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Abstract
Calcium signalling is one of the most important mechanisms of information prop-
agation in the body. In embryogenesis the interplay between calcium signalling and
mechanical forces is critical to the healthy development of an embryo but poorly under-
stood. Several types of embryonic cells exhibit calcium-induced contractions andmany
experiments indicate that calcium signals and contractions are coupled via a two-way
mechanochemical feedback mechanism. We present a new analysis of experimental
data that supports the existence of this coupling during apical constriction. We then
propose a simple mechanochemical model, building on early models that couple cal-
cium dynamics to the cell mechanics and we replace the hypothetical bistable calcium
release with modern, experimentally validated calcium dynamics. We assume that the
cell is a linear, viscoelastic material and we model the calcium-induced contraction
stress with a Hill function, i.e. saturating at high calcium levels. We also express,
for the first time, the “stretch-activation” calcium flux in the early mechanochemical
models as a bottom-up contribution from stretch-sensitive calcium channels on the cell
membrane. We reduce the model to three ordinary differential equations and analyse
its bifurcation structure semi-analytically as two bifurcation parameters vary—the IP3
concentration, and the “strength” of stretch activation, λ. The calcium system (λ = 0,
no mechanics) exhibits relaxation oscillations for a certain range of IP3 values. As
λ is increased the range of IP3 values decreases and oscillations eventually vanish
at a sufficiently high value of λ. This result agrees with experimental evidence in
embryonic cells which also links the loss of calcium oscillations to embryo abnor-
malities. Furthermore, as λ is increased the oscillation amplitude decreases but the
frequency increases. Finally, we also identify the parameter range for oscillations as
the mechanical responsiveness factor of the cytosol increases. This work addresses a
very important and not well studied question regarding the coupling between chemical
and mechanical signalling in embryogenesis.
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1 Introduction

Calcium signalling is one of the most important mechanisms of information propaga-
tion in the body, playing an important role as a second messenger in several processes
such as embryogenesis, heart function, blood clotting, muscle contraction and diseases
of the muscular and nervous systems (Berridge et al. 2000; Brini and Carafoli 2009;
Dupont et al. 2016). Through the sensing mechanisms of cells, external environmen-
tal stimuli are transformed into intracellular or intercellular calcium signals that often
take the form of oscillations and waves.

In this work we will focus on the interplay of calcium signalling and mechanical
forces in embryogenesis. During embryogenesis, cells and tissues generate physical
forces, change their shape, move and proliferate (Lecuit and Lenne 2007). The impact
of these forces on morphogenesis is directly linked to calcium signalling (Hunter et al.
2014). In general, how the mechanics of the cell and tissue are regulated and coupled
to the cellular biochemical response is essential for understanding embryogenesis.
Understanding this mechanochemical coupling, in particular when calcium signalling
is involved, is also important for elucidating a wide range of other body processes,
such as wound healing (Antunes et al. 2013; Herrgen et al. 2014) and cancer (Basson
et al. 2015).

Calcium plays a crucial role in every stage of embryonic development starting with
fast calciumwaves during fertilization (Deguchi et al. 2000) to calciumwaves involved
in convergent extension movements during gastrulation (Wallingford et al. 2001),
to calcium transients regulating neural tube closure (Christodoulou and Skourides
2015), morphological patterning in the brain (Sahu et al. 2017; Webb and Miller
2007) and apical-basal cell thinning in the enveloping layer cells (Zhang et al. 2011),
either in the form of calcium waves or through Wnt/Ca2+ signalling (Christodoulou
and Skourides 2015; Herrgen et al. 2014; Hunter et al. 2014; Kühl et al. 2000a, b;
Narciso et al. 2017; Slusarski et al. 1997a, b; Suzuki et al. 2017; Wallingford et al.
2001). Crucially, pharmacologically inhibiting calcium has been shown to lead to
embryo defects (Christodoulou and Skourides 2015; Smedley and Stanisstreet 1986;
Wallingford et al. 2001).

