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Abstract Scratch assays are used to study how a population of cells re-colonises a
vacant region on a two-dimensional substrate after a cellmonolayer is scratched. These
experiments are used in many applications including drug design for the treatment of
cancer and chronic wounds. To provide insights into the mechanisms that drive scratch
assays, solutions of continuum reaction–diffusion models have been calibrated to data
from scratch assays. These models typically include a logistic source term to describe
carrying capacity-limited proliferation; however, the choice of using a logistic source
term is often made without examining whether it is valid. Here we study the prolifer-
ation of PC-3 prostate cancer cells in a scratch assay. All experimental results for the
scratch assay are compared with equivalent results from a proliferation assay where
the cell monolayer is not scratched. Visual inspection of the time evolution of the cell
density away from the location of the scratch reveals a series of sigmoid curves that
could be naively calibrated to the solution of the logistic growth model. However,
careful analysis of the per capita growth rate as a function of density reveals several
key differences between the proliferation of cells in scratch and proliferation assays.
Our findings suggest that the logistic growth model is valid for the entire duration of
the proliferation assay. On the other hand, guided by data, we suggest that there are two
phases of proliferation in a scratch assay; at short time, we have a disturbance phase
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where proliferation is not logistic, and this is followed by a growth phase where pro-
liferation appears to be logistic. These two phases are observed across a large number
of experiments performed at different initial cell densities. Overall our study shows
that simply calibrating the solution of a continuum model to a scratch assay might
produce misleading parameter estimates, and this issue can be resolved by making a
distinction between the disturbance and growth phases. Repeating our procedure for
other scratch assays will provide insight into the roles of the disturbance and growth
phases for different cell lines and scratch assays performed on different substrates.

Keywords Logistic growth · Scratch assay · Cancer · Wound healing ·
Reaction–diffusion equation

1 Introduction

Understanding population dynamics is a fundamental question that has wide relevance
to many biological and ecological processes. For example, the rate of spatial spreading
of invasive species through different ecosystems is driven, in part, by the population
dynamics and rates of growth of the invasive species (Lewis and Kareiva 1993; Mur-
ray 2002; Waters et al. 2015). Population dynamics and population growth are also
central to understanding the spread of infectious diseases. For example, the spread
of Wolbachia into wild mosquito populations is thought to reduce a wide range of
diseases, and the spatial spreading of the mosquito population is partly driven by the
population dynamics of the mosquito population (Chan and Kim 2013). Similar ideas
also apply to the spreading of tumour cells and the progression of cancer, which is
related to the rates of proliferation of invasive cancer cells (Alarcón et al. 2003; Mallet
andDe Pillis 2006; Ribba et al. 2006). Therefore, improving our understanding of pop-
ulation dynamics by calibrating mathematical models to experimental observations of
population dynamics is of great interest.

In vitro scratch assays are routinely used to study the ability of cell populations to
re-colonise an initially vacant region (Liang et al. 2007; Tremel et al. 2009; Kramer
et al. 2013; Treloar and Simpson 2013). This re-colonisation occurs as a result of the
combination of cell migration and cell proliferation and gives rise to moving fronts
of cells that re-colonise the vacant region. Scratch assays provide insights into both
cancer spreading and tissue repair processes (Maini et al. 2004a, b; Kramer et al. 2013).
In general, performing a scratch assay involves three steps: (i) growing a monolayer of
cells on a two-dimensional substrate; (ii) creating a vacant region in the monolayer by
scratching it with a sharp-tipped instrument; and (iii) imaging the re-colonisation of the
scratched region (Liang et al. 2007; Kramer et al. 2013). Another type of in vitro assay,
called a proliferation assay, is performed using the exact same procedure as a scratch
assay, except that the monolayer of cells is not scratched (Jones et al. 2001; Tremel
et al. 2009; Simpson et al. 2013). Cell proliferation assays allow experimentalists to
measure the increase in cell numbers over time due to proliferation (Tremel et al. 2009).

In the applied mathematics literature, scratch assays have been modelled using
continuum reaction–diffusion equations (Sheardown and Cheng 1996; Maini et al.
2004a, b; Savla et al. 2004; Cai et al. 2007; Sengers et al. 2007; Shakeel et al. 2013;
Simpson et al. 2007; Johnston et al. 2015; Jin et al. 2016). In these models, cell migra-
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1030 W. Jin et al.

tion is represented by a diffusion term, and carrying capacity-limited proliferation is
represented by a logistic source term. For proliferation assays in which the cell popula-
tion is uniformly distributed and no scratch is made, the continuum reaction–diffusion
equation simplifies to the logistic growth equation (Cai et al. 2007; Johnston et al.
2015; Simpson et al. 2013), given by

dC(t)

dt
= λC(t)

(
1 − C(t)

K

)
, (1)

where C(t) > 0 is the density of cells, t is time, λ > 0 is the proliferation rate, and
K > 0 is the carrying capacity density.

It is interesting to note that a logistic growth term is often used when modelling
scratch assays or proliferation assays (Maini et al. 2004a, b; Savla et al. 2004; Cai
et al. 2007; Sengers et al. 2007; Tremel et al. 2009; Johnston et al. 2015; Jin et al.
2016), yet the suitability of this choice is rarely, if ever, tested using experimental data.
In fact, several studies argue that the logistic growth equation does not always match
experimental data (Laird 1964;Zwietering et al. 1990;West et al. 2001; Sarapata and de
Pillis 2014). For example, Laird examines in vivo tumour growth data and shows that
the standard logistic model does not match experimental data (Laird 1964). Similarly,
Sarapata and de Pillis (2014) find that the logistic growthmodel does not alwaysmatch
experimental tumour growth data. West and coworkers investigate the growth patterns
of a wide range of animal models (West et al. 2001). By comparing experimental
data with model predictions, they suggest that the growth is not logistic and is better
described by a more general model. In addition, the results from our previous study,
focusing on scratch assays, suggest that when calibrating solutions of a logistic-type
reaction–diffusion equation to experimental data with varying initial cell density, there
appears to be no unique value of λ for which the logistic growth equation matches the
entire data set for all initial cell densities (Jin et al. 2016). One way of interpreting this
result is that the cells in the scratch assay do not proliferate logistically.

