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Hans Meinhardt, a pioneer in mathematical biology, died on 11 February 2016 in
Tübingen, Germany, after a short illness. He was born in 1938 and grew up in
Mühlhausen in the former German Democratic Republic and in Cologne, in former
West Germany. He received his Ph.D. in physics from the University of Cologne in
1966. For a number of years he worked on problems in physics and then in experimen-
tal biology. However, he found these areas unsatisfying for various reasons and so he
decided to move into theoretical biology—a decision he never regretted. The possibil-
ity of contributing to the fundamental problem of how spatial structures emerge from
apparently structure-less initial states was a challenge that most excited him, and he
embraced it head-on for over 40years.

Hans Meinhardt was one of the most influential mathematical biologists of his
generation, and his research enriched both mathematics and biology. He is perhaps
best known for his seminal paper with Alfred Gierer, entitled “A Theory of Biological
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Pattern Formation” published in 1972 (Gierer and Meinhardt 1972).1 In one space
dimension the Gierer–Meinhardt model takes the form
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where a(x, t) and h(x, t) are concentrations of activator and inhibitor, respectively,
at time t and position x , Da, Dh, ρ0, c, c′ and κ are positive constants, while ρ, ρ′, μ
and ν could be functions of x representing spatially non-uniform distributions of
sources and sinks.2 Computer simulations in the paper showed how this model could
enhance initial shallow graded distributions into very steep gradients, or into self-
organised periodic spatial patterns. Furthermore, it was demonstrated that the model
could explain size regulation and account for experimental results related to body plan,
development and regeneration of the biologicalmodel systemHydra. Themodel is now
a textbook example used to teach undergraduate and graduate students in mathematics
the patterning principle of short-range activation and long-range inhibition (Murray
2003; Edelstein-Keshet 2005).

Twenty years earlier—in a paper largely unknown in biological circles—Alan Tur-
ing (Turing 1952) demonstrated that the interaction of reaction and diffusion can
produce instability of a uniform steady state and lead to self-organised spatial pat-
tern formation. Turing’s investigation, which was motivated by patterns observed in
various biological organisms, revealed conditions under which a uniform steady state
of a reaction–diffusion system can be destabilised by diffusion and evolve to a new,
spatially heterogeneous, state. Unaware of Turing’s work,Meinhardt asked from a bio-
logical perspective: how can a biological structure such as a plant leaf or a hydra head
suppress the formation of a similar structure in its neighbourhood without inhibiting
itself, being in the centre of this inhibition? He could show that if lateral inhibition
is complemented by a nonlinear local self-enhancement, both components together
make a uniform distribution unstable and a new self-regulating patterned steady state
is reached when the self-enhancing reaction has attained an equilibrium with the
long-ranging antagonistic component (Fig. 1). This mechanistic insight concerning
the effect of short-range activation and long-range inhibition reflects Turing’s mathe-
matical instability criterion, and enabled Meinhardt to propose appropriate nonlinear
reaction schemes and interactions that can explain biochemical processes and cellular
properties.

Somewhat earlier Wolpert (1969) suggested that pattern formation results from
positional information available to cells, and while different in detail, the insights of
Turing, Wolpert and Meinhardt on the importance of the interaction of reaction and
transport in pattern formation have led to a paradigm shift in how biologists think
about pattern formation in developmental biology. This shift is due in part to Mein-

1 Cited 1494 times according to Web of Science as of 2 November 2016.
2 Inhibitor is “Hemmstoff” in German, and therefore is represented by h.
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Fig. 1 The interaction of a short-range autocatalytic activator with a long-range inhibitor can lead to stable
patterns in space (drawing and simulation by Hans Meinhardt, reproduced, with permission, from Gordon
and Beloussov 2006)

hardt’s strong advocacy of the underlying principles and long-standing interaction
with experimental biologists. His influence in that community is reflected in the fact
that two obituaries were published in major biological journals shortly after his death
(Roth 2016; Müller and Nüsslein-Volhard 2016).

While the original Gierer–Meinhardt paper was mainly concerned with the forma-
tion and regulation of patterns in Hydra, Meinhardt went on to apply the concept of
short-range activation and long-range inhibition to a vast array of biological problems.
His 1982 book “Models of Biological Pattern Formation” (Meinhardt 1982) sets out
to describe grand challenges in biological development and presents solutions in the
form of computer simulations of mathematical models long before detailed compar-
isonswith experiments became possible. Examples include the aforementionedHydra,
the leaf-hopper embryo Euscelis, vertebrate limb development, biochemical switches,
molecular control of gene activation, compartment formation in wings, somitogenesis,
net-like structures (including branching patterns on plant leaves and tumour angiogen-
esis).Moreover, the examples in the book go beyond applications of activator–inhibitor
models. In particular, his boundary induction mechanism provides an explanation for
aspects of the polar coordinate model (French et al. 1976).

As illustrated in the 1982 book, Meinhardt worked to cast a broad range of biolog-
ical phenomena within the framework of the activator–inhibitor organising principle.
It can be argued that he pushed this idea too hard at times, since it is difficult to
provide mechanistic details in many of the examples cited. Moreover, there were set-
backs, such as the discovery of the periodic expression patterning of pair-rule genes
in Drosophila embryogenesis which seemed tailor-made for an application of a self-
organising pattern generator, but was shown not to be based on this mechanism (Akam
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1989). However, it is important to remember the quote of George Box that “All models
are wrong, but some are useful” (Box 1979) and if a theoretical model can change
the way people think or suggest experiments that may not have otherwise been done,
then the model has played an important role in pushing forward theory. In fact, in
the preface to his 1982 book, Meinhardt himself says “I hope that these theories will
provide a framework for further experimental investigations and create insights which
will facilitate future biochemical studies. Discrepancies between these theories and
these future experimental results will lead to modifications and refinements of the
theories and, hence, will focus new experiments”. This echoes John Bonner’s “We
have arrived at the stage where models are useful to suggest experiments, and the
facts of the experiments in turn lead to new and improved models that suggest new
experiments. By this rocking back and forth between the reality of experimental facts
and the dreamworld of hypotheses, we can move slowly toward a satisfactory solution
of the major problems of developmental biology” (Bonner 1974).

