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The scratch assay is an in vitro technique used to assess the contribution of

molecular and cellular mechanisms to cell migration. The assay can also be

used to evaluate therapeutic compounds before clinical use. Current quanti-

fication methods of scratch assays deal poorly with irregular cell-free areas

and crooked leading edges which are features typically present in the exper-

imental data. We introduce a new migration quantification method, called

‘monolayer edge velocimetry’, that permits analysis of low-quality exper-

imental data and better statistical classification of migration rates than

standard quantification methods. The new method relies on quantifying the

horizontal component of the cell monolayer velocity across the leading

edge. By performing a classification test on in silico data, we show that the

method exhibits significantly lower statistical errors than standard methods.

When applied to in vitro data, our method outperforms standard methods

by detecting differences in the migration rates between different cell groups

that the other methods could not detect. Application of this new method

will enable quantification of migration rates from in vitro scratch assay data

that cannot be analysed using existing methods.
1. Background
Cell migration plays a fundamental role in developing and maintaining the

organization of multicellular organisms, while aberrant cell migration is found

in many pathological disorders like cancer and atherosclerosis [1,2]. Cell

migration involves the movement of individual cells, cell sheets or cell clusters

from one location to another [3]. Two main types of migration can be distin-

guished: single cell migration and collective cell migration. During collective

cell migration multiple cells perform a coordinated movement regulated by

cell–cell adhesion, collective cell polarization, coordination of cytoskeletal

activity and chemical and mechanical cues [1]. In vitro assays are central to the

study of cell migration since they allow us to quantify cell migratory capacity

under controlled experimental conditions [3,4]. The scratch or wound healing

assay is the method of choice for studying cell migration due to the low cost
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Figure 1. Time-lapse images of a representative scratch assay from each of the six experimental cell groups (S1 – S6) are plotted at time 0, 4, 8 and 12 h. In each
image, the leading edges were detected by applying the segmentation algorithm. The resulting interfaces/cell fronts are plotted in blue. (Online version in colour.)
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and simplicity of its experimental design [4,5]. A scratch assay

involves growing a cell monolayer to confluence in a multiwell

assay plate; creating a ‘wound’—a cell-free zone in the mono-

layer—into which cells can migrate; and monitoring the

recolonization of the scratched region to quantify cell

migration [5] (see figure 1). This experimental technique is

commonly used to understand the molecular mechanisms

that affect cell migration [6,7] and to identify pharmaceutical

compounds that can modulate cell migration and conse-

quently drive treatment therapies [8]. Given the key role of

scratch assays in biomedical research, it is important to

develop robust quantification methods that accurately

measure and compare migration rates of different scratch

assays.
Multiple quantification methods are used to assess collec-

tive cell migration in scratch assays [9]. The most common

ones focus on wound width or area change [3,10]. Such

methods use a number of metrics to quantify migration,

including the percentage difference in the wound width at

different time points [7,11], wound width at specific time

points [12] and the slope of a linear approximation to the

change in wound area [13], among others. Other more compu-

tationally intensive methods exist that rely on cell tracking or

on determining a velocity field across the full monolayer

[14,15]. In this work, we focus on less computationally inten-

sive methods that permit a quick assessment of collective

cell migration. A weakness of the aforementioned methods is

that they do not perform well when the two borders of the
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scratch are not perfectly straight, a feature that is common in

experimental data [13,16]. The lack of a reproducible wound-

ing procedure results in non-uniform cell-free areas

with irregular leading edges, as can be seen in figure 1.

Furthermore, migration rate measurements have been shown

to be sensitive to the initial degree of confluence [17] and the

initial geometry of the wound [18]. Current quantification

methods require high-quality experimental data which are

difficult to obtain; therefore, frequently the experimental

data are discarded or need to be produced again.

Another issue with existing quantification methods is that

many of them use time-specific measurements to determine

differences in migration rates of cell samples. Typically, a

time point in the course of the experiment is considered at

which the wound area or width of each sample is measured.

Then, statistical tests are performed on these measurements

with the purpose of detecting significant differences [3].

The time points of comparison are not standardized and

vary across studies [7,19,20]. Differences in the time points

used for comparison may be due to differences in the prolifer-

ation rates of the cell types under consideration. The choices

are made to minimize the impact of cell proliferation on

migration quantification. However, there is no standard pro-

cedure for choosing the comparison time even though the

choice can affect the comparison and may render the results

from the analysis unreliable.

