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S1 ESTIMATION OF THE HYDRODYNAMIC RADII OF R, V, VR AND RVR SPECIES

The hydrodynamic radii (Rh values) of the VEGF dimer (V), Ranibizumab Fab (R), VR and RVR species
were estimated by representing each species as a prolate ellipsoid and applying Perrin’s formula (given
below) [1]. The dimensions of the ellipsoid were estimated from Ferrara’s structural representation of the
RVR species [2], as follows.

Axial ratios of each species were first estimated by drawing lines corresponding to the apparent length and
apparent width of each species and taking their ratio (width/length) as shown in Figure S1.
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Figure S1: RVR structure taken from N. Ferrara [2]. Coloured line segments superimposed on figure were
drawn by eye to estimate the apparent lengths (longer segments) and widths (shorter segments)
of the different species: V (black), R (blue), VR (red) and RVR (green) species. The axial ratio
(dimensionless) was taken as the ratio of the width/length.

The molecular weights (MW) of the VEGF dimer and Ranibizumab were taken as 44000 and 48000 daltons,
respectively, from literature values [3, 4] and the values of the VR and RVR species calculated additively. The
volume of each species was computed from the corresponding molecular weight assuming a protein density
of 1.33 g/mL [5] and was set equal to that of a prolate ellipsoid with semi-major axis a and semi-minor axis b,
i.e. Vprolate = (4/3)ab2. The values of a and b were computed from the volume and the previously estimated
axial ratios (set equal to b/a).

Perrin’s formula for prolate ellipsoids [1] was used to calculate Rh from the values of a and b.

Rh =
a

√
1−

(
b
a

)2

log

[{
1+

√
1−

(
b
a

)2
}/

b
a

] (S.1)

The resulting Rh values and related parameters are given in Table S1.

Units V R VR RVR
Molecular Weight Da 44,000 48,000 92,000 140,000

Volume* 104×Å 5.50 6.00 11.5 17.5
Axial ratio (b/a) none 0.68 0.74 0.37 0.26

Semi-major axis (a) Å 30.5 29.7 58.1 85.4
Semi-minor axis (b) Å 20.7 22.0 21.7 22.1

Hydrodynamic radius (Rh) nm 2.39 2.45 3.29 4.07

Table S1: Hydrodynamic radii of each species and related parameters used to calculate them. *Assumes
protein density of 1.33 g/mL.

The estimated Rh for Ranibizumab (2.45 nm) is in excellent agreement with the experimental value (2.5 nm)
for a Fab molecule determined from dynamic light scattering measurements by Shatz et al. [6]; while the
Rh estimated for the RVR species (4.07 nm) is similar to the experimental value reported in [6] for an IgG
molecule (4.9 nm), which has a comparable MW.

S2 VITREOUS-AQUEOUS CLEARANCE PARAMETER

The 3-compartment PK model, for a general intravitreally injected antibody, denoted in the retina, vitreous
and aqueous, by cret(t ), cvit(t ) and caq(t ), respectively (with units of pM), is given by the following equations

dcret

dt
=−

(
Sret

Vret

)[
pILM +pRPE

]
cret +

(
Sret

Vret

)
pILMcvit, (S.2)

dcvit

dt
=

(
Sret

Vvit

)
pILMcret −

[(
Sret

Vvit

)
pILM +kel

]
cvit, (S.3)

dcaq

dt
=

(
Vvit

Vaq

)
kelcvit −

(
CL

Vaq

)
caq, (S.4)

where cret(0) = caq(0) = 0 and cvit(0) = c0 representing the initial concentration corresponding to the intravitreal
injection. All parameter definitions can be found in Table 3 in the main text. As this is a linear ODE system
with constant coefficients, it is readily solved to give:
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cret(t ) = c0pILM

