sions in this section in Supplementary Material 5.

DISCUSSION

To our knowledge, this is the first semimechanistic mixed-

effects model that accounts explicitly for the effects of ves-

sel normalization in response to antiangiogenic therapy.

Our model was motivated through the identification of tran-

sient dynamics in the experimental data (data shown in

Figure 1), and builds upon recent, similar models.27,31 by

incorporation of mathematical representations for the tran-

sient tumor growth dynamics. Based on our results, we

conclude that mixed-effects modeling can be used to locate

and parameterize the window of enhanced tumor growth,

which may be a direct or indirect effect of the vessel nor-

malization window, for KPL-4 xenografts, leveraging only

tumor size data. In addition, our model predicts that cyto-

toxic therapies could lead to a greater decrease in tumor

volume if administered within the transient window. Our

model allows us to quantify synergism between chemother-

apy and antiangiogenic therapy, given the hypothesis that

the delivery of chemotherapy is enhanced during the tran-

sient window. The experimental design could be improved

to minimize the RSE of estimated parameters, for example
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Figure 5 Visual predictive check (VPC) for the final model (Eqs. 3–5) split by group. Parameters of the final model are listed in Table 1.
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by measuring the tumor volume via imaging methods
instead of caliper methods.

We hypothesize that the transient window that we identify
from our experimental data can be attributed to multiple
processes, which include increased pericyte coverage,
increased vessel perfusion, and decreased vessel perme-
ability (leakiness). These physiological variables are assumed
directly to increase tumor oxygenation and, indirectly,
increase efficacy of chemotherapy and radiotherapy. Techni-
ques such as window chamber assays and fluorescent stain-
ing are available to measure such physiological variables in
vivo. The next step of model validation would involve perform-
ing experiments that can measure dynamic vessel volume to
investigate whether the window of enhanced tumor growth
that we identify corresponds to the above aspects of vessel
normalization, and whether chemotherapy is more efficacious
when administered within the window.

Experiments performed on mouse xenografts suggest
that normalization can occur 3 days after the onset of treat-
ment.4,12,13,36 The transient window that we identified
begins 15 days after the start of antiangiogenic treatment.
It is possible that the enhanced tumor growth period that
we identified is a downstream effect of vessel normaliza-
tion, and that normalization begins earlier. Further experi-
ments are required to resolve this discrepancy.

Previous experiments have shown that, during the tran-
sient normalization window, the efficacy of radiotherapy and
chemotherapy are enhanced.4,5,12,13 If the window is not
taken into account when investigating the efficacy of com-
bined antiangiogenic therapy with radiotherapy or chemo-
therapy, then inconsistencies in efficacy measurements
may result. With validation, our model has the potential to
provide a thorough understanding of the likely effect on effi-
cacy measurements that the changing vasculature may
have.

We developed and parameterized the model using longi-

tudinal tumor size data in a single preclinical tumor model,

and the dynamic carrying capacity was inferred. The scope

of our semi-mechanistic model is limited by the quality,

quantity, and type of available experimental data. A pooled

approach was used for parameter estimation, to maximize

the amount of data used to estimate the tumor and vessel

growth parameters. For the final model, we fixed the IIV of

tnorm1 and tnorm2 to 0.1 in order to allow small variations in

the estimates for the start and end times of the transient

window. No other parameter values were manipulated or

fixed, except for the parameters for the chemotherapy

simulations.
The results for the vascular volume after treatment were

in qualitative agreement with histology data, and the incon-

sistency in the results for vessel density in control groups

can be explained via a plausable argument regarding intra-

and extra-tumoral blood vessels.
Our model could be used to identify the transient window

associated with other antiangiogenic treatments and tumor

cell lines, in both preclinical and clinical settings. In addi-

tion, our model could be used to identify the optimal time

for combination treatment, especially given the experimen-

tal observations in refs. 12 and 13 suggest that combina-

tion therapies in which radiotherapy or chemotherapy are

administered during the normalization window achieve bet-

ter outcomes than when administered before or after the

window.
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