In this work, we introduce a new quantification method

that tackles these issues and can be used to analyse lower-

quality experimental data. Irregular leading edges are

accounted for by approximating the front by a piecewise con-

stant function, which is constant over windows with a fixed

size, w�. We assume that within each window, the contour

moves with constant speed in the perpendicular direction

until the left and right leading edges meet. The migration in

the scratch assay is characterized by a series of linear approxi-

mations to the interface’s position over time in these windows.

The paper is organized as follows: in §2.1, we describe our

experimental system and in §2.2, we present the agent-based

model that we use to simulate the in vitro process. In §2.4, we

introduce the new migration quantification method for scratch

assays and describe the two quantification methods to which

we compare it: the percentage wound area method, which is

widely used, and the closure rate method, reviewed in [13]. In

§3.1.1, we investigate how the velocity distribution, determined

by our quantification method, is affected by cell migration and

proliferation. In §3.1.2, we show that the method correctly

classifies cells with different migration and proliferation par-

ameters. In §3.1.3, we show the statistical comparison against

the other methods. In §3.2.3, we present the results of applying

the three methods to an experimental dataset. Finally in §4, we

discuss our results and present our conclusions.
2. System and methods
2.1. Cell culture and wound healing assay
Six site-specific mutations in a latent transcription factor that

regulate downstream genes involved in essential biological

processes, including migration, were generated. Mutants S1,

S2, S3, S4, S5 and S6 were then transduced into a human

renal carcinoma cell line, 769-P (ATCC CRL-1933), through len-

tiviral particles. The 769-P mutants were cultured in Dulbecco’s

modified Eagle’s medium (DMEM) (#42430, Gibco)
supplemented with 10% of fetal bovine serum (FBS) (#10270,

Gibco), 1% of sodium pyruvate solution 100 mM (#03-042-1B,

Biological Industries) and 1% of antibiotic–antimycotic

solution 100� (#15240, Gibco). Cells were maintained at 378C
in 5% CO2.

For the wound healing assay, the 769-P mutants (S1–S6)

were seeded at 0.025 � 106 cells per well in a two-well silicone

insert with a defined cell-free gap (Ibidi #81176, Germany),

incubated and allowed to grow for 48 h. Once the cells reached

100% confluence, the culture insert was removed and the area

that remained clear of cells was quantified for 24 h using the

Live Cell-R Station (Olympus). Digital images were obtained

every 30 min.

Data consisted of 24 wound healing assays: four replicates

for each of the six groups (S1–S6). Each assay consisted of 48

images. The imaged region size was 500� 500mm2.

2.2. Agent-based model of the scratch assay
We consider an agent-based model that has been previously

used to simulate in vitro cell cultures [21–23]. The simulation

domain is a two-dimensional square lattice, with the same

dimensions as the experimental images: [0, D] � [0, D]

where D ¼ 500 mm. The lattice spacing, D, which is inter-

preted as the average cell diameter, is set to 10 mm unless

otherwise specified.

In this model, each agent can either proliferate or move

within the simulation domain. We consider an end time of

T ¼ 24 h and an update time of t ¼ 0.1 h. We include crowd-

ing effects by assuming that each lattice site is occupied by at

most one cell. A cell with centre at (x, y) is said to be at (x, y).

Zero flux boundary conditions are imposed. At each update

time, agents move and/or proliferate with migration and

proliferation probabilities pm and pp, respectively. Since typi-

cal estimates of the cell doubling time are approximately

15–30 h [24,25], whereas the time required for a cell to move

a distance equal to its diameter is of the order of 10 min [26],

we consider migration and proliferation probabilities in the

ranges pm [ [0, 1] and pp [ [0, 0.01], respectively. The simu-

lation algorithm and typical parameter values are presented

in the electronic supplementary material, section S1. In

figure 2, we plot the evolution of a typical realization of the

agent-based model for which the migration and proliferation

parameters are given by pm ¼ 0.3 and pp ¼ 0.01.