In the present work, we use a combined experimental andmathematical approach to
investigatewhether the proliferation of cells in a scratch assay can bemodelledwith the
classical logistic equation. Our approach involves performing a series of proliferation
assays to act as a control so that we can examine whether the process of scratching
the monolayer affects the way that cells proliferate. While many experimental studies
implicitly assume that scratching the monolayer does not affect cell proliferation,
others suggest the process of scratching can trigger certain signalling pathways that
may have some effects on the way that cells proliferate (Nikolić et al. 2006; Nishio
et al. 2005). To investigate these questions, we perform a suite of scratch assays and
proliferation assays using the IncuCyte ZOOMTM system (Johnston et al. 2015). For
both types of assays, we use the PC-3 prostate cancer cell line (Kaighn et al. 1979), and
we consider varying the initial seeding condition so that we can examine the influence
of varying the initial cell density.

To quantitatively test the suitability of the logistic growth model, we extract cell
density information from the experimental images and then estimate the per capita
growth rates from the data for both the scratch assays and the proliferation assays.
Our results show that the evolution in cell density in the proliferation assays appears
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to be logistic for the entire duration of the experiment. In contrast, the variation in cell
density in the scratch assays is very different. We observe two phases in the scratch
assays: (i) a disturbance phase at early time, in which the proliferation of cells is not
logistic; and (ii) a classic logistic growth phase for the remainder of the experiment.
These two phases are observed in all of our experiments, across a wide range of
initial cell densities. The differences how cells proliferate in the scratch assay and the
proliferation assay are surprising because we are making observations well away from
the location of the scratch. This finding that we have two phases of proliferation in
scratch assays is significant becausemanymathematical studies implicitly assume that
cells in scratch assays proliferate logistically for the entire duration of the experiment
(Maini et al. 2004a, b; Savla et al. 2004;Cai et al. 2007; Sengers et al. 2007;Tremel et al.
2009; Johnston et al. 2015; Jin et al. 2016). However, our finding is that cells located
far away from the scratch proliferate very differently to cells in the proliferation assay.

This manuscript is organised in the following way. First, we describe the exper-
imental methods, including how we process the experimental images to obtain cell
density information. We then outline the logistic growth model and the least-squares
method for calibrating the model to our data. By presenting information about the
evolution of the cell density and the per capita growth rate, we identify two phases of
proliferation in the scratch assays. These phases are identified by focusing on regions
of the scratch assay that are located well behind the location of the scratch. After cal-
ibrating the solution of the logistic model to the cell density information, our results
suggest that the logistic equation is relevant for the proliferation assays but only for
the later phase in the scratch assays. We conclude this study by discussing some of
the limitations, and we outline some extensions for future work.

2 Methods

2.1 Experimental Methods

We perform scratch assays and proliferation assays using the IncuCyte ZOOMTM

live cell imaging system (Essen BioScience, MI USA). All experiments are per-
formed using the PC-3 prostate cancer cell line (Kaighn et al. 1979). These cells,
originally purchased from American Type Culture Collection (Manassas, VA, USA),
are a gift from Lisa Chopin (April, 2016). The cell line is used according to the
National Health andMedical Research Council (NHMRC) National statement on eth-
ical conduct in human research with ethics approval for Queensland University of
Technology Human Research Ethics Committee (QUT HREC 59644, Chopin). Cells
are propagated in RPMI 1640 medium (Life Technologies, Australia) with 10% foetal
calf serum (Sigma-Aldrich, Australia), 100 U/mL penicillin, and 100 µg/mL strep-
tomycin (Life Technologies), in plastic tissue culture flasks (Corning Life Sciences,
Asia Pacific). Cells are cultured in 5% CO2 and 95% air in a Panasonic incubator
(VWR International) at 37 ◦C. Cells are regularly screened for Mycoplasma (nested
PCR using primers from Sigma-Aldrich).

Cell counting is performed using a Neubauer-improved haemocytometer
(ProSciTech, Australia). Cells, grown to approximately 80% confluence, are removed
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1032 W. Jin et al.

from the flask using TrypLETM (Life Technologies) in phosphate-buffered saline (pH
7.4) and resuspended in culture medium ensuring that they are thoroughly mixed.
After resuspension, an aliquot of 10 µL is quickly removed before the cells start to
settle. A 1:1mixture of cell suspension and 0.4% trypan blue solution (Sigma-Aldrich;
a blue stain that is only absorbed by dead cells) is prepared, and 10 µL of the solution
is loaded onto the counting chamber of a clean Neubauer-improved haemocytometer.
The counting chamber of a haemocytometer is delineated by grid lines that identify
four chamber areas to be used in cell counting. The volume of the chamber area is
1×104 mL. Using a microscope, each chamber area is viewed, and the live cells that
are not coloured in blue are counted. The cell density is calculated by taking the aver-
age of the four readings and multiplying it by 104 and the dilution factor, to obtain the
approximate number of cells per mL of the cell suspension (Louis and Siegel 2011).

For the proliferation assays, the cell count is determined and the cells are seeded
at various densities in 96-well ImageLock plates (Essen BioScience). Cells are dis-
tributed in the wells of the tissue culture plate as uniformly as possible. We report
results for initial seeding densities of approximately 12,000, 16,000, and 20,000 cells
per well. After seeding, cells are grown overnight to allow for attachment and some
subsequent growth. The plate is placed into the IncuCyte ZOOMTM apparatus, and
images are recorded every 2 h for a total duration of 48 h. An example of a set of experi-
mental images from a proliferation assay is shown in Fig. 1a–c. For each initial seeding
condition we perform 16 identically prepared experimental replicates (n = 16).

For the scratch assays, the cell count is determined and the cells are seeded at various
densities in 96-well ImageLock plates (Essen BioScience). Cells are distributed in
the wells of the tissue culture plate as uniformly as possible. We report results for
initial seeding densities of approximately 12,000, 16,000, and 20,000 cells per well.
After seeding, cells are grown overnight to allow for attachment and some subsequent
growth. We use a WoundMakerTM (Essen BioScience) to create uniform scratches in
each well of a 96-well ImageLock plate. To ensure that all cells are removed from
the scratched region, a modification is made to the manufacturer’s protocol, where
the scratching motion is repeated 20 times over a short duration before lifting the
WoundMakerTM. After creating the scratch, the medium is aspirated and the wells
are washed twice with fresh medium to remove any cells from the scratched area.
Following the washes, 100 µL fresh medium is added to each well and the plate is
placed into the IncuCyte ZOOMTM apparatus. Images of the collective cell spreading
are recorded every 2 h for a total duration of 48 h. An example of a set of experimental
images taken from a scratch assay is shown in Fig. 1d–f. For each initial seeding
condition we perform 16 identically prepared experiments in different wells of the
tissue culture plate (n = 16). Throughout this work we will refer to these identically
prepared experiments in different wells as different replicates.