In many experiments actomyosin-based contractions have been documented in
response to calcium release in both embryonic and cultured cells (Christodoulou and
Skourides 2015; Herrgen et al. 2014; Hunter et al. 2014; Suzuki et al. 2017; Walling-
ford et al. 2001) and it has become clear that calcium is responsible for contractions
in both muscle and non-muscle cells, albeit through different mechanisms (Cooper
2000). Cell contraction in striated muscle is mediated by the binding of Ca2+ to tro-
ponin but in non-muscle cells (and in smooth muscle cells) contraction is mediated
by phosphorylation of the regulatory light chain of myosin. This phosphorylation pro-
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motes the assembly of myosin into filaments, and it increases myosin activity. Myosin
light-chain kinase (MLCK), which is responsible for this phosphorylation, is itself
regulated by calmodulin, a well-characterized and ubiquitously expressed protein reg-
ulated by calcium (Scholey et al. 1980). Elevated cytosolic calcium promotes binding
of calmodulin to MLCK, resulting in its activation, subsequent phosphorylation of the
myosin regulatory light chain and then contraction. Thus, cytosolic calcium elevation
is an ubiquitous signal for cell contraction which manifests in various ways (Cooper
2000).

In some tissues these contractions give rise towell defined changes in cell shape.One
such example is apical constriction (AC), an intensively studiedmorphogenetic process
central to embryonic development in both vertebrates and invertebrates (Vijayragha-
van and Davidson 2017). In AC the apical surface of an epithelial cell constricts,
leading to dramatic changes in cell shape. Such shape changes drive epithelial sheet
bending and invagination and are indispensable for tissue and organ morphogenesis
including gastrulation in C. elegans and Drosophila and vertebrate neural tube for-
mation (Christodoulou and Skourides 2015; Rohrschneider and Nance 2009; Sawyer
et al. 2010).

On the other hand, the ability of cells to sense and respond to forces by elevating
their cytosolic calcium is well established. Mechanically stimulated calcium waves
have been observed propagating through ciliated tracheal epithelial cells (Sanderson
et al. 1990, 1988; Sanderson and Sleigh 1981), rat brain glial cells (Charles et al.
1993, 1991, 1992), keratinocytes (Tsutsumi et al. 2009), developing epithelial cells
in Drosophila wing discs (Narciso et al. 2017) and many other cell types (Beraeiter-
Hahn 2005; Tsutsumi et al. 2009; Yang et al. 2009; Young et al. 1999). Thus, different
types of mechanical stimuli, from shear stress to direct mechanical stimulation, can
elicit calcium elevation (the sensing mechanism may differ in each case). So, since
mechanical stimulation elicits calcium release and calcium elicits contractions which
are sensed asmechanical stimuli by the cell, it is clear that a two-waymechanochemical
feedback between calcium and contractions should be at play.

