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Mathematical modelling of cortical neurogenesis 

reveals that the founder population does not 

necessarily scale with neurogenic output. 
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Time dependent probability functions 
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Local Sensitivity Analysis. 

We define sensitivity of the model outcome 𝑦 to parameter 𝜃 as: 
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with 𝑦 = 𝑁D(𝑡7) −
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 and  𝜃∗ indicates the reference value for the parameter whose 

sensitivity is being calculated. Specifically, 𝜃∗ is the parameter value of the optimal 

strategy (Eq. 5), and 𝑦∗ the corresponding model outcome. 
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Full Parameter Search. 

The following quantization was used to span the 4-dimensional parameter space: 

𝛼( = 0: 0.1: 1,	
  	
  	
  	
  	
  	
  𝛼2 = 𝛼(: 0.1: 1,	
  	
  	
  	
  	
  	
  𝛽7 = 	
  0: 0.1: 1,	
  	
  	
  	
  	
  	
  𝑡2 = 	
   𝑡(: 0.5: 𝑡7.  (S4) 

The notation (𝑥 = 𝑥L: ∆𝑥: 𝑥N) indicates that parameter 𝑥 takes values between 𝑥Land 

𝑥Nwith incremental steps ∆𝑥. Note that any 4-tuple respects equation (2). 

The radius of the spheres in Figure S2 is proportional to the relative error: 
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Note that the numerator is the error as defined in equation (4). Only spheres within 0.1% 

of relative error are shown, i.e. 𝑟	
   ≤ 0.001. 

Analytical Formulation of the Age-dependent Cell Cycle Model. 

Species-specific age-dependent cell cycle models are obtained by interpolation of data 

for mouse and macaque in Kornack and Rakic (1998). Unless otherwise stated, the 

human age-dependent cell cycle is assumed to follow the same qualitative and 

quantitative behavior, although stretched over a longer time of neurogenesis (Table 1): 

Mouse: 𝑇X(𝑡) = 10.2 + 2.05	
   × 	
  (𝑡 − 12)    𝑡 ∈ (𝐸11, 𝐸19)        (S6) 

Macaque: 𝑇X(𝑡) = ]23 + 1.55	
   × 	
  (𝑡 − 40) 𝑡 ∈ (𝐸40, 𝐸60)
54 − 1.35	
   × 	
  (𝑡 − 60) 𝑡 ∈ (𝐸60, 𝐸95)        (S7) 
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Human:	
  𝑇X(𝑡) = ] 23 + 0.82	
   ×	
  (𝑡 − 40) 𝑡 ∈ (𝐸40, 𝐸77.8)
54 − 0.7147	
   × 	
  (𝑡 − 77.8) 𝑡 ∈ (𝐸77.8, 𝐸125).      (S8) 

Parameter Estimation with Approximate Bayesian Computation (ABC). 

Let 𝑦 be the data point and ℳ =ℳ(𝜽	
  ) a model that we chose to explain the observed 

data, where 𝜽 = 	
   (𝛼(, 𝛼2, 𝛽7, 𝑡2)	
   is the vector of model parameters, taking values in Ω ⊂

ℝh. We want to estimate values of parameters 𝜽 that best explain the data 𝑦, with the 

given model ℳ. The Approximate Bayesian Computation (ABC) rejection algorithm 

allows us to build a discrete approximation of the posterior distribution of 𝜽 (Picco et al. 

2017). Specifically, the ABC algorithm iteratively draws a proposed 4-tuple of values for 

𝜽 from a uniform prior on some region Ωi ⊂ Ω where conditions in equations (2) are 

satisfied. If the model, simulated with the proposed parameter set, falls close to the data 

within tolerance 𝜖, then the 4-tuple is accepted, otherwise rejected. The collection of all 

accepted 4-tuples constitutes an approximation of the posterior distribution. The tolerance 

𝜖 is iteratively adjusted to obtain a target acceptance ratio 𝜋l = 	
  0.0002, where 𝜋l is defined 

as the number of accepted 4-tuples over the number of proposed 4-tuples.  

In this instance, our data point corresponds to the number of neurons at the end of 

neurogenesis. This value is calculated from the number of neurons in the adult species 

of interest (𝑁i), adjusted for post-neurogenesis cell death (𝛿) and neuronal migration (𝜇): 

𝑦 = 𝑁(𝑡7) = 	
  𝑁i 	
  	
  ×	
   (1 + 𝛿)	
  × 	
  (1 − 𝜇).    (S9) 

Unless otherwise stated, we set 𝛿 = 0.3 and 𝜇 = 0.25. Values for 𝑁i	
  can be found in Table 

1.  
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Captions to Supplementary Figures 

Figure S1. Neurogenesis model with constant probabilities 𝛼 and 𝛽. Examples of 

dynamics obtained with 𝑡( = 𝐸11, 𝑡7 = 𝐸19, 𝑇X = 14.3	
  ℎ𝑟 and probabilities 𝛼 and 𝛽 in 

representative regions of the parameter space. 

Figure S2. Full search of the parameter space (𝛼(, 𝛼2, 𝛽7, 𝑡2) to identify the mouse 

strategy for the constant cell cycle model. The radius 𝑟 of each sphere is proportional to 

the error	
  𝜀 (see supplemental information). Only spheres within 0.03% of relative error 

are shown. The arrow indicates the predicted strategy (i.e. minimum 𝑟), corresponding to 

equation (5). Trivial strategies (TS) are disregarded because they are not biologically 

relevant. TS1 (𝛼( = 	
  𝛼2 = 0, 𝑡2 = 	
   𝑡7) and TS2 (𝛼( = 	
  𝛼2 = 0, 𝛽7 = 	
  0): all divisions are 

SymP, no neurons are produced. TS3 (𝛽7 = 	
  0): progenitors never undergo SymN 

divisions. 

Figure S3. Founder population estimates for mouse, macaque, and human using the 

corresponding strategy for constant (o) and age-dependent (✩) cell cycle length models. 

Human estimates are repeated for post-neurogenesis cell death ranging from 30% to 

70%. Arrows indicate direction of increasing cell death. (A) 25% interneuronal migration. 

(B) 50% interneuronal migration. 

 
Figure S4. Founder population estimates for mouse, macaque, and human using the 

corresponding strategy for varied human progenitors cell cycle length. Estimates for age-

dependent (A) and constant (B) cell cycle length models. The human cell cycle duration 

is increased up to twice the macaque value (see colormap). 