λ2 −λ1

(
Sret

Vvit

)
K2K1

[
e−λ1t −e−λ2t

]
, (S.5)

cvit(t ) = c0pILM

λ2 −λ1

(
Sret

Vvit

)[
K1e−λ2t +K2e−λ1t

]
, (S.6)

caq(t ) = c0pILMkel

λ2 −λ1

(
Sret

Vaq

) K1
CL
Vaq

−λ2

(
e−λ2t −e

−
(

CL
Vaq

)
t
)
+ K2

CL
Vaq

−λ1

(
e−λ1t −e

−
(

CL
Vaq

)
t
) , (S.7)

where

K1 = 1+
(

Vvit

Sret

)
kel −λ1

pILM
, K2 =−1+

(
Vvit

Sret

)
λ2 −kel

pILM
, (S.8)

and K1,K2,λ1,λ2 > 0, and λ1 and λ2 are the absolute distinct real eigenvalues of M , the matrix defined as
follows

M =
( − Sret

Vret

(
pILM +pRPE

) Sret
Vret

pILM
Sret
Vvit

pILM −
(

Sret
Vvit

pILM +kel

) )
, (S.9)

which are the solutions of the following equation(
Sret

Vret

(
pILM +pRPE

)−λ)(
Sret

Vvit
pILM +kel −λ

)
− S2

ret

VretVvit
p2

ILM = 0 (S.10)

This equation can be rearranged to give kel, in terms of λ1, as

kel =λ1 − Sret

Vvit
pILM +

(
SretpILM

)2

VvitSret
(
pILM +pRPE

)−VvitVretλ1
. (S.11)

For simplicity in the main text we refer to λ1 as λ.

S3 INITIAL CONDITIONS

Initial conditions for VEGF can be derived from the steady state solution of Equations 9-20 in the main text,
in the absence of ranibizumab, as follows:


Sret

Vret

(
p(v)

ILM +p(v)
RPE

)
−Sret

Vret
p(v)

ILM

Sret

Vvit
p(v)

ILM −
(

Sret

Vvit
p(v)

ILM +k(v)
el

)


(
vret(0)
vvit(0)

)
=

(
Vin
Vret

0

)
, (S.12)

vaq(0) = Vvit

CL
k(v)

el vvit. (S.13)

Therefore we find  vret(0)
vvit(0)
vaq(0)

= EQ


1+ k(v)

el
Sret
Vvit

p (v)
ILM

1
Vvit
CL

k(v)
el

 , (S.14)

where

EQ = 1

Vvitk
(v)
el

 Vin

Sretp (v)
RPE

Vvitk
(v)
el

+1+ p (v)
RPE

p (v)
ILM

 . (S.15)

Therefore we may write Vin as a function of vaq(0), as follows

vaq(0) = EQ
Vvit

CL
k(v)

el = 1

CL

 Vin

Sretp (v)
RPE

Vvitk
(v)
el

+1+ p (v)
RPE

p (v)
ILM

 (S.16)

⇒ Vin =CL

(
1+ Sretp(v)

RPE

Vvitk
(v)
el

+ p(v)
RPE

p(v)
ILM

)
vaq(0). (S.17)

Additionally we note the analogue of this relationship derived from the 2-compartment equivalent of this
model, presented in Hutton-Smith et al.2016 [7]. Notice, as defined by Equations 8-15 of [7], the relationship
between Vin and vaq(0) differs to Equation S.17 in the two compartment model, instead being described by
Equation S.18.

Vin =CLvaq(0). (S.18)
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S4 INDIVIDUAL PATIENT PLOTS

The following 31 figures show the individual plots for each patient in the retina and aqueous, the solid red lines represent the
numerical solution for the 3-compartment PK/PD model presented in the main text (for KD = 19,000), whereas the dashed black
line in the aqueous shows the corresponding 2-compartment PK/PD fit, originally presented in Hutton-Smith et al 2016 [7]. All fit
parameters for a specific patient can be found in the figure legend.
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In order to illustrate the dynamics of total VEGF in the retina and aqueous humour, we present Figure S2 for patient 40, identical
to the above figures, with the addition of VR and RVR concentration profiles. As drug permeates into the retina and binds VEGF
the elimination of total VEGF will decrease due to the smaller permeability of the VEGF-drug complexes. This leads to a transient
increase in the total VEGF concentration in the retina, given the constant production of VEGF. In the aqueous humour, which
reflects the vitreous, the initial rate of VEGF influx will decrease correspondingly and the total concentration will show a transient
fall.