This two-way feedback is supported by our work here with a new analysis of
data from earlier experiments conducted by two of the authors (Christodoulou and
Skourides 2015); we present this analysis in detail in Sect. 2. The analysis shows that
in contracting cells, in the Xenopus neural plate, calcium oscillations become more
frequent and also increase in amplitude as the calcium-elicited surface area reduction
progresses. This suggests that as the increased tension around the contracting cell is
sensed, it leads to more calcium release and in turn to more contractions, and so on. In
addition, experiments in Drosophila also support the hypothesis that a mechanochem-
ical feedback loop is in play (Saravanan et al. 2013; Solon et al. 2009). Thus, data from
these twomodel systems clearly show that mechanical forces generated by contraction
influence calcium release and the contraction cycle. The mechanosensing takes place
via, as yet undefined, mechanosensory molecules which could be mechanogated ion
channels, mechanosensitive proteins at adherens junctions like alpha catenin, or even
integrins which have recently been shown to become activated by plasma membrane
tension in the absence of ligands (Delmas and Coste 2013; Petridou and Skourides
2016; Yao et al. 2014).
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Given the broad range of critical biological processes involving calcium signalling
and its coupling to mechanical effects, modelling this mechanochemical coupling is of
great interest. Therefore, we develop a simple mechanochemical model that captures
the essential elements of a two-way coupling between calcium signalling and con-
tractions in embryonic cells. The first mechanochemical models for embryogenesis
were developed by Oster, Murray and collaborators in the 80s (Murray 2001; Mur-
ray et al. 1988; Murray and Oster 1984; Oster and Odell 1984). Calcium evolution
in those early models was modelled with a hypothetical bistable reaction-diffusion
process in which the application of stress can switch the calcium state from low to
high stable concentration. We now know that the calcium dynamics are more compli-
cated, so our mechanochemical model includes instead the calcium dynamics of the
experimentally verified model in Atri et al. (1993), which captures the experimentally
observed Calcium-Induced-Calcium Release (CICR) process and the dynamics of the
IP3 receptors on the Endoplasmic Reticulum (ER). In this way we update the early
mechanochemical models for embryonic cells in line with recent advances in calcium
signalling. Note that there are many recent models of calcium signalling induced by
mechanical stimulation, for example for mammalian airway epithelial cells (Warren
et al. 2010), for keratinocytes (Kobayashi et al. 2014), for white blood cells (Yao et al.
2016), and for retinal pigment epithelial cells (Vainio et al. 2015). However, these
models do not include a two-way coupling between calcium signalling and mechan-
ics.

Calcium is stored and released from intracellular stores, such as the ER, or the
Sarcoplasmic Reticulum (SR), according to the well-established nonlinear feedback
mechanism of CICR (Dupont et al. 2016). There are many models for calcium oscil-
lations, all capturing the CICR process. Many of them model the IP3 receptors on the
ER in some manner, and they can be classified as Class I or Class II models (Dupont
et al. 2016). In all Class I models IP3 is a control parameter and oscillations can be sus-
tained at a constant IP3 concentration. Oscillations exist for a window of IP3 values;
the oscillations are excited at a threshold IP3 value and they vanish at a suffuciently
high IP3 value. The Atri et al. model (1993) is an established Class I model, validated
with experimental findings (Estrada et al. 2016). (We will call this model the ‘Atri
model’ from now on.) It also has a mathematical structure that allows us to investigate
our mechanochemical model semi-analytically and easily identify the parameter range
sustaining calcium oscillations. Such an analysis cannot be done for other qualitatively
similar, minimal Class I models as, for example, the more frequently used Li-Rinzel
model (Li and Rinzel 1994); this is one of the contributions of this work.

Another contribution of our work is that we interpret the “stretch-activation” cal-
cium flux from the outside medium, introduced in an ad hoc manner in the early
mechanochemical models, as a “bottom-up” contribution from recently identified,
stretch sensitive (stretch-activated) calcium channels (SSCCs) (Árnadóttir and Chal-
fie 2010; Dupont et al. 2016; Hamill 2006; Moore et al. 2010), in this way linking the
channel scale with the whole cell scale.

The paper is organised as follows. In Sect. 2we present a newanalysis of experimen-
tal datawhich shows that calcium and contractions in embryonic cellsmust be involved
in a two-way mechanochemical feedback mechanism. In Sect. 3 we develop a new
mechanochemical model which captures the key ingredients of the two-way coupling.
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In Sect. 4 we analyse the model. In Sect. 4.1 we briefly revisit the analysis of the Atri
model and show the bifurcation diagrams for the amplitude and frequency of calcium
oscillations. In Sect. 4.2 we perform the bifurcation analysis of the mechanochemical
model, varying the IP3 concentration and the strength of stretch activation, and we
identify the parameter range sustaining calcium oscillations. In Sect. 5.1 we model
the calcium-induced contraction stress with a Hill function of order 1, and we plot
the parameter range for which oscillations are sustained. In Sect. 5.1.2 we study the
amplitude and frequency of the calcium oscillations. In Sect. 5.1.3 we investigate
the bifurcation diagrams as the mechanical responsiveness of the cytosol to calcium
varies. In Sect. 5.2 we consider a Hill function of order 2 and we again identify the
parameter range for oscillations. In Sect. 6 we summarise our conclusions and discuss
further research directions.