2.3. Automatic contour segmentation
The leading edges of the cell monolayers from the experimen-

tal images are detected by applying a segmentation algorithm

based on the GrowCut method [27]. The method is a robust

technique, already employed in several computer vision

applications, that performs a binary image segmentation.

The GrowCut algorithm requires the initial specification of

a subset of pixels from each type of region: cell monolayer

and unoccupied space; these pixels are referred to as seeds.

The seeds should be located far from the leading edges,

where all the pixels of such an area belong to one of the two

classes. The algorithm evolves as follows: at each iteration,

the pixels surrounding the initial seeds are assigned to one

class or the other, adjusting the size of each region. The classi-

fication depends on the similarity of the pixel intensity with

respect to the pixel intensity of the seeds.

In our implementation, the seeds are chosen as follows:

for the cell region, the Canny and Roberts edge contour
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Figure 2. Evolution of an agent-based simulation. We considered an idealized initial condition and fixed the migration and proliferation parameters so that pm ¼ 0.3
and pp ¼ 0.01, respectively. The recolonization of the wounded region is shown at times t ¼ 0, 4, 8 and 16 h. For ease of visualization, the two cell monolayers (right
and left) are plotted with different colours (red and turquoise), while the area devoid of cells is coloured blue. The leading edges detected by the segmentation algorithm
are plotted in yellow. (Online version in colour.)
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methods [28,29] are used to select the pixels with the highest

variability, corresponding to the cell contours. For the back-

ground region, the seeds are set in areas having a low

variability, defined as areas in which the pixel intensity has

a standard deviation less than 500.

After applying the detection algorithm to each image, we

have a record of the positions of the left and the right inter-

faces at each time where the image was taken. At each

vertical position, the interface is considered to be the closest

pixel to the wound.

2.4. Migration quantification methods
We first introduce the two established quantification methods

for scratch assays. Then, we introduce a new method that

quantifies the x-component of the velocity of the leading

edge of the cell monolayer.

2.4.1. Area method
One of the most widely used quantification methods, which

we term the area method, assesses the migration in an indirect

manner. During an experiment, the wound area percentage,

Â(t), is tracked:

Â(t) :¼ A(t)
A(0)

� 100%,

where A(t) is the wound area at time t and A(0) is its initial

area. The migration rate is then indirectly evaluated as the

percentage wound area at a specific time point.

2.4.2. Closure rate method
In [13], cell migration is quantified by assuming that the

wound area reduces linearly over time. We refer to this

method as the closure rate method. The change in wound

area A(t) is first approximated by a linear function:

A(t) � m� tþ b, (2:1)

where m and b are real scalars. The wound area is assumed to

be the length of the field-of-view (l) times the width of the gap

(W(t)). Since l is constant during the course of the experiment,

equation (2.1) becomes:

dA
dt
� l� dW

dt
: (2:2)

The migration rate, Cr, is defined to be half of the width

closure rate

Cr :¼ 1

2

dW
dt

: (2:3)
Combining equations (2.2) and (2.3), we have

Cr ¼
jmj

2� l
: (2:4)

2.5. Proposed quantification method: monolayer edge
velocimetry

We propose a new strategy for quantifying front migration in

a scratch assay using a set of representative velocities. We

denote by t0, . . ., tN, the times at which data are collected.

Let X � Y represent the square domain of the processed

image, X ¼ Y ¼ f1, . . ., Dg where D is the number of pixels.

For each j [ Y ¼ f1, . . ., Dg, we denote the interface position

in the horizontal direction, at the j 2th vertical position and

at time point tn, as ij(tn) where 1 � ij � D. See figure 3a for

a schematic representation.

To determine the velocities, we assume a linear approxi-

mation to the front position over time for a window size w.

The linear approximation is determined in two steps:

(1) First, the front position is approximated for the

window size, w. Y is divided into M ¼ D/w segments

denoted Ys, 1 � s �M, each of length w. The front

position îs in each segment Ys is approximated by its

mean position,

îs(tn) ¼ hi j(tn)ii j[Ys
: (2:5)

This procedure is illustrated in figure 3b.

(2) The dynamics of the front position in each window is

approximated by linear regression, so that

îs(tn) � mstn þ bs: (2:6)

In figure 3c, the dotted lines indicate how the actual front

position changes over time at selected y-coordinates;

the dashed lines represent the corresponding linear

approximations for a window of size w ¼ 16.