In 1995Meinhardt published his second, beautifully produced, aesthetically appeal-
ing andprize-winningbook, “TheAlgorithmicBeauty ofSeaShells” (Meinhardt 1995)
which investigates pigmentation patterns on tropical shells. The book came with a
diskette so that the readers can generate their own patterns. In the preface Meinhardt
states, “My interest in these patterns began with a dinner in an Italian restaurant. In the
meal I found a shell with a pattern consisting of red lines arranged like nested W’s”.
Triggered by the intermittentW’s, he solved apparently all known shell patterns by the
new idea of combining model modules, where each module is responsible for a par-
ticular phenomenon, for example, periodic patterns, oscillations or travelling waves.
He later applied this modularization idea to dynamic phenomena, such as cell division
in Escherichia coli and cortical polarisation of chemotactic cells and growth cones
(Meinhardt 1999; Meinhardt and de Boer 2001). There are alternative theories for
the pigmentation patterns on shells which hypothesise different underlying biological
mechanisms, leading to different mathematical formulations (see, for example, Gong
et al. 2012). The jury is still out as to what is the actual mechanism.

The Gierer–Meinhardt model has also fascinated mathematicians, who were partic-
ularly struck by the “spiky” localised nature of the periodic spatial patterns it produced.
Limiting cases of the model and various simplifications have been studied in detail
numerically (Harrison andHolloway 1995), while the existence of k-spike equilibrium
solutions was proved in Takagi (1986) and their stability properties investigated in Iron
et al. (2001). Wei and Winter (2001) proved existence and stability of multi-peaked
patterns for the singularly perturbed system in two dimensions, while a differential-
algebraic system of coupled ordinary differential equations was derived by Iron and
Ward (2002) for the evolution of the centres of the spikes together with criteria to
predict their collapse. This approach was extended in Ward et al. (2002) using the
method of matched asymptotic expansions to generalise the results.

Hans Meinhardt worked at a time when there was very little spatio-temporal data
available to validate hismodels, but this did not deter him fromstrongly putting forward
his ideas. He was naturally delighted when many years later some of his predictions
were experimentally validated. For example, somitogenesis is a process in which cell
aggregates (somites) form in a temporal sequence from head to tail along the body
axis. Meinhardt presented a model that predicted, counter-intuitively, that this was

123



Obituary: Hans Meinhardt (1938–2016) 387

the result of a wave moving in the opposite direction (Meinhardt 1982), and this was
shown to be true experimentally many years later (Palmeirim et al. 1997).

Meinhardt had the ability to identify grand challenges in developmental biology and
bring them to the attention of the mathematical biology and the biology communities.
These were problems that were biologically important, exhibited behaviour that could
not be understood by experiments alone, were deceptively easy to formulate, and
computationally (and in some cases also mathematically) tractable. He was not a
mathematician but he had an uncanny sense of how interactions needed to be set
up to form the structures observed. He then used computer simulations to verify his
intuition. He was deeply immersed in the biology to make sure that his models were
relevant. He was also far ahead of his time in terms of making his work electronically
available. Long before the calls for open repositories, he set up a didactic website
showcasing his work in a very user-friendly way (http://www.eb.tuebingen.mpg.de/
research/emeriti/hans-meinhardt.html).3 The models and simulations on this website
can be seen as pioneering model repository and open source simulation.

Meinhardt was truly a pioneer who, while fully aware that many biologists did
not support the modelling approach he championed (Gordon and Beloussov 2006),
was not discouraged and continued to strongly advocate his viewpoints, eventually
converting some biologists to adopt his ideas. In this era of “big” science with large
groups, he showed how effectively a single scientist could change a paradigm.

Hans Meinhardt loved travelling with his wife, and he loved the desert, but he
was similarly fascinated by the local nature around him, discovering new facets in his
garden and gaining inspiration from self-taken photographs for his scientific questions.
He loved his work and on finding a shell shop on a tourist walk with one of the authors
of this piece, he took great delight in picking up each shell and explaining how the
patterns on it formed. He presented his work as invited speaker all over the world, not
only at major biological conferences but also at summer schools which encouraged
the next generations of scientists.

In 2003, Meinhardt was awarded the Cornelia-Harte Prize for his outstanding con-
tributions to the modelling and computer-assisted simulations of dynamic pattern
formation processes in developmental biology by the German Society for Develop-
mental Biology.

Up to his death, Hans Meinhardt had many future plans: his dream was to pub-
lish a third book, presenting the quantitative molecular mechanisms underlying the
qualitative organisation principles predicted in his 1982 book. This plan remained,
regrettably, unfinished.

On hearing the sad news of Hans’ passing, Professor Shigeru Kondo (Osaka, Japan)
expressed in an email “we can only hope that Hans Meinhardt meets Alan Turing in
heaven to create another theory”. The scientific community misses his creativity, intu-
ition, humour and humanity. He leaves his wife Edeltraud and his two sons Christoph
and Martin.

Acknowledgements We would like to thank Miguel A. Herrero (Madrid) and Lutz Brusch (Dresden) for
helpful comments.

3 This website allows also open access to his 1982 book.
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