2 Calcium and contractions are involved in a feedback loop in apical
constriction: a new analysis of experimental data

There is ample experimental evidence that mechanical stimulation of cells leads to
calcium elevation (Beraeiter-Hahn 2005; Charles et al. 1991; Narciso et al. 2017;
Sanderson et al. 1990, 1988; Sanderson and Sleigh 1981; Tsutsumi et al. 2009;
Young et al. 1999) and that, in turn, contraction of the cytosol is elicited by cal-
cium (Christodoulou and Skourides 2015; Herrgen et al. 2014; Hunter et al. 2014;
Suzuki et al. 2017; Wallingford et al. 2001). Calcium signalling would therefore, at
least in part, be regulated by a mechanochemical feedback loop whereby calcium-
elicited contractions mechanically stimulate the cell, lead to more calcium release,
then to more contractions and so on. In embryogenesis, and in particular during AC,
where cells contract significantly, such a feedback loop should also be at play (Martin
and Goldstein 2014); in this work we present a new analysis of experimental data
in Christodoulou and Skourides (2015) which supports this. AC is a calcium-driven
morphogenetic movement of epithelial tissues, central in the embryogenesis of both
vertebrates and invertebrates (Vijayraghavan and Davidson 2017). The apical domain
of epithelial cells constricts the apical surface area, and this leads to changes in the
cell geometry that drive tissue bending; in Christodoulou and Skourides (2015) the
formation of the neural tube in Xenopus frogs is studied and in Solon et al. (2009)
dorsal closure in Drosophila is investigated.

In Solon et al. (2009) the constriction of mutants that exhibit disrupted myosin
activation rescues apical myosin accumulation, suggesting that mechanically stimu-
lating the cell can elicit contractions (Pouille et al. 2009). In addition, experiments
using laser ablation, and other methodologies that reduce cell contractility, reveal that
mechanical feedback non-autonomously regulates the amplitude and spatial propa-
gation of pulsed contraction during AC (Saravanan et al. 2013) and that this process
is driven by calcium (Hunter et al. 2014; Pouille et al. 2009; Saravanan et al. 2013).
Therefore, reducing contractility reduces local tension and this suppresses contrac-
tion in the control cells. This suggests that mechanical feedback is important during
AC.
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Fig. 1 Normalised apical surface area and amplitude of calcium oscillations in a single cell undergoing
apical constriction. We see that calcium elevation always precedes the initiation of a contraction pulse. At
t = 0 calcium begins to rise and at t ≈ 50 s the surface area starts decreasing. The surface area reduction
is succeeded by relaxation and stabilization of the cell at a smaller surface area. (This happens repeatedly,
leading to significant reduction of the surface area over time.) See Appendix A.1 for further details on how
the figure is produced

Moreover, experimental evidence suggests that sensing of mechanical stimuli
involves mechanogated ion channels; in Drosophila such ion channels are required
for embryos to regulate force generation after laser ablation (Hunter et al. 2014);
similarly during wound healing (Antunes et al. 2013).

Previously, two of the co-authors have shown that cell-autonomous, asynchronous
calcium transients elicit contraction pulses, leading to the pulsed reduction of the apical
surface area of individual neural epithelial cells during neural tube closure (NTC) in
Xenopus (Christodoulou and Skourides 2015). Here, in order to investigate in detail
the relationship between calcium, contraction and mechanical forces we present a
new analysis of previously collected data (Christodoulou and Skourides 2015). For a
single embryonic epithelial cell (in a tissue), we plot its apical surface area and calcium
level over time in Fig. 1 and we see that both oscillate, with approximately the same
frequency and that the calcium pulse precedes the contraction by 30–40s. (Note that
calcium oscillations emerge spontaneously without any periodic external stimulation.)
More information about how Figure 1 is produced is found in Appendix A.1.