Figure S2: Patient 40, as in the above plots, with the addition of VEGF-ranibizumab (VR) and ranibizumab-VEGF-ranibizumab
(RVR), profiles.
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S5 RELATIONSHIP BETWEEN t (r )
1/2 AND KD

The distribution of predicted t (r )
1/2 values across patients, for values of KD in the range 50-50,000 pM, can be

seen in Figure S3 of the main text. For a value of KD, the mean predicted value of t (r )
1/2 is shown by the solid

blue line, while the solid grey region denotes ±SD from the mean. As in Hutton-Smith et. al [7] we used the
mean experimental value of t (r )

1/2, 7.9 (±1.74) days, shown respectively by the solid red and dashed lines, to
estimate the in vivo value for KD, giving 19,000 pM (16,000-25,000 pM) , as is shown graphically in Figure S3.
The dashed blue line denotes the mean t (r )

1/2, over patients, resulting the analysis performed in [7], using an
analogous two-compartment PK/PD model to analyse the Saunders et. al. dataset [8], which predicted an
in vivo value for KD of 21,000 pM (18,000-27,000 pM).

Figure S3: Distribution of predicted t (r )
1/2 values, generated over the prescribed range of KD values (50-50,000

pM) for all 31 patients. The mean patient predicted t (r )
1/2 value is shown by the solid blue line, with

the grey region denoting ±SD. The solid red line shows the experimental mean value of t (r )
1/2, 7.9

days, with the dashed red line showing ±SD, 1.74 days. The analogous two-compartment mean
for t (r )

1/2, with respect to KD, is shown by the dashed blue line, taken from [7].

S6 ASYMPTOTIC ANALYSIS

S6.1 NON-DIMENSIONALISATION

Let

vret(0) = v0, rret(0) = 0, cret(0) = 0, hret(0) = 0, (S.19)

vvit(0) = u0, rvit(0) = r0, cvit(0) = 0, hvit(0) = 0. (S.20)

Now let us non-dimensionalise the vitreous and retinal system equations, using the following non-dimensionalisation

vret = v0xret, rret = r0 yret, cret = v0zret, hret = v0wret, (S.21)

vvit = v0xvit, rvit = r0 yvit, cvit = v0zvit, hvit = v0wvit. (S.22)

Therefore

xret(0) = 1, yret(0) = 0, zret(0) = 0, wret(0) = 0, (S.23)

xvit(0) = u0/v0, yvit(0) = 1, zvit(0) = 0, wvit(0) = 0, (S.24)

and

t = 1

koff
τ. (S.25)

This gives
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Retina

dxret

dτ
=

(
zret −2

r0

KD
xret yret

)
+Q(v)xvit −E (v)xret +V , (S.26)

dyret

dτ
=

(
v0

r0
zret −2

v0

KD
xret yret

)
+

(
2

v0

r0
wret − v0

KD
yretzret

)
+Q(r ) yvit −E (r ) yret, (S.27)

dzret

dτ
=−

(
zret −2

r0

KD
xret yret

)
+

(
2wret − r0

KD
yretzret

)
+Q(c)zvit −E (c)zret, (S.28)

dwret

dτ
=−

(
2wret − r0

KD
yretzret

)
+Q(h)wvit −E (h)wret, (S.29)

Vitreous

dxvit

dτ
=

(
zvit −2

r0

KD
xvit yvit

)
+T (v)xret −K (v)xvit, (S.30)

dyvit

dτ
=

(
v0

r0
zvit −2

v0

KD
xvit yvit

)
+

(
2

v0

r0
wvit − v0

KD
yvitzvit

)
+T (r ) yret −K (r ) yvit, (S.31)

dzvit

dτ
=−

(
zvit −2

r0

KD
xvit yvit

)
+

(
2wvit − r0

KD
yvitzvit

)
+T (c)zret −K (c)zvit, (S.32)

dwvit

dτ
=−

(
2wvit − r0

KD
yvitzvit

)
+T (h)wret −K (h)wvit, (S.33)

where

Q(i ) = 1

koff

Sret

Vret
p(i )

ILM, E (i ) = 1

koff

Sret

Vret
p(i )