By performing this approximation for the left and right

interfaces, we obtain a set of velocities {jmsj}2M
s¼1 to which we

refer as the windowed velocities for window size w.

A necessary step in our method is determining the

window size to perform the linear approximation (2.6). We

observe that as the window size decreases, the fitness of the

linear approximation improves. This observation prompts

us to consider the smallest window size; however, for

window sizes smaller than the average cell size, the left

and right windowed velocity distributions are significantly

different. This is a finite-size sampling effect, since the scale
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on which the velocities are quantified is much smaller than

the cell size scale. Therefore, the individual velocity of each

cell at the front is counted multiple times and its value is

over-represented, producing a bias in the overall windowed

velocity distribution. To deal with the finite-size sampling

effect, we choose a window size for which the left and

right windowed velocity distributions are similar. We note

that if two different cell types are seeded on either side

then the assumption of left and right similarity can no

longer be made. However, in the standard experimental

set-up of the scratch assay, the left and right interfaces are

from the same cell type. A more detailed explanation of

why the similarity of the left and right velocity distributions

should be considered is included in section S2.1 of the elec-

tronic supplementary material.

We use two criteria to select the optimal window size, w�:
(i) fitness of the approximation, and (ii) similarity of the left

and right windowed velocity distributions. In more detail,

we introduce an objective function, F(w), that has three

terms and enables us to find the optimal window size with

respect to these two criteria:

F(w) ¼ Fitresid(w)þ FitRsquared(w)þ FitKSdistance
(w): (2:7)

— Fitresid(w) measures the discrepancy between the inter-

face position over time and the linear approximation

(equation (2.6)).

— FitRsquared(w) considers the coefficient of determination,

R2, which describes how well the interface position’s

variance over time is explained by the linear approxi-

mation [30].

— FitKSdistance
(w) is a distance function derived from the

Kolmogorov–Smirnov (K–S) statistic for the two-sample
K–S test [30]; it calculates the distance between the left

and right front windowed velocity distributions.

These terms are scaled such that the window size that

maximizes the objective function takes into account the

trade-off between giving the best fit and having the left and

right velocity distributions closest to each other.

The procedure used to determine the optimal window

size can be interpreted as a procedure that optimizes

the number of velocities needed to characterize the migration.

Detailed information about how to modify the objective func-

tion when multiple assays are considered can be found in

electronic supplementary material, section S2.

The procedure used to determine the set of representative

velocities is summarized in algorithm 1.

Algorithm 1. Monolayer edge velocimetry.

1 Determination of the optimal window size for the linear

approximation using the objective function (2.7)

w� ¼ max
1�w�D

FðwÞ (2:8)

where F(w) is given by equation (2.7).

2. Linear approximation, with respect to the window size w�;

indicating how the positions of the left and right interfaces change

over time,

îsðtnÞ � mstn þ bs

where îs(tn) ¼ hi j (tn)ii j [Ys
, Y ¼

SM

s¼1
Ys in which jYsj ¼ w� and

M ¼ D=w�.

Output {jmsj}2M
s¼1 is the representative set of velocities that quantify

cell migration in the scratch assay.
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We refer to the ‘monolayer edge velocimetry method’ as

the MEV method in the rest of the paper.

2.6. Classification test
In order to assess the performance of the three quantification

methods in a controlled way, we use the agent-based model

to generate in silico scratch assays. In particular, we compare

the ability of the different methods to distinguish between

cell populations with different proliferation and migration

parameters. We consider the following classification test:

(1) We fix a focal parameter combination P̂ ¼ (pm̂, p p̂) [

[0, 1]� [0, 0:01] and run n simulations of the agent-based

model using these parameter values.

(2) We decompose the parameter space of migration and

proliferation probabilities [0, 1] � [0, 0.01] into a regular

11 � 11 grid with 121 parameter pairs ( pm, pp). For each

parameter combination, we run n simulations of the

agent-based model.

(3) We calculate the cell migration rate in all simulations using

the three quantification methods. The migration measure-

ments are windowed velocities, closure rates or areas at

specific time points, depending on the quantification

method.