In Fig. 2a we plot the frequency of calcium transients and the apical surface area
over time, averaged over 10 cells. The frequency of calcium oscillations is clearly
correlated with the reduction in the surface area - cells with a smaller surface area
exhibit more frequent calcium oscillations. Also, in Fig. 2b, for the same 10 cells and
in the same timeframe, we plot the calcium oscillation amplitude, which increases with
time. Therefore, the reduction in the surface area correlates also with an increase in
the amplitude of the calcium oscillations. Therefore, increased surface area reduction
(i.e. increased tension and hence increased mechanical stimulation) correlates with
increased frequency and increased amplitude, i.e. overall increased calcium release.

Summarising, our analysis shows that calcium oscillations trigger contraction
pulses that lead to pulsed reduction in the apical surface area over time. It also shows
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Fig. 2 a The normalised surface
area reduction is correlated with
increasing oscillation frequency
(10 cells). b The amplitude of
oscillations increases with time
(10 cells). We used time lapse
sequences from which the
surface area of each cell was
measured at t = 0 and the
average calcium oscillation
frequency was calculated using a
10-minute window (i.e. calcium
oscillations for each cell were
monitored between t = 0 and
t = 10 minutes). A 10-minute
window was selected so that the
typical cell undergoes at least
one calcium pulse. (See
Appendix A.1 for further
details.)

a

b

that the increasing localized tension in a contracting cell correlates with calcium pulses
of higher frequency and larger amplitude, confirming the presence of a mechanochem-
ical feedback loop.

3 A newmechanochemical model for embryonic epithelial cells

We develop a simple mechanochemical model that captures the essential components
of a two-way coupling of contractions and calcium signals in embryonic epithelial cells
undergoingAC. Since the cellmachinery involved in themechanochemical coupling is
similar in most cell types (Cooper 2000) our model, with somemodifications, can also
be applicable to other cell types. The essential features of our model are a component
modelling the cell mechanics and a component modelling calcium dynamics, coupled
through a two-way feedback. Such models have been proposed by Oster, Murray and
collaborators in the 80s (Murray 2001; Murray and Oster 1984; Murray et al. 1988;
Oster and Odell 1984) and here we update those models by replacing the hypothetical
bistable calcium dynamics with the experimentally verified calcium dynamics in Atri
et al. (1993).Wealso replace the adhoc stretch activation calciumflux inMurray (2001)
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with a “bottom-up” calcium release through the SSCCs, thus linking the channels’
characteristics to the whole cell scale. The model takes the form

dc

dt
= JER − Jpump + Jleak + JSSCC (1)

τh
dh

dt
= k22

k22 + c2
− h, (2)

dθ

dt
= − E ′(1 + ν′)

(ξ1 + ξ2)
θ + 1

(ξ1 + ξ2)
TD(c),

where JER = k f μ(p)h
bk1 + c

k1 + c
, Jpump = γ c

kγ + c
, Jleak = β, JSSCC = Sθ. (3)

Here, c is the cytosolic calcium concentration, h is the fraction of IP3 receptors on
the ER that have not been inactivated by calcium, and θ is the dilation/compression
of the apical surface area of the cell. In ODE (1), JER models the flux of calcium
from the ER into the cytosol through the IP3 receptors, μ(p) = p/(kμ + p) is the
fraction of IP3 receptors that have bound IP3 and is an increasing function of p, the
IP3 concentration. The constant k f denotes the calcium flux when all IP3 receptors
are open and activated, and b represents a basal current through the IP3 channel. Jpump
represents the calcium flux pumped out of the cytosol where γ is the maximum rate of
pumping of calcium from the cytosol and kγ is the calcium concentration at which the
rate of pumping from the cytosol is at half-maximum. Jleak models the calcium flux
leaking into the cytosol from outside the cell. Note that from now on we will neglect
Jleak as this is a good approximation for the embryonic epithelial cells we consider.