RPE +Q(i ) T (i ) = 1

koff

Sret

Vvit
p(i )

ILM, (S.34)

K (i ) = k(i )
el

koff
+T (i ), H (i ) = k(i )

el Vvit

koffVaq
, V = Vin

v0koffVret
. (S.35)

Let

ω= v0

r0
, δ= v0

KD
, (S.36)

(S.37)

where

ω¿ δ¿ 1, (S.38)

and all other parameters are O(1), as can be calculated from their values as given in Table 2 of the main text
and individual parameters listed in Section S4. Note this also implies that:

ε := ω

δ
= KD

r0
¿ 1. (S.39)

Therefore our system of equations becomes:

Retina

ε
dxret

dτ
= (

εzret −2xret yret
)+εQ(v)xvit −εE (v)xret +εV , (S.40)

dyret

dτ
= δ[(

εzret −2xret yret
)+ (

2εwret − yretzret
)]+Q(r ) yvit −E (r ) yret, (S.41)

ε
dzret

dτ
=−(

εzret −2xret yret
)+ (

2εwret − yretzret
)+εQ(c)zvit −εE (c)zret, (S.42)

ε
dwret

dτ
=−(

2εwret − yretzret
)+εQ(h)wvit −εE (h)wret, (S.43)

Vitreous

ε
dxvit

dτ
= (

εzvit −2xvit yvit
)+εT (v)xret −εK (v)xvit, (S.44)

dyvit

dτ
= δ[(

εzvit −2xvit yvit
)+ (

2εwvit − yvitzvit
)]+T (r ) yret −K (r ) yvit, (S.45)

ε
dzvit

dτ
=−(

εzvit −2xvit yvit
)+ (

2εwvit − yvitzvit
)+εT (c)zret −εK (c)zvit, (S.46)

ε
dwvit

dτ
=−(

2εwvit − yvitzvit
)+εT (h)wret −εK (h)wvit, (S.47)
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S6.2 ASYMPTOTIC SOLUTION IN y

Notice, by taking the following

yret = y (0)
ret +δy (1)

ret +O(δ2), (S.48)

yvit = y (0)
vit +δy (1)

vit +O(δ2), (S.49)

yaq = y (0)
aq +δy (1)

aq +O(δ2), (S.50)

that, to O(1), we have the system:

dy (0)
ret

dτ
=−E (r ) y (0)

ret +Q(r ) y (0)
vit , (S.51)

dy (0)
vit

dτ
= T (r ) y (0)

ret −K (r ) y (0)
vit , (S.52)

giving the following solution:

y (0)
ret (τ) = K1K2

K1 +K2

[
e−λ̄1τ−e−λ̄2τ

]
, (S.53)

y (0)
vit (τ) = 1

K1 +K2

[
K2e−λ̄1τ+K1e−λ̄2τ

]
, (S.54)

where

λ̄1 ' K (r ) − Q(r )T (r )

E (r ) −K (r )
, λ̄2 ' E (r ) + Q(r )T (r )

E (r ) −K (r )
, (S.55)

K1 = K (r ) − λ̄1

T (r )
= Q(r )

E (r ) −λ1
, (S.56)

K2 = λ̄2 −K (r )

T (r )
= Q(r )

λ̄2 −E (r )
. (S.57)

Also noting:

K1 ' Q(r )

E (r ) −K (r )
, K2 ' E (r ) −K (r )

T (r )
⇒ K1K2 ' Q(r )

T (r )
= Vvit

Vret
, (S.58)

we may express the non-dimensional model decay rates via the following approximations:

λ̄1 = 1

koff
λ1 ' 1

koff

k(r )
el +

(
Sret

Vvit

)
p(r )

ILM −
(

Sretp(r )
ILM

Vvit

)
1[(

1+ p (r )
RPE

p (r )
ILM

)
− Vret

Vvit

(
1+ Vvitkel

Sretp (r )
ILM

)]
 , (S.59)

λ̄2 = 1

koff
λ2 ' 1

koff

[
Sretp(r )

ILM

Vret

(
1+ p(r )

RPE

p(r )
ILM

)]
. (S.60)
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Let us consider the ratio