2.2 Experimental Image Processing

To obtain cell density information from the experimental images, we count the number
of cells in two identically sized subregions that are well behind the location of the
scratch, as shown in Fig. 1g. The positions of the two subregions are located about
400 µm behind the scratch, and each subregion has dimensions 1430 µm×200 µm.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

t = 0h t = 24h t = 48h

t = 0h t = 24h t = 48h

Scratch
assay

Proliferation 
assay

Quantifying
cell density

t = 0h t = 0h t = 0h

Fig. 1 Experimental images. a–c A summary of IncuCyte ZOOMTM experiments for proliferation assays.
d–f A summary of IncuCyte ZOOMTM experiments for scratch assays. Images show both types of exper-
iments initiated with 16,000 cells per well. The time at which the image is recorded is indicated on each
subfigure, and the scale bar (red line) corresponds to 300 µm. The image in (d), at t = 0 h, shows the
approximate location of the position of the leading edges (dashed green). g–i To quantify the cell density
profile, two rectangles of width 200µm, are superimposed on the experimental image as shown in (g). Man-
ual cell counting is used to estimate the number of cells in each subregion, and these estimates are converted
into an estimate of cell density in these regions at 2-h intervals during the first 18 h of the experiment and
then at 6-h intervals during the remaining 30 h of the experiment. To count individual cells we zoom in to
focus on certain subregions, such as shown in (h), which corresponds to the yellow rectangle highlighted in
(g). Using the counting features in Adobe Photoshop (Adobe Systems Incorporated 2016), we identify indi-
vidual cells and place a uniquemarker on each cell (red disc), as shown in (h). After each image is processed
in this way we have identified the total number of cells in the two subregions in the image, as shown in (i),
and then we convert these estimates of cell numbers into an estimate of cell density (Color figure online)

Throughout this work, we refer to the subregion to the left of the image as subregion
1 and the subregion to the right of the image as subregion 2. Because the subregions
are located well away from the scratched region, we are able to invoke a simplifying
assumption that the dynamic changes in cell density in these subregions are due to
cell proliferation alone (Supplementary Material) (Johnston et al. 2015). We do not
use data that are directly adjacent to the left or right sides of the images since this
corresponds to the boundary of the field of view. Cells in each subregion are counted in
Photoshop using the ‘Count Tool’ (Adobe Systems Incorporated 2016). After counting
the number of cells in each subregion, we divide the total number of cells by the total
area to give an estimate of the cell density. We repeat this process for each replicate
and calculate the sample mean of the cell density at 2-h intervals during the first 18
h of the experiment where the most rapid temporal changes take place. Then, during
the last 30 h of the experiment, we count cells at 6-h intervals.
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1034 W. Jin et al.

One of the assumptions we make when analysing data from the scratch assay is
that the two subregions are sufficiently far away from the edges of the scratch so that
there are no spatial variations in cell density at these locations for the entire duration
of the experiment. This assumption allows us to attribute any changes in cell density
in the subregions to be a result of cell proliferation (Johnston et al. 2015). Quantitative
evidence to support this assumption is provided in SupplementaryMaterial document.

2.3 Mathematical Methods

The logistic growth equation, given by Eq. (1), has an exact solution

C(t) = KC(0)

(K − C(0)) e−λt + C(0)
, (2)

which is a sigmoid curve that monotonically increases from the initial density C(0)
to K as t → ∞. An important feature of the logistic growth model that we will make
use of in this study is that the per capita growth rate, (1/C)(dC/dt) = λ(1 − C/K ),
decreases linearly with C .

We estimate the two parameters in the logistic growth model, λ and K , by min-
imising a least-squares measure of the discrepancy between the solution of the logistic
growth equation and the average cell density information in our subregions that are
located far away from the scratched region. The least-squares error is given by

E(λ, K ) =
I∑

i=1

[
Cmodel(ti ) − Cdata(ti )

]2
, (3)

where i is an index that indicates the number of time points used from the experimental
data sets and I is the total number of time points used in the calibration procedure.
We calibrate the solution of the logistic growth equation to the average cell density
information using the MATLAB function lsqcurvefit (MathWorks 2016) that is
based on the Levenberg–Marquardt algorithm. For notational simplicity we denote the
minimum least-squares error as Emin = E

(
λ̄, K̄

)
. Each time we use the MATLAB

function lsqcurvefit, we always check that the least-squares estimates of λ̄ and
K̄ are independent of the initial estimate that is required for the iterative algorithm to
converge.

3 Results and Discussion

3.1 Quantitative Assessment of Experiments

3.1.1 Initial Cell Density

Many previous studies that calibrate solutions of mathematical models to experimen-
tal data from proliferation or scratch assays make use of just one initial density of
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cells (Cai et al. 2007; Tremel et al. 2009; Maini et al. 2004a, b). To provide a more
thorough investigation of the suitability of various mathematical models, we calibrate
mathematical models to a suite of experimental data where the initial density of cells
is intentionally varied (Jin et al. 2016). To achieve this, our experimental procedure
involves placing a different number of cells into each well of the tissue culture plate.
We describe this as varying the initial seeding condition. In this work we consider
three different initial seeding conditions that correspond to placing either: (i) 12,000;
(ii) 16,000; or (iii) 20,000 cells per well. For brevity, we refer to these three conditions
as initial seeding conditions 1, 2, and 3, respectively.

After a particular number of cells are placed into the tissue culture plate, the cells
are incubated overnight to allow them to attach to the plate and begin to move and
proliferate. The experiments are then performed on the following day. Since the cell
density changes overnight, we will refer to the initial density of cells at the beginning
of the experiment on the following day, as the initial cell density. Intuitively, we expect
that the initial cell density in proliferation assays will be greater than the cell density
associated with the initial seeding condition, because the cells have had a period of
time to attach and begin to proliferate.