(4) For each quantification method, we determine whether

the migration measurements of each sampled parameter

combination ( pm, pp) are statistically significantly different

from those for the focal parameter pair P̂. We perform two

tests: the two-sample K–S test and the unpaired two-

sample t-test, which we refer to as the K–S test and t-
test, respectively. We fix a p-value less than 0.05 to

define statistical significance.

We consider a K–S test and a t-test to test for differences

at the distribution level and in the mean. We test our data for

normality and in case the migration measurements are not

normally distributed, we consider a Wilcoxon rank-sum

test. We account for stochasticity of the agent-based model

by repeating this test 20 times and analyse the mean and var-

iance of the classification results.

When applying the classification test for the MEV

method, we consider a global optimal window size for deter-

mining the windowed velocities of the simulations. In this

way, we obtain the same number of windowed velocities

for each simulation. To determine this global optimal

window, we consider a weighted sum of the individual objec-

tive functions of each simulation (electronic supplementary

material, section S2). When applying the classification test

to the area method, we must specify the time point at

which the wound areas are measured and compared. We

fix the comparison time to be half the time it takes the leading

edges to touch each other in the first simulation, which is a

common choice in an experimental setting.

2.7. Implementation
The segmentation algorithm and the data analysis are

implemented in MATLAB version: 9.3.0.713579 (R2017b). The

segmentation pipeline uses functions from Matlab’s Image Pro-

cessing Toolbox, the GrowCut algorithm implementation found

in http://freesourcecode.net/matlabprojects/56832/growcut-

image-segmentation-in-matlab and the normality tests

implemented by [31]. The agent-based model is implemented
in NetLogo [32]. We do not apply the segmentation algorithm

to the in silico images so the detection method does not affect

the migration rate measurements.
3. Results
3.1. Exploration and validation of quantification method

via in silico data
We first use the agent-based model to investigate how our

quantification method is affected by cell migration and

proliferation. Then, by applying the classification test, we

investigate how well the method classifies cell populations

with different migration and proliferation parameters in

comparison with the other quantification methods.

3.1.1. Sensitivity analysis
We investigate how the windowed velocities are affected by

the rates of cell migration and proliferation. We vary the

migration and proliferation probabilities for fixed initial con-

ditions. We decompose the parameter space of migration and

proliferation probabilities [0, 1] � [0, 0.01] into a regular 11 �
11 grid with 121 parameter pairs ( pm, pp). For each parameter

combination, 150 simulations were performed and the wind-

owed velocities were calculated. The optimal window was

calculated with respect to all simulations for the same par-

ameter combination. In figure 4a we present a contour plot

of the mean windowed velocity which shows how, as the

probabilities increase, the mean velocity increases. A similar

trend is observed for the standard deviation (see figure 4b).

3.1.2. Classification performance
We suppose that the focal parameter combination,

P̂ ¼ ( p̂m, p̂ p), takes values in f0.1, 0.5, 0.9g � f0.01, 0.05,

0.09g in order to test the classification for small, medium

and high values of cell migration and proliferation in our par-

ameter space. We consider n ¼ 4 simulations as the sample

size for our test, so as to coincide with experimental settings

in which four samples are typically used. We repeat the

classification test 20 times to produce results that account

for the stochasticity of the system.

In figure 5, we plot the results of the mean behaviour of the

classification tests when considering the K–S test and the three

focal parameter combinations: P̂ ¼ (0:1, 0:01), (0.5, 0.01) and

(0.9, 0.01). On each plot, the focal parameter combination is

indicated by a red circle. At each position ( pm, pp), we plot a

circle whose colour corresponds to the percentage of times

the migration measurements of that parameter pair are statisti-

cally significantly different to those for the focal parameters P̂
with respect to the colourbar at the left of the plots. For par-

ameter pairs different from the focal parameter, (pm, p p) = P̂,

the difference between 100% and the percentage of times the

migration measurements of that parameter pair are statistically

significantly different to those for the focal parameters P̂, is an

indication of the presence of false negative results. For the focal

parameter, (pm, p p) ¼ P̂, if this percentage is higher than 0%

then it indicates the presence of false positive results. We

note that for P̂ ¼ (0:1, 0:01), the method does not make false

negative results: the K–S test indicates that the windowed vel-

ocities from simulations of parameter pairs different from the

focal parameters, (pm, p p) = P̂, are statistically significantly

different to the windowed velocities from simulations of the

http://freesourcecode.net/matlabprojects/56832/growcut-image-segmentation-in-matlab
http://freesourcecode.net/matlabprojects/56832/growcut-image-segmentation-in-matlab
http://freesourcecode.net/matlabprojects/56832/growcut-image-segmentation-in-matlab