JSSCC is the calcium flux due to the activated SSCCs. SSCCs have been identified
experimentally in recent years - they are on the cell membrane and allow calcium to
flow into the cytosol from the extracellular space. They are activated when exposed
to mechanical stimulation and they close either by relaxation of the mechanical force
or by adaptation to the mechanical force (Árnadóttir and Chalfie 2010; Dupont et al.
2016; Hamill 2006; Moore et al. 2010). The constant S represents the ‘strength’ of
stretch activation. In Sect. 3.1 we will derive a relationship for S as a function of the
characteristics of an SSCC.

The inactivation of the IP3 receptors by calciumacts on a slower timescale compared
to activation (Dupont et al. 2016) and so the time constant for the dynamics of h, τh > 1
in ODE (2). In ODE (3) TD(c) is a contraction stress that expresses how the stress in
the cell depends on the cytosolic calcium level. The constants ξ1, ξ2 are, respectively,
the shear and bulk viscosities of the cytosol and the constants E ′ = E/(1 + ν) and
ν′ = ν/(1−2ν), where E and ν are, respectively, theYoung’smodulus and the Poisson
ratio.

Our mechanochemical model is an extension of the Atri model,

dc

dt
= JER − Jpump + Jleak, (4)

τh
dh

dt
= k22

k22 + c2
− h, (5)
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sinceODE (1) is ODE (4) but with JSSCC added to the right hand side as an extra source
term.The detailed derivation of theAtrimodel is presented inAtri et al. (1993),where it
was initially formulated, and the reader is referred there formore details. The parameter
values, which we take from Atri et al. (1993), are summarised in the Appendix, Table
1. TheAtri model is one of theminimal Class Imodels, in which relaxation oscillations
can be sustained at constant IP3 concentration (Dupont et al. 2016; Keener and Sneyd
1998). It was developed as a model for intracellular calcium oscillations in Xenopus
oocytes but it has been subsequently used to model calcium dynamics in other cell
types including glial cells (Wilkins and Sneyd 1998), mammalian spermatozoa (Olson
et al. 2010), and keratinocytes (Kobayashi et al. 2014, 2016). In addition, modified
Atri models have been developed in Shi et al. (2008), Harvey et al. (2011) and Liu and
Li (2016). In Estrada et al. (2016) the Atri model was compared to seven other calcium
dynamics models and it exhibited the best agreement with experiments along with the
more frequently used Li-Rinzel model (Li and Rinzel 1994). The Atri model has a
mathematical structure that allows us to perform a large part of our study analytically.
The Atri model is also mathematically interesting because its relaxation oscillations
have a different asymptotic structure to that of the well-known Van der Pol oscillator
and similar excitable systems.Wewill present an asymptotic analysis of theAtrimodel
and of our mechanochemical model in future work.

Now, we describe our modelling assumptions and the remaining components of the
model in more detail.

3.1 Stretch-activation calcium flux

In the early mechanochemical models (Murray 2001) the stretch-activation flux, Sθ ,
was introduced in a somewhat ad hoc manner. Here, we derive it in a bottom-up
manner, from the contribution of the SSCCs to the cytosolic calcium concentration.

Amodel for the opening and closing of SSCCswas developed inVainio et al. (2015)
for retinal pigment epithelial cells; we adapt it here for embryonic epithelial cells for
which no such modelling has been performed. We denote by CSSCC the proportion of
channels in the closed state, and by OSSCC the proportion of SSCCs in the open state.
The calcium flux due to the SSCCs is proportional to the number of open channels
so JSSCC = KSSCCOSSCC, where KSSCC is the maximum calcium flux rate going
through the SSCCs. As in Vainio et al. (2015), we propose that the evolution of OSSCC
is governed by the ODE

d(OSSCC)

dt
= kFθ − (kFθ + kB)OSSCC, (6)

where kF is the forward rate constant and kB is the backward rate constant. We assume
here that OSSCC is quasi-steady, i.e. OSSCC remains approximately constant as calcium
rapidly evolves. This is a reasonable approximation, as discussed in Section 2.6 of
Dupont et al. (2016). Therefore,