Beforeweexamine the temporal evolutionof cell density in our experiments,wefirst
examine the variability in the initial cell densities amongst our various experimental
replicates. This is essential, since the process of placing either 12,000, 16,000, or
20,000 cells in each well of the tissue culture place is, at best, an approximation. To
quantify the variability in the initial cell density, we count the number of cells in the
two subregions, as shown in Fig. 1g, and convert these counts into an estimate of
the initial cell density, C(0). We repeat this procedure for both the proliferation and
scratch assays, giving a total of 96 individual estimates of the initial cell density. These
96 estimates of the initial cell density are reported in Fig. 2, revealing three features:

1. In general, those experiments initiated with a higher number of cells per well lead
to a higher initial cell density after the overnight attachment and proliferation have
taken place;

2. Within each initial seeding condition, the variability in initial cell density for the
proliferation assays is very similar to the variability in initial cell density for the
scratch assays; and

3. There is a large variation in the initial cell density within each initial seeding
condition.

Of these three features, the variation in the initial cell densitywithin each initial seeding
condition is very important. For example, the greatest recorded initial cell density for
initial seeding condition 1 (12,000 cells per well) is greater than the smallest recorded
initial cell density for initial seeding condition 3 (20,000 cells per well). This means
that we ought to take great care when selecting particular experimental replicates from
the 96 data sets in Fig. 2; otherwise, our results could be misleading when we try to
examine how the results depend on the initial cell density.

We select three replicates from each initial seeding condition for both the prolifer-
ation and scratch assays so that the initial cell density for the initial seeding condition
3 is greater than the initial cell density for the initial seeding condition 2, which is
greater than the initial cell density for the initial seeding condition 1. Furthermore, we

123

Author's personal copy



1036 W. Jin et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
×10-3

1

2

3
In

iti
al

 s
ee

di
ng

 c
on

di
tio

n
Scratch assay
Proliferation assay

Cell density (cells/     μm2)

Fig. 2 Variation of initial cell densities. Initial cell densities in the 96 replicates of proliferation and scratch
assays. Results for the three different initial seeding conditions are shown. Initial seeding condition 1
corresponds to 12,000 cells per well; initial seeding condition 2 corresponds to 16,000 cell per well; and
initial seeding condition 3 corresponds to 20,000 cells per well. For each initial seeding condition, each
experiment is repeated n = 16 times and the variation in initial cell density is illustrated by comparing the
spread of estimates of cell density on the horizontal axis.Each blue square represents an individual replicate
of the proliferation assay, and each red circle represents an individual replicate of the scratch assay. The
18 black triangles indicate the individual replicates chosen to construct the cell density information (Color
figure online)

select three replicates for both the proliferation and scratch assays from each initial
seeding condition. These choices are made so that the initial cell density for each type
of assay is approximately the same within each seeding condition. To satisfy these
constraints we choose three replicates from each set of 16 experimental replicates.
The selected replicates are indicated in Fig. 2.

3.1.2 Cell Density Information

Using the previously identified three experimental replicates for each type of assay
and each initial seeding condition (Fig. 2), we plot the evolution of the cell density
as a function of time for each experimental replicate, as shown in Fig. 3. We also
superimpose, in Fig. 3, the evolution of the average cell density for each type of assay
and each initial seeding condition.We see that the differences in initial density between
the proliferation assay and the scratch assay areminimal. Themost obvious trend in the
data is that the cell density in both the proliferation assay and the scratch assay increases
dramatically with time, regardless of the initial condition. It is worth emphasising that
seeding condition 1 involves a relatively small initial cell density, whereas seeding
conditions 2 and 3 are not particularly small. For example, the initial cell density for
initial seeding condition 3 is approximately equal to the cell density for initial seeding
condition 1 after a period of 24 h has elapsed. Therefore, our experimental design
allows us to make a clear distinction between the effects of small cell density, which
would appear more strongly and for longer in initial seeding condition 1 than initial
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Fig. 3 Temporal evolution of cell density. Results in (a–f) correspond to proliferation and scratch assays
initiated with 12,000 (initial seeding condition 1); 16,000 (initial seeding condition 2); and 20,000 (initial
seeding condition 3) cells per well, as indicated. Cell density profiles are shown at 2-h intervals during the
first 18 h and at 6-h intervals during the remaining 30 h of the experiment. For each experiment, we report
results for three identically prepared experimental replicates, and the average of these three data sets is also
shown (Color Figure online)

seeding condition 3, and the effects of early time, which would appear equally in all
three initial seeding conditions. We return to this issue later.

We note that it could be possible to calibrate the solution of Eq. (1) to any of the
density curves in Fig. 3, and this approach has been widely used (Cai et al. 2007;
Tremel et al. 2009; Simpson et al. 2013; Treloar and Simpson 2013). However, there
is no guarantee that simply fitting the solution of the logistic equation to this kind
of data means that the logistic model describes the underlying mechanism (Simpson
et al. 2014). To provide further insight into whether the logistic model applies to these
data, we re-interpret the data in terms of the per capita growth rate.

3.2 Per Capita Growth Rate

To estimate the per capita growth rate, (1/C)(dC/dt), we use the cell density data
in Fig. 3 to estimate dC/dt using a finite difference approximation. Our estimate
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Fig. 4 Per capita growth rates as a function of cell density. Results in (a–f) correspond to proliferation and
scratch assays initiated with 12,000 (initial seeding condition 1); 16,000 (initial seeding condition 2); and
20,000 (initial seeding condition 3) cells per well, as indicated. Per capita growth rate data are calculated
using the data in Fig. 3. For each experiment, we report results for three identically prepared experimental
replicates, and the average of these three experimental replicates is also shown (Color Figure online)

of dC/dt at the first and last time points is obtained using a forward and backward
difference approximation, respectively, while our estimates at all other time points are
obtained using an appropriate central difference approximation (Chapra and Canale
2010). With these estimates, we plot the per capita growth rate as a function of the
density in Fig. 4. Results are shown for both proliferation and scratch assays, for the
three initial densities considered.

To interpret our results, it is instructive to recall that the data in Fig. 3 show that the
cell density, in each type of experiment for all three initial densities of cells, increases
with time. Therefore, when we interpret each plot showing the per capita growth rate
as a function of density in Fig. 4, it is useful to recall how the data in these plots vary
with time during the experiment. Data for smaller values of C in each subfigure in
Fig. 4 correspond to the early part of the experiment and hence small t . In contrast,
data for larger values of C in each subfigure in Fig. 4 correspond to the latter part of
the experiment and hence larger t .