0.10

0.08

0.06

0.04

0.02

0 0.2 0.4 0.6
pm

0.8 1.0

p p

0.10

0.08

0.06

0.04

0.02

0 0.2 0.4 0.6
pm

0.8 1.0

p p

0.10 100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

0.08

0.06

0.04

0.02

0 0.2 0.4 0.6
pm

0.8 1.0

p p

(b)(a) (c)

Figure 5. Plots of the mean behaviour of the classification tests for the monolayer edge velocimetry method. The classification tests are performed by considering a
K – S test, a sample set of n ¼ 4 simulations and the focal parameters (a) P̂ ¼ (0:1, 0:01), (b) P̂ ¼ (0:5, 0:01) and (c) P̂ ¼ (0:9, 0:01). In each plot at each
parameter pair ( pm, pp), the colour of the circle denotes the percentage of times the migration measurements of that parameter pair are statistically significantly
different to those for the focal parameter P̂. We indicate the focal parameter pair with a red circle. The plots illustrate how the classification performance of the
method varies as the migration parameter varies. The method performs better when the migration parameter is small. (Online version in colour.)

0.10
40

35

30
25
20

15

10
5

0
0

0.02

0.04

0.06

0.08

0.10
7

6

5

4

3

2

1

0.08

0.06

0.04

0.02

0 0.2 0.4 0.6
pm

p p p p

pm

0.8 1.0 0.2 0.4 0.6 0.8 1.0

(b)(a)

Figure 4. Sensitivity analysis of the agent-based model. We analyse the variability of the windowed velocities with respect to the proliferation and migration
probabilities ( pm, pp) [ [0, 1] � [0, 0.1]. In (a) and (b), we plot the mean and the standard deviation of windowed velocities of 150 simulations under
each of these 121 parameter pairs. (Online version in colour.)

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20180709

7

focal parameter pair 100% of the time (figure 5a). For

P̂ ¼ (0:5, 0:01), there are four parameter pairs for which the vel-

ocities were 80%, 85%, 85% and 95% times statistically

significantly different to those for the focal parameter (figure

5b). For P̂ ¼ (0:9, 0:01), the number of parameter pairs for

which the percentage is not 100% increases (figure 5c). We

observe that as the migration rate increases, the classification

performance worsens. The intra-sample difference is

accounted for when considering the classification tests for the

parameter pair (pm, p p) ¼ P̂: We observe that the method

gives false positive results fewer than 34% of the time. This per-

centage decreases as the proliferation probability increases (see

electronic supplementary material, section S3).

3.1.3. Comparison with standard migration
quantification methods

We compare the classification performance of the MEV method

with the closure rate and the area methods [3,10]. As before, the

focal parameter combination, P̂, takes values in f0.1, 0.5, 0.9g �
f0.01, 0.05, 0.09g. We consider n ¼ 4 simulations as the sample

size and repeat the classification test 20 times.

In figure 6, we plot the mean behaviour of the classification

tests for the three quantification methods by applying the K–S

test and the focal parameter combinations P̂ ¼ (0:1, 0:01), (0.5,

0.01) and (0.9, 0.01). We observe that for a focal parameter
pair, the MEV method yields fewer incorrect classifications.

We also observe that as the proliferation rate increases, the

percentage number of incorrect classifications increases for

the three methods.