λ̄1

λ̄2
= λ1

λ2
'

k(r )
el +

(
Sret
Vvit

)
p(r )

ILM −
(

Sretp (r )
ILM

Vvit

)
1[(

1+ p(r )
RPE

p(r )
ILM

)
− Vret

Vvit

(
1+ Vvitkel

Sretp(r )
ILM

)]
Sretp (r )

ILM
Vret

(
1+ p (r )

RPE

p (r )
ILM

) (S.61)

= k(r )
el

Sretp (r )
ILM

Vret

(
1+ p (r )

RPE

p (r )
ILM

) +
(

Sret
Vvit

)
p(r )

ILM

Sretp (r )
ILM

Vret

(
1+ p (r )

RPE

p (r )
ILM

) −
(

Sretp (r )
ILM

Vvit

)
1[(

1+ p(r )
RPE

p(r )
ILM

)
− Vret

Vvit

(
1+ Vvitkel

Sretp(r )
ILM

)]
Sretp (r )

ILM
Vret

(
1+ p (r )

RPE

p (r )
ILM

) (S.62)

= 1

1+ p (r )
RPE

p (r )
ILM


(

Sret
Vvit

)
p(r )

ILM

Sretp (r )
ILM

Vret

+ k(r )
el

Sretp (r )
ILM

Vret

−

(
Sretp (r )

ILM
Vvit

)
1[(

1+ p(r )
RPE

p(r )
ILM

)
− Vret

Vvit

(
1+ Vvitkel

Sretp(r )
ILM

)]
Sretp (r )

ILM
Vret


(S.63)

= Vret/Vvit

1+ p (r )
RPE

p (r )
ILM︸ ︷︷ ︸

(1)


1+ Vvitk

(r )
el

Sretp(r )
ILM︸ ︷︷ ︸

(2)

− 1(
1+ p (r )

RPE

p (r )
ILM

)
− Vret

Vvit

(
1+ Vvitkel

Sretp (r )
ILM

)
︸ ︷︷ ︸

(3)


. (S.64)

The typical magnitudes of (1),(2) and (3) are 10−2,100 and 10−1, respectively, hence the ratio
λ1/λ2 ∼O(10−2). We also note this implies that λ1 ¿λ2.

Therefore in summary

λ1 ' k(r )
el +

(
Sret

Vvit

)
p(r )

ILM −
(

Sretp(r )
ILM

Vvit

)
1[(

1+ p (r )
RPE

p (r )
ILM

)
− Vret

Vvit

(
1+ Vvitkel

Sretp (r )
ILM

)] , (S.65)

λ2 '
Sretp(r )

ILM

Vret

(
1+ p(r )

RPE

p(r )
ILM

)
, (S.66)

λ1

λ2
' Vret/Vvit

1+ p (r )
RPE

p (r )
ILM

1+ Vvitk
(r )
el

Sretp(r )
ILM

− 1(
1+ p (r )

RPE

p (r )
ILM

)
− Vret

Vvit

(
1+ Vvitkel

Sretp (r )
ILM

)
 . (S.67)

S6.3 INITIAL ASYMPTOTIC SOLUTION FOR xRET

Let us consider the governing equation for xret

ε
dxret

dτ
= (

εzret −2xret yret
)+εQ(v)xvit −εE (v)xret +εV. (S.68)

At early time we expect to see xret and zret to be small relative to yret, due to the large influx of drug into the
retina. Any VEGF (xret) will be bound, and subsequently the VEGF-ranibizumab (zret) complex will then be
bound again to form an RVR complex. As VEGF is produced within the retina we also expect xvit ¿ xret.
Therefore if we take

xret = δ1Xret, zret = δ2Zret, xvit = δ3Xvit, (S.69)

where we assume that

δ1, δ2 ¿ 1, δ3 ¿ δ1, δ2 (S.70)

then, upon substitution into Equation S.68, we may write the following

εδ1
dXret

dτ
= (

εδ2Zret −2δ1Xret yret
)+εδ3Q(v)Xvit −εδ1E (v)Xret +εV , (S.71)

⇒ ε
dXret

dτ
=

(
εδ2

δ1
Zret −2Xret yret

)
+ εδ3

δ1
Q(v)Xvit −εE (v)Xret + ε

δ1
V , (S.72)