If the logistic growth model is valid, then we expect that the per capita growth
rate will be a linearly decreasing function of the density. In contrast, other kinds of
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sigmoid-shaped carrying capacity-limited growthmodels are associatedwith a nonlin-
ear relationship between the per capita growth rate and the density. Visual inspection
of the per capita growth rate data in Fig. 4 reveals several trends:

1. The relationship between the per capita growth rate and the density in the prolifer-
ation assay is very different to the relationship between the per capita growth rate
and the density in the scratch assay;

2. The relationship between the per capita growth rate for each proliferation assay,
at each initial seeding condition, appears to be reasonably well approximated by
a linearly decreasing function of density; and

3. The relationship between the per capita growth rate for each scratch assay is more
complicated, with the per capita growth rate increasing with density when the
density is small and then decreasing with density when the density is sufficiently
large.

These observations suggest that the proliferation of cells in the scratch assay is very
different to the proliferation of cells in a proliferation assay. Because we are examining
the proliferation of cells that are located well away from the scratch, this result implies
that the process of scratching the monolayer can induce nonlocal effects.

Instead of relying on visual interpretation alone, we now attempt to match the per
capita growth rate data and the logistic growthmodel by fitting a series of straight lines
to the averaged per capita growth rate data using lsqcurvefit (MathWorks 2016).
Results inFig. 5 show the least-squares straight line and the coefficient of determination
for each data set. Results for the proliferation assay (Fig. 5a, c, e) suggest that the
putative linear relationship is reasonable since our straight lines have negative slope
and the coefficient of determination is reasonably high (R2 = 0.50–0.87). In contrast,
results for the scratch assay (Fig. 5b, d, f) show that the least-squares linear regression is
a poormatch to the datawith a very lowcoefficient of determination (R2 = 0.04–0.16).
Indeed, the least-squares straight lines in Fig. 5b and f are particularly troublesome
since they have a positive slope which is biologically unrealistic, suggesting that the
quantity λ/K is negative. Therefore, it is clear that the per capita growth data for the
scratch assays do not follow a linearly decreasing straight line for the entire duration
of the experiment, and the commonly invoked logistic model does not appear to match
these data at all.

The fact that we observe two very different trends in the per capita growth rate data
for the scratch assay motivates us to conjecture that the proliferation of cells in the
scratch assay, far away from the location of the scratch, takes place in two phases. The
first phase, which occurs at early time, involves the per capita growth rate increasing
with density. This trend is the opposite of what we expect if the logistic growth model
is valid and not what we observe in the proliferation assay. The second phase, which
occurs at later time, involves the per capita growth rate decreasing with the density.
These two phases occur consistently across all three initial seeding conditions (Fig. 4b,
d, f). A schematic illustration of the differences observed between the per capita growth
rate in the scratch assay and the proliferation assay is given in Fig. 6. In this schematic,
we refer to the first phase in the scratch assay as the disturbance phase and the second
phase in the scratch assay as the growth phase. The per capita growth data in the
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Fig. 5 Least-squares straight line fit to per capita growth rate data for the entire duration of the experiment.
Results show the average per capita growth rate data as a function of density for both proliferation and
scratch assays initiated with 12,000 (initial seeding condition 1); 16,000 (initial seeding condition 2); and
20,000 (initial seeding condition 3) cells per well, as indicated. Black dots correspond to averaged data
for the entire duration of the experiment. Solid lines show the least-squares linear relationship between the
averaged per capita growth rate and averaged density, with R2 indicating the coefficient of determination

proliferation assay appear to be similar to the growth phase of the scratch assay for
the entire duration of the experiment.

In the schematic (Fig. 6), we suggest that the relationship between the per capita
growth rate and the density during the growth phase is a linearly decreasing function,
which is consistent with the logistic model. To quantitatively examine whether this
assumption is valid for our data set we now construct a series of least-squares straight
lines to our averaged per capita growth rate data during the growth phase. To examine
this question, we need to quantitatively distinguish between the end of the first phase
and the beginning of the second phase. We separate the data in Fig. 5b, d and f into
two groups, the disturbance phase for t < 18 h, and the growth phase for t > 18 h. To
examine whether the data in the growth phase appear to be logistic we determine the
least-squares linear relationship usinglsqcurvefit (MathWorks 2016) for the data
in the growth phase. This least-squares straight line is superimposed on the averaged
data for t ≥ 18 h in Fig. 7b, d, f. Again, a visual comparison of the match between
the linear regression and the data in the growth phase, and the much higher values
of coefficient of determination (R2 = 0.75–0.91) suggest that the putative linear
relationship is reasonable.

123

Author's personal copy



Logistic Proliferation of Cells in Scratch Assays is Delayed 1041

C

0

(1
/C

)(
dC

/d
t)

K

Scratch assay

C

0

(1
/C

)(
dC

/d
t)

K

Proliferation assay
Growth phase

(b)(a)

Disturbance phase
Growth phase

Fig. 6 Schematic illustration of the differences between the proliferation and scratch assays. a Schematic
showing the per capita growth rate as a function of density for the proliferation assays. b Schematic of the
per capita growth rate for the scratch assays illustrating two phases of proliferation. The solid blue line
indicates the disturbance phase in the scratch assay, and the solid green line indicates the growth phase in
both the proliferation and scratch assays. The arrow heads indicate the direction of increasing time (Color
figure online)
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Fig. 7 Straight line fit to per capita growth rates in the growth phase. Results in (a–f) show the average per
capita growth rate data as a function of density for both proliferation and scratch assays initiated with 12,000
(initial seeding condition 1); 16,000 (initial seeding condition 2); and 20,000 (initial seeding condition 3)
cells per well, as indicated. Green dots correspond to averaged data in the growth phase (Fig. 5), and blue
dots correspond to averaged data in the disturbance phase (Fig. 5). The solid lines show the least-squares
linear relationship between the averaged per capita growth rate and averaged density, with R2 indicating
the coefficient of determination. The least-squares straight line is constructed using data from 0 to 48 h in
the proliferation assays and using data from 18 to 48 h in the scratch assays (Color figure online)
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In summary, we have used the per capita growth rate information in Fig. 4 to make
a distinction between the disturbance phase and the growth phase in the scratch assay.
These differences are highlighted in the schematic in Fig. 6. Furthermore, guided
by the observed relationship between the per capita growth rate and the density in
the proliferation assay we assume that the logistic growth model applies and fits a
straight line to the per capita growth rate data and find that the match between the data
and the straight line appears to be reasonable. Similarly, we assume that the logistic
growth model applies to the growth phase in the scratch assay, for t ≥ 18 h. Fitting
a straight line to the per capita growth data suggests that the logistic growth model is
reasonable in the growth phase for the scratch assay. Now that we have used the per
capita growth rate data to identify the disturbance and growth phases in the scratch
assay, as well as providing evidence that cells proliferate logistically in the growth
phase, we re-examine the cell density profiles with a view to estimating λ and K .