OSSCC ≈ kFθ

kFθ + kB
. (7)
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We linearise (7) since θ is small for a linear viscoelastic medium and under the
additional assumption that kF

kB
is of order 1 at most. We obtain

OSSCC ≈ kF
kB

θ �⇒ JSSCC = KSSCC
kF
kB

θ �⇒ S = KSSCC
kF
kB

. (8)

Therefore, we have derived, for the first time, an expression for S as a combina-
tion of KSSCC, kF and kB , linking in this way the characteristics of an SSCC to the
macroscopic stretch-activation calcium flux.

3.2 Derivation of ODE (3)

We can obtain ODE (3) from the full force balance mechanical equation for a linear
viscoelastic material. Linear viscoelasticity, at first glance, might not be an appro-
priate approximation for embryogenic tissue undergoing drastic changes, but recent
experiments (Von Dassow et al. 2010) show it is reasonable. For a Kelvin-Voigt, lin-
ear viscoelastic material sustaining calcium-induced contractions the force balance
equation can be written as follows (Landau and Lifshitz 1970; Murray 2001):

∇.σ = 0 ⇒ ∇.(ξ1et + ξ2θt I
︸ ︷︷ ︸

viscous stress

+ E ′(e + ν′θI)
︸ ︷︷ ︸

elastic stress

− TD(c)I)
︸ ︷︷ ︸

contraction stress

= 0, (9)

whereœ is the stress tensor, e = 1
2 (∇u+∇uT ) is the strain tensor, u the displacement

vector, θ = ∇.u is the dilation/compression of the material, and I is the unit tensor.
(The subscript t here denotes a partial derivative with respect to time.) E ′ = E

1+v
and

v = v
1−2v where E and v are theYoung’smodulus and the Poisson’s ratio, respectively.

TD(c) is the contraction stress which depends on the cytosolic calcium (Scholey et al.
1980). In one spatial dimension e = e = θ = ∂u

∂x and therefore (9) becomes, upon
integrating with respect to x ,

(ξ1 + ξ2)θt + E ′(1 + ν′)θ − TD(c)) = A. (10)

The constant of integration A = 0 since when c = 0, TD = 0 , θ = 0 and θt = 0.
Hence, we obtain ODE (3).

3.3 Nondimensionalisedmodel

We nondimensionalise the mechanochemical model using c = k1c̄ and t = τh t̄ .
Dropping bars for notational convenience we obtain

dc

dt
= μhK1

b + c

1 + c
− Γ c

K + c
+ λθ = R1(c, θ, h;μ, λ), (11)

dh

dt
= K 2

2

K 2
2 + c2

− h = R3(c, h), (12)

dθ

dt
= −kθ θ + T̂ (c) = R2(c, θ). (13)
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In (11) K1 = k f τh/k1, Γ = γ τh/k1, K = kγ /k1, and λ = τh S/k1. In (13),

kθ = τh E ′(1 + ν′)
(ξ1 + ξ2)

and T (c) = τh
(ξ1+ξ2)

TD(c), and in (12) K2 = k2/k1. Using the

parameter values of Atri et al. (1993) (see Appendix, Table 1), we obtain K2 = 1,
Γ = 40/7, and K = 1/7. Also, taking values of E , ν and of the viscosity from Zhou
et al. (2009) (E = 8.5 Pa, ν = 0.4 and ξ1 + ξ2 = 100 Pa.s) we find that kθ is 0.4. For
simplicity, and since the parameter values for the calcium dynamics are approximate,

we fix kθ = 1. Furthermore, T (c) = τh

(ξ1 + ξ2)
TD(c) = τh

(ξ1 + ξ2)
T0DT̂ (c) where

T̂ (c) is nondimensional, and we also fix τh
(ξ1+ξ2)

T0D = 1. To our knowledge, there
are no measured properties for SSCCs and therefore we take the ‘strength’ of stretch
activation as a bifurcation parameter, to explore the behaviour of the model for a range
of values.