The results of the classification tests for all other focal

parameter combinations in f0.1, 0.5, 0.9g � f0.01, 0.05, 0.09g
are presented in the electronic supplementary material,

section S3. Overall, we observe that our method outperforms

the closure rate and the area method. For all focal parameter

combinations tested, the MEV method yields a greater

percentage of correct classifications. The performance of the

area method is the worst while the performance of the closure

rate method is intermediate between our method and the

area method. The performance of all three methods declines

as the values of the migration and proliferation rates of the

focal parameters P̂ increase. The optimal window sizes for

each classification test are of similar size as the cell diameter

(results not shown).
3.2. Application of the quantification methods to
in vitro data

Having tested the quantification methods on in silico data, we

now use them to analyse experimental data. We first detect the

position of the leading edges from the wound healing images
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taken during the course of the experiments. We then quantify

the migration rates using the three quantification methods and

analyse the statistical classification.
3.2.1. Image segmentation
After applying the segmentation algorithm, the front of the

cell monolayer is detected for each time-lapse image. In

figure 1, we present the time-lapse data of a representative

scratch from each cell group (S1–S6).
3.2.2. Quantification method results
We quantify the migration velocity of scratch assays for

the different cell types using the MEV method. We deter-

mine the global optimal window by calculating the

objective function for the 24 scratch assays. We vary the

window size w from 1 to 500 mm with a step size of

1 mm and use equation (2.7) to calculate the objective

function F(w). The objective function and the three fitness

functions that contribute to its calculation are shown in

the electronic supplementary material, section S4. The

maximum value is attained for a window size of 16 mm.

For a fixed window size (w ¼ 16 mm), we use a linear

approximation to describe the position over time of the
fronts and determine the 32 representative windowed vel-

ocities for each scratch assay and visualize their boxplots

in figure 7.
3.2.3. Statistical classification via the local quantification method
After grouping the velocities of scratch assays from the same

cell type, the migration rate of each cell group is represented

by 256 velocities. The boxplots associated with the velocity

distributions for the six groups are shown in figure 8a. To

determine how different the migration rate of cell group S1

is from the others, we perform a K–S test to test the null

hypothesis that the velocities from the two groups come

from the same distribution. The null hypothesis was rejected

for groups S2, S3 and S4 with statistical significance level of

pvalue � 0.0001. The null hypothesis was rejected for group

S6 with statistical significance level of pvalue � 0.05. For

group S5, the null hypothesis was not rejected. We performed

a t-test between S1 and each of the other groups to determine

whether the mean difference is statistically significant. The

mean difference between the velocities for cell groups S1

and S2, S3 and S4 is statistically significant at the 0.0001

level. There was statistical significance in the mean difference

with respect to S6 at the 0.05 significance level. The statistical

results for the K–S tests and t-tests are reported in figure 8a.
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The exact value of the pvalue for each test is reported in the

electronic supplementary material, section S5.

3.2.4. Statistical comparison to standard migration
quantification methods

We now compare the statistical results of our quantification

method against those for the area and closure rate methods.

In figure 8b, we plot the closure rates of each group and

report the results from performing the K–S test and t-test

between S1 and the other groups. S3 was the only group for

which the null hypothesis of the K–S test and the t-test was

rejected at the 0.05 significance level. When we performed

the statistical tests for the percentage area measurements, no

significant difference was found. In section S5 of the electronic

supplementary material, we include the results of the K–S and

t-tests for the percentage wound area measurements.

4. Discussion and conclusions
In this work, we have introduced a new migration quantifi-

cation method for scratch assays that characterizes the

horizontal component of the front velocity of cell monolayers.
The method involves three steps: (1) determination of an opti-

mal window w� with which to approximate the cell front by a

function which is piecewise constant in segments of length

w�; (2) approximation of the interface with respect to the

window size w� at each time point and (3) linear approxi-

mation of the position over time of the interface in each of

these windows. In this way, we characterize cell migration

in the scratch assay by the slopes of a series of linear approxi-

mations to the interface position over time in these windows.

The optimal window is chosen to be the one that best fits a

constant velocity profile and for which the left and right

front velocities can be considered to be samples of the same

distribution.

By considering an agent-based model that mimics the

scratch assay, we tested the ability of our quantification

method to distinguish between cell lines with known cell

migration and proliferation rates. As the migration and

proliferation rates increased, the mean and variance of the

windowed velocities increased. This was an expected behav-

iour since migration and proliferation promote the interface

velocity and the variance of the system increases as the

migration and proliferation rates increase. By comparing
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our quantification method with two existing methods, we

observed that our method outperforms both since it yielded

a greater percentage of correct classifications than the other

methods across a range of parameter values. We noticed that

our method made significantly fewer statistical errors than

the two other tested methods. Despite being widely used, the

performance of the area method was the worst, while the per-

formance of the closure rate method was intermediate between

our method and the area method. The poor performance of the

area method is due to the presence of irregular cell-free areas

and to the indirect quantification of migration by a single

time point measurement. The poor performance of the closure

rate method is also related to the irregularities in the data since

the closure rate method is equivalent to quantifying the

migration by the slope of the linear approximation to the

mean position of the interface over time.

