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https://github.com/omaclaren/open-manuscripts/tree/master/hierarchical-
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Derivation of ‘zeroth-order’ continuous model

To derive the continuous approximation we first defined the position x as a
continuous coordinate passing through the discrete cell indices. For example
x = 0 denoted the coordinate of the cell labelled ‘0’ (base of the crypt), while
x = 0.5 was the location halfway between the cell labelled ‘0’ and that labelled
1’. Sample locations consisting of space-time pairs were denoted by s = (xs, ts).
Then, for sample locations (i, t) corresponding to cell indices and arbitrary times,
we matched the discrete model and continuous model using

p(li(t) = 1|L(i, t)) = L(i, t) (1)

i.e. L(i, t) served as the parameter for a single measurement modelled as a
Bernoulli trial at that sample location (as in the above Measurement model
section).

Next, the discrete dynamics of p(li(t) = 1) were ‘transferred’ to the continuous
L(x, t) dynamics. In particular, since L(x, t) was taken to be a smooth function,
we made the correspondence

p(li−1(t) = 1|L(i − 1, t)) = L(i − 1, t)
≡

p(li−1(t) = 1|L(i, t), Lx(i, t), ..., ∆x) = L(i, t) − ∆x
∂L(i, t)

∂x
+ ∆x2

2
∂2L(i, t)

∂x2 − ...

(2)

where ∆x = i − (i − 1) = 1 was the normalised cell length and we also condi-
tioned on knowledge of the spatial derivatives at i, Lx(i, t) = ∂L(i,t)

∂x etc. The
continuous spatial field effectively interpolated between - i.e. internal to - points
of the discrete grid, making use of local derivative information. Substituting the
above Taylor series, and similar expressions, into the discrete Markov equation
led to
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∂L(i, t)
∂t

+ v(i)∂L(i, t)
∂x

= 1
2

(
∆xv(i)∂2L(i, t)

∂x2 − ∆t
∂2L(i, t)

∂t2

)
+ ... (3)

where, for completeness, we also retained higher order terms in ∆t for the con-
tinuous model. We similarly assumed the existence of smooth functions k(x, t)
and v(x, t) that satisfied the discrete relations

v(i, t) =
i−1∑
j=0

kj∆x =
∫ i

0
k(x, t)dx + v(0). (4)

Furthermore, we assumed k(x, t) = k(x), v(x, t) = v(x) and v(0) = 0 in what
follows. This assumption is discussed further in the Results section.

We obtained ‘closure’ for the continuous model by keeping only the lowest order
terms in both time and space, and further asserting that the equation structure
obtained held for all continuous x and not just discrete i (this could also be
motivated by an assumption of grid translation invariance). This leads to the
advection equation

∂L(x, t)
∂t

+ v(x)∂L(x, t)
∂x

= 0 (5)

with

v(x) =
∫ x

0
k(x′)dx′.

When we incorporated cell death, with discrete rates di, this led to the same
equations with k replaced by k −d, where d(x, t) was defined similarly to k(x, t).
Hence we interpreted k in the above as the net cell production rate (which hence
could be negative).

Supplementary visualisations of posterior distributions

In Fig A, Fig B and Fig C, respectively, we present alternative visualisations of
the posterior distributions for proliferation rates under healthy, Ara-C-treated
and recovering conditions. These are alternative visualisations of the data pre-
sented in Figs 3-5 in the main manuscript. These plots were produced using the
package ‘corner.py’ described in [1].
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Fig A. Posterior for proliferation rates under baseline, healthy con-
ditions. The upper diagonal represents the marginal distributions for each
proliferation rate when averaging over all other profileration rates. The plots
below the diagonal show bivariate marginal distributions illustrating pairwise
associations after averaging over all other profileration rates. These visualisa-
tions are a way of understanding the full joint posterior distribution which is
five-dimensional in full generality.
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Fig B. Posterior for proliferation rates under Ara-C treatment. The
upper diagonal represents the marginal distributions for each proliferation rate
when averaging over all other profileration rates. The plots below the diago-
nal show bivariate marginal distributions illustrating pairwise associations after
averaging over all other profileration rates. These visualisations are a way of
understanding the full joint posterior distribution which is five-dimensional in
full generality.
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Fig C. Posterior for proliferation rates when recovering from Ara-C
treatment. The upper diagonal represents the marginal distributions for each
proliferation rate when averaging over all other profileration rates. The plots
below the diagonal show bivariate marginal distributions illustrating pairwise
associations after averaging over all other profileration rates. These visualisa-
tions are a way of understanding the full joint posterior distribution which is
five-dimensional in full generality.
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Typical sample from intestinal epithelium

The companion paper [2] contains full details of the experimental procedures.
In Fig D below we reproduce, for reference, a typical section obtained from an
intestinal in these experiments.

Fig D. Typical section obtained during the experimental procedures
described in the main manuscript. These are also detailed more fully in
the companion paper [2].

Interpretation of statistical evidence

We have described above how mechanistic or causal assumptions relate to as-
sumptions of structural invariance under different scenarios. In order to inter-
pret the results that follow, however, we also required an interpretation of the
‘statistical evidence’ that a set of measurements provided about parameter val-
ues within a fixed model structure. This proved a surprisingly controversial
topic and we encountered continuing debate about fundamental principles and
definitions of statistical evidence [3–7].

Following our conditional modelling approach, we decided to adopt the sim-
ple - yet quite generally applicable - principle of evidence based on conditional
probability: if we observe b and p(a|b) > p(a) then we have evidence for a. A
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‘gold-standard’ theory of statistical evidence starting from this premise has been
developed and defended recently by Evans in a series of papers (summarised in
[6]). Besides simplicity, a nice feature of this approach, that we used below, is
that it can be applied both to prior and posterior predictive distribution com-
parisons such as p(y|y0)

?
> p(y), as well as to prior and posterior parameter

distribution comparisons such as p(k|y0)
?
> p(k). This approach is not without

criticism, however (again, see [3–7] for an entry point to the ongoing debates).

Another notable feature of the interpretation of statistical evidence that we
adopted below is that we emphasised the visual comparison of various prior and
posterior distributions, rather than adopting arbitrary numerical standards ([8]
advocates a similar ‘movie strategy’ for the interpretation of statistical evidence
and inference procedures, [9–12] similarly emphasise the benefits of graphical
visualisation methods in statistics).
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