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Synthetic data

We generated synthetic data for T and V by solving equations (1)-(2) for the control model
and equations (3)-(5) for the treatment model, using parameter values from known distri-
butions, with added noise to represent the experimental measurement error. The magni-
tude of the noise was proportional to the tumour size at that time, i.e. we used a pro-
portional error model. As before, the datasets contain values of T and V at times t =
38, 42, 45, 49, 52, 56, 59, 63, 67, 71 days. The true parameter distributions that were sampled
to generate the data are listed in Table 1.

Parameter Distribution Mode (pop) Standard Deviation (ω)

T0 (not estimated) uniform(50,90) – –
αT lognormal 0.1 0.3
αV lognormal 0.09 0.3
K lognormal 2 0.845

tnorm1 none 52 0
tnorm2 none 62 0
Nmax lognormal 10 0.3
δV lognormal 0.1 0.3
b none 0.2 –
ε normal 0 b

Table 1: The distributions of parameters used to generate the synthetic data. A proportional
error model was used such that y = f + f b ε and ε = N (0, 1).

The synthetic datasets were of size N = 10 per group or N = 100 per group, and we con-
sidered 3 values of the proportional error parameter: b = 0.0, 0.1 and 0.2. We also attempted
to fit the model parameters using data on tumour volume alone, and using simultaneous data
on T and V . In total, 12 datasets were generated.

Figure 1 shows the results of the simulations for each dataset. From figure 1, it is clear that
the r.s.e. values are largest at all error levels for the Nmax(pop) and Nmax(ω) parameters: from
equation (3), when N × V � T , dT

dt ≈ αTT and for simulations where N is large, T behaves
in a similar manner since αT is a constant. As a result, the likelihood is relatively insensitive
to Nmax. In most cases, r.s.e. values decrease as more data is used for the simulations. In
almost all cases, fitting with T and V data results in more accurate parameter estimates than
fitting T data only. From our simulations, when b = 0.1, the parameter estimates are more
accurate than when b = 0.2, but there is little difference between the accuracy of the results
for b = 0.1 and b = 0.0. This suggests that parameter estimates can be improved by reducing
experimental error.
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Figure 1: Bar charts showing how the percentage difference between parameter estimates and
the true parameter values and the r.s.e. change as different datasets are used. The r.s.e. of
parameter estimates decreases as the amount of data increases, and in general, using T and
V gives more reliable estimates than using T only.
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