After showing that our quantification method performed

better on in silico data, we then used it to analyse our exper-

imental dataset. We calculated an optimal window size of 16

mm, which is of the same order as the mean cell diameter

size, and then determined the corresponding windowed hori-

zontal velocities. By performing two-sample K–S and

unpaired two-sample t-tests, we identified a statistically sig-

nificant difference between the S1 group and groups S2–S4.

The K–S test also indicated statistically significant differences

with respect to group S6. We used these two tests as we

wanted to detect differences at the distribution level (through

the K–S test) and at the mean level (through the t-test). The

closure rate method only detected statistically significant

differences between S1 and S3. The closure rate data are of

poor quality: more samples or better quality ones are

needed to analyse the migration rate with this method. The

area method was unable to detect any statistically significant

differences in the dataset. Even when we tried different time

points, there was no significant difference. We observed that

the S1 cell group also exhibited the highest levels of

expression of target genes associated with malignancy and

poor prognosis, when analysed by qRT-PCR techniques

(data not shown) in agreement with the detected significant

differences in migration.

This study has some limitations which could be addressed

in future work. For the in vitro experiments, the scratch was

created by the removal of silicone inserts. It has been observed

that the removal of silicone inserts can damage the culture sur-

face coating and affect the cell migration rate [33]. We assume

this effect is present in all cell samples so the comparative

migration analysis performed by the quantification methods

is not affected. Using our quantification method, we would

be able to establish how the different procedures for creating

the scratch affect migration rates. The statistical performance

of our quantification method can be further validated on

publicly available wound healing experiment datasets such

as those in [34], which provide sets of assays and replicates

under different experimental conditions. Currently our

quantification method does not take into consideration the

intra-group and inter-sample variances of the windowed

velocities. In spite of that the classification performance of

our quantification method is superior to the area and the clo-

sure rate method. The intra-group and inter-sample variances

will be taken into consideration in the statistical assessment of

the method in a future work. In this study, the agent-based

model accounted solely for proliferation and migration

events. Additional interactions could be included to give a
more realistic description of the scratch assay and the impact

of how these factors affect the quantification method could

be assessed. The quantification algorithm assumes a linear

approximation of the horizontal cell monolayer displacement.

Our method could be adjusted to account for an initial phase

during which the cells react to the presence of the wound, so

the cell monolayer front position over time can be fitted to a

Richards function, a non-symmetrical sigmoid function, as

in [9]. Currently the method does not address image boundary

effects that could potentially affect the quantification. The

method could be improved to allow it to deal with the

image boundary in a more precise way. One of the drawbacks

of our quantification method is the uncertainty in the optimal

window size since it depends on the samples. However, in our

study, we found that the optimal window size is of the order of

the mean cell diameter and the statistical power and measure-

ments of the quantification method are the same for window

sizes of the same order (results not shown). If the mean cell

diameter is known, then the optimization procedure can be

omitted and the linear approximation can be performed

using the mean cell diameter as the window size. The frame-

work can also be extended to consider a time-dependent

velocity field across the full monolayer, such as cell

image velocimetry (CIV) [15]. The challenge in this case

would be to determine to which measurements we should

apply statistical tests to detect significant differences in

migration rates.

In summary, we have introduced a new method for

migration quantification of typical scratch assay data, which

can be of low quality. Many of the challenges we have over-

come with our method could be avoided through improved

experimental design. However, the latter would require:

repeating the experiment or using more sophisticated exper-

imental tools to create the same degree of confluence and

uniform ‘wounds’. These are costly solutions. We note that

our quantification method can be applied to the existing

data. Furthermore, through the classification test based on

in silico data, we show that even when the quality of the

scratches is ideal, our quantification method is better at

detecting differences in migration than the other standard

methods. While generalization to other nonlinear wound

models is not clear, e.g. circular model wounds, the proposed

method shows that determining the velocity field along the

cell front is sufficient to characterize the migration.
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