3.3 The Logistic Growth Model

Tocalibrate the logistic growthmodel to our data from theproliferation assay,wematch
the solution of Eq. (1) to the averaged data in Fig. 3a, c and e over the entire duration of
the experiment, 0 ≤ t ≤ 48 h. To calibrate the logistic growth model to our data from
the scratch assay, accounting for the differences in the disturbance and growth phases,
we match the solution of Eq. (1) to the averaged data in Fig. 3b, d and f during the
growth phase only, 18 ≤ t ≤ 48 h. This provides us with six estimates of λ̄ and K̄ . To
demonstrate the quality of the match between the experimental data and the calibrated
logistic model, we superimpose the experimental data and Eq. (2) with λ = λ̄ and
K = K̄ , for each initial seeding condition and for both assays in Fig. 8. These results
show that the quality of match between the solution of the calibrated model and the
experimental data is excellent. Our estimates of λ and K are summarised in Tables 1
and 2 for the proliferation assay and the scratch assay, respectively. In summary, our
estimates of λ vary within the range λ = 0.048–0.067 h−1, and our estimates of K
vary within the range K = 1.6–2.5 × 10−3 cells/µm2. Strictly speaking, since λ and
K are supposed to be constants in Eq. (1), the fact that we see only a relatively small
variation in our estimates of these parameters is encouraging. In particular, we also
report, in Tables 1 and 2, the sample standard deviation showing the variability of
our estimates. Overall, we find that the coefficient of variation is approximately 10%,
which is relatively small when dealing with this kind of biological data (Vo et al.
2015).

We now explore how our estimates of λ and K are sensitive to whether or not we
account for the differences in the disturbance and growth phases in the scratch assay.
We repeat the same calibration process as described for the results in Fig. 8, except
now we take the standard, naive approach and calibrate the solution of Eq. (1) to the
averaged data in Fig. 3b, d, f over the entire duration of the scratch assay, 0 ≤ t ≤ 48 h.
This procedure provides us with three additional estimates of λ̄ and K̄ for the scratch
assay, as summarised in Table 3.

To demonstrate the quality of the match between the experimental data and the
calibrated logisticmodel,we superimpose the experimental data andEq. (2)withλ = λ̄
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Fig. 8 Calibrated solutions of the logistic growth equation using data from the growth phase. Results in
(a–f) correspond to proliferation and scratch assays initiated with 12,000 (initial seeding condition 1);
16,000 (initial seeding condition 2); and 20,000 (initial seeding condition 3) cells per well, as indicated. For
each type of experiment the calibrated solution of the logistic growth equation (solid line) is compared to
the experimental data in the growth phase (18–48 h for scratch assays and 0–48 h for proliferation assays).
The least-squares estimates of λ̄ and K̄ are shown

Table 1 Estimates of λ̄ and K̄ for the proliferation assay using data from 0 ≤ t ≤ 48 h. All parameter
estimates are given to two significant figures. Results are reported as the sample mean, and the uncertainty
is quantified in terms of the sample standard deviation

Initial seeding condition λ̄ (/h) K̄ (cells/µm2)

1 0.052±0.004 2.0×10−3 ±8×10−5

2 0.059±0.006 1.8×10−3 ±6×10−5

3 0.067±0.009 1.6×10−3 ±2×10−5

Average 0.059±0.008 1.8×10−3 ±2×10−4

and K = K̄ , for each initial seeding condition and for both assays in Fig. 9. When we
visually compare the quality of the match between the experimental data in Figs. 8 and
9, and the corresponding calibrated solution of the logistic equation, there does not
appear to be any significant difference at all. It is worth noting that the values of Emin in
Fig. 9b, d, f are an order of magnitude greater than the corresponding values in Fig. 8b,
d, f. This implies that the match between the logistic model and the experimental data

123

Author's personal copy



1044 W. Jin et al.

Table 2 Estimates of λ̄ and K̄ for the scratch assay using data from 18 ≤ t ≤ 48 h. All parameter estimates
are given to two significant figures. Results are reported as the samplemean, and the uncertainty is quantified
in terms of the sample standard deviation

Initial seeding condition λ̄ (/h) K̄ (cells/µm2)

1 0.051±0.009 2.1×10−3 ±2×10−3

2 0.059±0.02 2.4×10−3 ±1×10−3

3 0.048±0.008 2.5×10−3 ±2×10−4

Average 0.053±0.005 2.3×10−3 ±2×10−4

Proliferation assay

0 10 20 30 40
Time (h)

0 10 20 30 40
Time (h)

0 10 20 30 40
Time (h)

0 10 20 30 40
Time (h)

0 10 20 30 40
Time (h)

×10-3

Initial seeding condition 2

×10-3

Initial seeding condition 3

0 10 20 30 40
Time (h)

0

1

2 ×10-3

Initial seeding condition 1C
el

l d
en

si
ty

 
(c

el
ls

/  
   μm

2 )

0

1

2

C
el

l d
en

si
ty

 
(c

el
ls

/  
   μm

2 )

0

1

2

C
el

l d
en

si
ty

 
(c

el
ls

/  
   μm

2 )

0

1

2

C
el

l d
en

si
ty

 
(c

el
ls

/  
   μm

2 )

0

1

2

C
el

l d
en

si
ty

 
(c

el
ls

/  
   μm

2 )
0

1

2

C
el

l d
en

si
ty

 
(c

el
ls

/  
   μm

2 )Model prediction
Experimental data

(a)

(c)

(e)

