Figure S1

Figure S2

Figure S3

Figure S4
4434 mouse VII

Figure S5

Figure S6

Figure S7

Supplemental Figure Legends

Figure S1.

Posterior distribution for $\tilde{\eta}$ as θ is varied, and average ρ_{R} value from previous estimate (Table 2). The lighter color violin plots correspond to the value used in the estimates reported in Fig. 3C ($\theta=0.031 /$ day $)$. The intermediate and darker colored violin plots are obtained with $\theta=0.1651$ /day and $\theta=0.31 /$ day, respectively.

Figure 52.

Posterior distribution for K as ρ_{S} is varied within the range of estimates obtained with fit to in vitro data of corresponding cell line. The lighter (darker) colored violin plots are obtained with ρ_{S} value corresponding to the lower (upper) bound of the range reported in Table 2. The intermediate color violin plots correspond to the average ρ_{S} value, and correspond to those reported in Fig. 3B.

Figure S3.

Posterior distribution for $\tilde{\eta}$ as ρ_{R} is varied within the range of estimates obtained with fit to in vitro data of corresponding cell line. The lighter (darker) colored violin plots are obtained with ρ_{R} value corresponding to the lower (upper) bound of the range reported in Table 2. The intermediate color violin plots correspond to the average ρ_{R} value, and correspond to those reported in Fig. 3C.

Figure 54.

Posterior distribution for $\tilde{\eta}$ as K is varied (purple) and K as $\tilde{\eta}$ is varied (yellow). Mouse VII, cell line 4434, treated with BRAFi. Purple violin plots show probability density functions (x axis) of $\tilde{\eta}$ estimates (y axis) for a given value of K. Yellow violin plots show probability density functions (y axis) of K estimates (x axis) for a given value of $\tilde{\eta}$. The intensity of the color of each violin plot is proportional to the goodness of the fit (norm-2 distance between data and fit). $\theta=0.031 /$ day . ρ_{R} from previous estimates (Table 2).

Figure S5.

In vivo data and fit for 5555 mice XIII through XXII, treated with PLX4720 (BRAFi) and PF562271 (FAKi). Note different y axis scales. Data from ref. 13.

Figure 56.

Example of case (i). Model parameterized on mouse IX of cell line 5555. $\rho_{S}=0.663251 /$ day, $\rho_{R}=0.495431 /$ day , $K=4818.62 \mathrm{~mm}^{3}, \tilde{\eta}=26.8761 /$ day,$\tilde{\alpha}=14.41 /$ day,$\theta=0.031 /$ day, $S_{0}=48 \mathrm{~mm}^{3}, R_{0}=12 \mathrm{~mm}^{3}, F_{0}=60 \mathrm{~mm}^{3}$, $A_{0}=0 \mathrm{~mm}^{3}$. The tumour burden (brown) is monotonically increasing under treatment combination of BRAFi and FAKi.

Figure 57.

Example of case (ii). Model parameterized on mouse VII of cell line 5555. $\rho_{S}=0.663251 /$ day, $\rho_{R}=0.495431 /$ day , $K=4818.62 \mathrm{~mm}^{3}, \tilde{\eta}=0.12571 /$ day,$\tilde{\alpha}=14.41 /$ day,$\theta=0.031 /$ day, $S_{0}=48 \mathrm{~mm}^{3}, R_{0}=12 \mathrm{~mm}^{3}, F_{0}=60 \mathrm{~mm}^{3}$, $A_{0}=0 \mathrm{~mm}^{3}$. Under treatment combination of BRAFi and FAKi, the tumor burden (brown) is monotonically decreasing after time $t^{*}=1.1771$ day.