⇒ 2Xret yret︸ ︷︷ ︸
(1)

+ε
(

dXret

dτ
+E (v)Xret

)
︸ ︷︷ ︸

(2)

= εδ3

δ1
Q(v)Xvit︸ ︷︷ ︸

(3)

+ ε

δ1
V︸ ︷︷ ︸

(4)

,+ εδ2

δ1
Zret︸ ︷︷ ︸

(5)

. (S.73)
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Now, we note the magnitude of the terms in Equation S.73:

(1) (2) (3) (4) (5)

∼O(1) ∼O(ε) ∼O
(
εδ3
δ1

)
∼O

(
ε
δ1

)
∼O

(
εδ2
δ1

)
,

(S.74)

As δ3 ¿ δ1 term (3) is sub-dominant to (1), (2), (4) and (5), and as δ2 and δ1 are both ¿ 1 we can take
(5) ¿ (4) (due to the additional factor of δ2 in (5)). This leaves us with the dominant balance (1) ∼ (4),
(2), (3), (5) ¿ (1), (4), giving us δ1 = ε. Therefore taking the following expansion: Therefore taking

Xret = X (0)
ret +εX (1)

ret +O(ε2) (S.75)

we find to O(1) that

X (0)
ret =

V

2yret
(S.76)

⇒ vret(t ) = εv0V

2yret(t )
(S.77)

= εv0V

2

(
K1 +K2

K1K2

)[
1

e−λ1t −e−λ2t

]
(S.78)

noting the following

K1 +K2 = λ̄2 − λ̄2

T (r )
= Vvit

Sretp(r )
ILM

(λ2 −λ1) , K1K2 ' Q(r )

T (r )
= Vvit

Vret
, λ1 ¿λ2 (S.79)

therefore

⇒
(

K1 +K2

K1K2

)
' Vret

Sretp(r )
ILM

(λ2 −λ1) (S.80)

(S.81)

Also noting

V = Vin

v0koffVret
, ε= KD

r0
, (S.82)

we may write

εv0V

2
= KD v0Vin

2r0v0koffVret
(S.83)

= 1

2

Vin

r0konVret
, (S.84)

Therefore we find an intermediate ∼O(1) asymptotic solution for vret(t ) as follows

vret(t ) = 1

2

{
Vin

r0kon

}[
(λ2 −λ1)/Sretp(r )

ILM

e−λ1t −e−λ2t

]
(S.85)

' 1

2

{
Vin

r0kon

}[
λ2 −λ1

Sretp(r )
ILM

]
eλ1t (S.86)

S6.4 MAXIMUM SUPPRESSION OF VEGF IN THE RETINA

Therefore our approximation of vret is minimised when yret is maximised, which occurs at tmin when

−λ1e−λ1tmin +λ2e−λ2tmin = 0, (S.87)

giving tmin

tmin = 1

λ2 −λ1
log

(
λ2

λ1

)
. (S.88)

Notice, from these results we can see that

e−λ1tmin =
(
λ2

λ1

)
e−λ2tmin ⇒ e−λ1tmin −e−λ2tmin =

(
λ2

λ1

)
e−λ2tmin −e−λ2tmin (S.89)

=
(
λ2 −λ1

λ1

)
e−λ2tmin , (S.90)

(S.91)
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therefore

⇒ vret(tmin) = 1

2

Vin

r0konSretp(r )
ILM

[
λ2 −λ1

e−λ1tmin −e−λ2tmin

]
(S.92)

=
(

1

2

Vin

r0Sretp(r )
ILMkon

)
λ1eλ2tmin . (S.93)

Note now that

eλ2tmin = e
λ2

λ2−λ1
log

(
λ2
λ1

)
=

(
λ2

λ1

) λ2
λ2−λ1 =

(
1

λ1/λ2

) 1
1−λ1/λ2

. (S.94)

Now, letting α=λ1/λ2 ¿ 1, then if we take:

x :=
(

1

α

) 1
1−α

(S.95)

we find

x =
(

1

α

) 1
1−α

(S.96)