×10-3

×10-3

×10-3

Scratch assay

Initial seeding condition 1

Initial seeding condition 2

Initial seeding condition 3

(b)

(d)

(f)

3λ = 0.052; K = 2.0 × 10ˉ
E     =  4 × 10ˉ9

min

3λ = 0.059; K = 1.8 × 10ˉ
E     =  5 × 10ˉ9

min

3λ = 0.067; K = 1.6 × 10ˉ
E     =  6 × 10ˉ9

min

7λ = 0.028; K = 2.8 × 10ˉ ˉˉ ˉ
E     =  1 × 10ˉ8

min

3λ = 0.029; K = 8.7 × 10ˉˉ ˉ
E     =  1 × 10ˉ8

min

7λ = 0.019; K = 1.6 × 10ˉ ˉˉ ˉ
E     =  6 × 10ˉ8

min

ˉ ˉ

Fig. 9 Calibrated solutions of the logistic growth equation using the entire data set. Results in (a–f)
correspond to proliferation and scratch assays initiated with 12,000 (initial seeding condition 1); 16,000
(initial seeding condition 2); and 20,000 (initial seeding condition 3) cells per well, as indicated. For each
type of experiment the calibrated solution of the logistic growth equation (solid line) is compared to the
entire experimental data set. The least-squares estimates of λ̄ and K̄ are shown

is improved when we ignore that data during the disturbance phase. However, at first
glance, these differences are visually indistinguishable when we compare the results
in Figs. 8 and 9. In contrast, when we examine the estimates of K̄ and λ̄ in Table 3,
the importance of properly accounting for the disturbance phase in the scratch assay
becomes strikingly obvious. For example, taking this latter approach, our estimates
of the carrying capacity vary within the range K = 1.6× 10−3–2.8× 107 cells/µm2,
and our estimates of the proliferation rate vary within the range λ = 0.019–0.067 h−1.
We recall that λ and K are supposed to be constants in Eq. (1), and so the fact that
this naive calibration process suggests that the least-squares estimate of the carrying
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Table 3 Estimates of λ̄ and K̄ for the scratch assay using data from 0 ≤ t ≤ 48 h. All parameter estimates
are given to two significant figures. Results are reported as the samplemean, and the uncertainty is quantified
in terms of the sample standard deviation

Initial seeding condition λ̄ (/h) K̄ (cells/µm2)

1 0.028±0.001 2.8×107 ±1×107

2 0.029±0.005 8.7×10−3 ±3×106

3 0.019±0.0002 1.6×107 ±6×106

Average 0.025±0.006 1.5×107 ±1×107

capacity density varies over many orders of magnitude provides a clear illustration
that this standard approach to calibrating the logistic equation to our experimental
data is problematic. We note that the results of the Levenberg–Marquardt algorithm
are robust, returning the same least-squares estimates of λ̄ and K̄ for any positive
initial estimate of K and λ in the iterative algorithm (MathWorks 2016).

Comparing the ranges of estimates for λ and K in Tables 2 and 3 shows that the
model calibration procedure is extremely sensitive. For example, our range of estimates
of K whenwe account for the disturbance phase is smaller than a factor of two amongst
the six estimates. In contrast, when we neglect the disturbance phase, our estimates of
K vary across more than ten orders of magnitude amongst the six estimates. Similarly,
our range of estimates of λ when we account for the disturbance phase is smaller than
a factor of 1.5 amongst the six estimates. Again, in contrast, when we take a standard
approach and neglect the disturbance phase our estimates of λ vary by more than a
factor of three amongst the six estimates.

4 Conclusion

In this work we investigate the suitability of the logistic growth model to describe
the proliferation of cells in scratch assays. Scratch assays are routinely used to study
the ability of a population of cells to re-colonise an initially vacant region on a two-
dimensional substrate (Liang et al. 2007;Tremel et al. 2009;Kramer et al. 2013;Treloar
and Simpson 2013). Most experimental interpretations of scratch assays are made
using relatively straightforward measurements (Liang et al. 2007). However, to pro-
vide additional insights into the mechanisms involved in the re-colonisation process,
some previous studies have calibrated the solution of a reaction–diffusion equation to
data from a scratch assay (Sheardown and Cheng 1996; Maini et al. 2004a, b; Savla
et al. 2004; Cai et al. 2007; Sengers et al. 2007; Shakeel et al. 2013; Simpson et al.
2007; Johnston et al. 2015; Jin et al. 2016). In these reaction–diffusion equations,
it is commonly assumed that carrying capacity-limited proliferation of cells can be
described by a logistic growth model. However, the suitability of this assumption is
rarely examined beyond the process of simply calibrating the solution of the relevant
model to match the experimental data.

To examine the suitability of the logistic growth model, we perform a series of
scratch assays and proliferation assays for three different initial seeding densities. Cell
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proliferation assays are prepared in exactly the same way as a scratch assay, except
that the monolayer of cells is not scratched. This allows us to treat the cell proliferation
assays as a control experiment so thatwe can examinewhether the process of artificially
scratching themonolayer of cells affects theway that cells proliferate, evenwhen those
cells are located far away from the scratch. Instead of examining the dynamics of the
cell density near the scratched region where there will be a net flux of cells into the
vacant region (Jin et al. 2016), we quantify the cell density in two subregions that are
located far behind the location of the scratch, where the cell density is approximately
spatially uniform (Supplementary Material). This means that the temporal dynamics
of the cell density in these subregions is due to cell proliferation only (Johnston et al.
2015).

We plot the time evolution of cell density, far away from the initially scratched
region, in both the scratch and proliferation assays. To examine whether our results
are sensitive to the initial density of cells, we repeat each experiment using three
different initial cell densities. Plots of the evolution of the cell density are given over a
total duration of 48 h, and these plots appear to correspond to a series of sigmoid curves.
At this point it would be possible to simply calibrate the solution of the logistic growth
model to these data to provide an estimate of the proliferation rate, λ, and the carrying
capacity density, K . This is a standard approach that has been used by us (Johnston
et al. 2015) and many others (Cai et al. 2007; Sengers et al. 2007; Tremel et al. 2009).
However, while this standard calibration procedure can be used to provide estimates
of the parameters, this model calibration procedure does not provide any validation
that logistic growth is relevant (Simpson et al. 2014).

Rather than calibrating the logistic growth model to our experimental data, we
attempt to assess the suitability of the logistic growth model by converting the cell
density evolution profiles into plots of the per capita growth rate as a function of
density. We find that the plots of the per capita growth rate as a function of density
reveal several key differences between the scratch and proliferation assays. If the
logistic growth model is valid, then we expect to see a decreasing linear relationship
between the per capita growth rate and the cell density for the entire duration of the
experiment. While the plots of the per capita growth rate as a function of density for
the proliferation assays appear to be consistent with the logistic model, the per capita
growth rate data for the scratch assays are very different. For the scratch assay data,
the per capita growth rate increases with cell density at low density during the early
part of the experiment. This behaviour, which is observed for all three initial densities
of cells in the scratch assays, is the opposite of what we would expect if the logistic
growth model were valid. However, at higher cell densities during the latter part of the
experiment, we observe that the per capita growth rate in the scratch assays appears to
decrease, approximately linearly, with the cell density. This motivates us to propose
that cell proliferation in a scratch assay involves two phases: (i) a disturbance phase in
which proliferation does not follow the logistic growth model during the early part of
the experiment; and (ii) a growth phase where proliferation is approximately logistic
during the latter part of the experiment. Guided by our per capita growth rate data, it
appears that the disturbance phase in the scratch assays lasts for approximately 18 h
before the growth phase commences.
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To estimate the parameters in the logistic growthmodel, we calibrate the solution of
the model to our cell proliferation data for the entire duration of the experiment. This
calibration procedure gives estimates of λ and K that are approximately consistent
across the three initial conditions. We then calibrate the solution of the logistic growth
model to the data from the growth phase in the scratch assay. This procedure also
gives estimates of λ and K that are consistent across the three initial conditions, as
well as being consistent with the estimates obtained from the cell proliferation assays.
In contrast, if we take a naive approach and simply calibrate the solution of the logistic
growth equation to the scratch assay data for the entire duration of the experiment,
our estimates of λ and K vary wildly, despite the fact that the match between the
experimental data and the calibrated solution of the logistic growth equation looks
very good.

The results of our study strongly suggest that care ought to be taken when applying
a logistic growth model, or a reaction–diffusion equation with a logistic source term,
to describe scratch assays. Simply calibrating a mathematical model to experimental
datamight appear to produce an excellent match between the solution of themodel and
the experimental data, but this commonly used procedure does not guarantee that the
model is at all relevant (Simpson et al. 2014). Our results suggest that cell proliferation
is impacted by the scratching procedure in a scratch assay, and that we require some
time to pass before the disturbance phase ends. This is important because previous
applications of logistic growth models and reaction–diffusion equations with logistic
source terms have been calibrated to data from scratch assays without any regard for
the disturbance phase (Cai et al. 2007; Tremel et al. 2009; Jin et al. 2016; Johnston
et al. 2015).

It is also relevant to note that for the particular cell line we use, the disturbance
phase that we identify lasts for approximately 18 h. This is important because many
scratch assays are performed for relatively short periods of time (Liang et al. 2007),
and it is possible that standard experimental protocols do not allow for a sufficient
amount of time to pass for the disturbance phase to end. Therefore, we suggest that
scratch assays should be maintained for as long as possible so that sufficient time is
allowed for the disturbance phase to pass.

It is worthwhile to note, and discuss, the fact that some of the features of our
proposed two-phase growth model appear to be similar to the Allee effect (Allee and
Bowen 1932; Johnston et al. 2017; Lewis andKareiva 1993; Roques et al. 2012; Taylor
and Hastings 2005; Sewalt et al. 2016). Typically, Allee growth kinetics are normally
invoked to describe some kind of low-density reduction in proliferation, relative to
the logistic model (Lewis and Kareiva 1993; Taylor and Hastings 2005). The Allee
growth model is given by

dC(t)

dt
= λC(t)

(
1 − C(t)

K

) (
C(t)

A
− 1

)
, (4)

where the parameter A is called the Allee threshold. The key difference between the
Allee growth model [Eq. (4)] and the standard logistic model [Eq. (1)], is the inclusion
of the third factor on the right-hand side of Eq. (4). The incorporation of this factor
has several consequences: (i) the growth rate is negative for C(t) < A (assuming
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C(t) < K ); (ii) the growth rate is positive for C(t) > A (assuming C(t) < K ); and
(iii) the relationship between the per capita growth rate and the density is quadratic. In
many previous implementations of Allee growth models, an argument is made that the
growth rate at small densities is reduced, relative to the logisticmodel, because of some
kind of biological competition (Johnston et al. 2017; Lewis and Kareiva 1993; Taylor
and Hastings 2005), corresponding to A � K . Therefore, the Allee model is often
used to represent reduced growth at small densities, C(t) � K . The experimental
data we present in Figs. 4 and 7 are inconsistent with the Allee model for two reasons.
First, the per capita growth data in Fig. 4 correspond to a reduced growth rate at early
times during the experiment. This reduction in growth rate is observed across a range
of initial densities, including seeding conditions 2 and 3 which do not involve small
densities, as discussed in Sect. 3.1.2. Second, the per capita growth data in Fig. 7 vary
approximately linearly with density during the growth phase, whereas the Allee model
implies that the relationship is quadratic.

One of the limitations of our study is that we have not identified the precise mech-
anism that causes the disturbance phase or the mathematical form of the disturbance
phase. However it seems clear that the process of scratching a monolayer of cells has
some impact on the proliferative behaviour of the cells away from the scratch, sug-
gesting that either chemical or mechanical disturbance is transported throughout the
experimental well as consequence of the scratching action. Regardless of the mecha-
nism at play, our procedure of converting the cell density profiles into plots of the per
capita growth rate allows us to identify the result of this disturbance.Another limitation
of our work is that we deal with only one particular cell line, and it is not obvious how
our estimate of the duration of the disturbance phase will translate to other cell lines.
In this work we study the proliferation mechanism by converting the density data into
per capita growth data and exploring whether the relationship between the per capita
growth and density is approximately described by a linear function. We acknowledge
that more sophisticated statistical techniques could be employed to provide further
information (Dennis and Taper 1994). However, since the main aim of this study is
to explore the suitability of the logistic growth model for describing cell proliferation
in a scratch assay, we do not pursue these more advanced statistical techniques here.
Instead, we suggest that this could be the topic of a future study.
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