=
(

1

α

)(
1

α

) α
1−α

(S.97)

= 1

α
exp

{(
− α

1−α
)

logα
}

(S.98)

= 1

α

[
1− α

1−α logα+O

(
α2

2(1−α)2 log2α

)]
as α→ 0 (S.99)

= 1

α
−

1−α logα+O

(
α

2(1−α)2 log2α

)
as α→ 0 (S.100)

' 1

α
− logα+O

(α
2

log2α
)

as α→ 0. (S.101)

Notice that the error term tends to zero as α↘ 0, by setting α=β2 we find

lim
α→0

(α
2

log2α
)
= 1

2
lim
β→0

(
β2 log2β2) (S.102)

= 2 lim
β→0

(
β logβ

)2 (S.103)

= 0 (S.104)

Therefore, using this result we may write

eλ2tmin =
(

1

λ1/λ2

) 1
1−λ1/λ2 ' λ2

λ1
− log

(
λ1

λ2

)
+O

(
λ1

2λ2
log2

(
λ1

λ2

))
(S.105)

⇒ λ1eλ2tmin 'λ2 −λ1 log

(
λ1

λ2

)
+O

(
λ2

1

2λ2
log2

(
λ1

λ2

))
(S.106)

where we note that the error is O(10−2). Therefore, recalling the approximations for λ1 and λ2 we may write

vret(tmin) =
(

1

2

Vin

r0Sretp(r )
ILMkon

)
λ1eλ2tmin (S.107)

Therefore we have

vret(tmin) = 1

2

{
Vin

r0kon

}λ2 +λ1 log
(
λ2
λ1

)
+O

(
λ2

1
2λ2

log2
(
λ1
λ2

))
Sretp(r )

ILM

 . (S.108)

Figure S4 shows the early time free VEGF concentration profile, the numerical solution is shown in solid
red, the full two exponential asymptotic solution is shown in dashed red, and the single exponential
asymptotic simplification in dotted red.

18



Figure S4: Initial free VEGF concentration in the retina, the dashed box in the left-hand panel is the region
shown in the right-hand panel. The solid, dashed and dotted red lines denote the numerical,
asymptotic (Equation S.85) and partial asymptotic (Equation S.86) solutions, respectively, for
patient 40 at KD = 19,000 pM and t (r )

12 = 7.9 days. The solid red dot shows the minimum free VEGF
concentration, the red circle shows the approximate form of the minimum free VEGF, presented
in Equation S.108, the accuracy of which is given in the figure legend.

We also note that Equation S.108 may be approximated by the following

vret(tmin) ' 1

2

{
Vin

r0kon

}λ2 −λ1 log
(
λ1
λ2

)
Sretp(r )

ILM

 (S.109)

' 1

2

{
Vin

r0kon

}[
λ2 −λ1

Sretp(r )
ILM

]
, (S.110)

therefore Equation S.86 may be written in terms of vret(tmin)

vret(t ) ' 1

2

{
Vin

r0kon

}[
λ2 −λ1

Sretp(r )
ILM

]
eλ1t (S.111)

' vret(tmin)eλ1t . (S.112)

S6.5 DRUG RETINAL IMPERMEABILITY CASE STUDY

Suppose that the retina is impermeable to ranibizumab and all VEGF-ranibizumab complexes. Then, this
would cause the non-dimensional equation for retinal free VEGF to reduce to the following equation:

dxret

dτ
=Q(v)xvit −E (v)xret +V (S.113)

If we assume that the system is in quasi steady-state, we may write:

xret = 1

E (v)

(
Q(v)xvit +V

)
. (S.114)

Therefore, as we expect xvit to be very small post IVT injection, we may approximate xret to be (initially)
equal to a constant, as follows:

xret ' V

E (v)
(S.115)

⇒ vret ' Vin

Sret

(
p(v)

ILM +p(v)
RPE

) . (S.116)

This approximation is shown, alongside the exact solution, in Figure S5. As can be seen from Figure S5 this
approximation gives a very accurate value for initial reduction in free VEGF concentration.
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Figure S5: Dimensional solution for retinal free VEGF in the absence of drug (or drug-VEGF complex) retinal
penetration
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