4 Analysis of themodel

4.1 The bifurcation diagrams of the Atri model (nomechanics)

The nondimensional Atri system is

dc

dt
= μhK1

b + c

1 + c
− Γ c

K + c
= F(c, h), (14)

dh

dt
= K 2

2

K 2
2 + c2

− h = G(c, h). (15)

In Appendix A.2 we carry out a linear stability analysis of (14)–(15) and a bifurca-
tion analysis with μ as the bifurcation parameter and we find that the parameter range
for relaxation oscillations (limit cycles) is 0.289 ≤ μ ≤ 0.495, as in Atri et al. (1993).
In Appendix A.2 more details on the bifurcation structure of the system are given.

In Fig. 3 we plot the bifurcation diagrams for the Atri system. In Fig. 3a we present
the amplitude of oscillations. The left Hopf point (LHP) and the right Hopf point
(RHP) are, respectively, at μ = 0.289 and μ = 0.495. There are stable limit cycles
and unstable limit cycles. The amplitude of oscillations increases with μ except for a
small range ofμ values near the RHP. In Fig. 3b the frequencies of the stable and of the
unstable limit cycles are shown, respectively. The range of μ for which both a stable
and an unstable limit cycle are sustained is clearly visible as the double-valued part of
the curve. The limit point of oscillations at μ = 0.511, where the stable and unstable
limit cycle branches coalesce, is also visible. The frequency of the stable limit cycles
increases slowly as μ increases and the lower, stable branch approximates the square
root of μ, as predicted by bifurcation theory (Kuznetsov 2013).

4.2 Linear stability analysis of themechanochemical model

The steady states of the system (11)–(12) satisfy
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Fig. 3 Bifurcation diagrams for the ODEs (14)–(15), as μ (IP3 level) increases: a amplitude of calcium
oscillations (limit cycles). The dots represent stable limit cycles and the dash-dotted part corresponds to
unstable limit cycles (respectively blue and green colour online). The left Hopf point (LHP) and the right
Hopf point (RHP) are indicated. b Frequency of the limit cycles

μK1
1

1 + c2
b + c

1 + c
− Γ c

K + c
+ λT̂ (c) = 0. (16)

For any T̂ (c), using (16), we can easily plot the steady states as a function of μ and
λ. The Jacobian of (11)–(12) is given by

M1 =
⎡

⎣

R1c λ R1h

T̂ ′(c) −1 0
R3c 0 −1

⎤

⎦ , (17)
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and the characteristic polynomial is conveniently factorised as

(1 + ω)(λT̂ ′(c) + (R1c − ω)(1 + ω) + R1h R3c) = 0, (18)

where ω represents the eigenvalues. As one eigenvalue is always equal to -1, the
bifurcations of the system can be studied through the quadratic

ω2 − ω(R1c − 1) − R1c − R1h R3c − λT̂ ′(c) = 0. (19)

To identify the μ-λ parameter range sustaining oscillations we seek the Hopf bifur-
cations, which satisfy Tr(M2) = 0, Det(M2) > 0, Discr(M2) < 0, where

M2 =
[

R1c λ

T̂ ′(c) −1

]

. (20)

Setting Tr(M2) = 0 �⇒ μ(c) = (1 + c2)(1 + c)2

K1(1 − b)

(

1 + Γ K

(K + c)2

)

, (21)

and substituting in (16) we obtain

λ(c) = 1

T̂ (c)

(

Γ c

K + c
− (b + c)(1 + c)

1 − b

(

1 + Γ K

(K + c)2

))

. (22)

Hence, we can easily obtain the Hopf curve, for any T̂ (c) by parametrically plotting
(21) and (22), with c as a parameter. The interior of the Hopf curve corresponds to
an unstable spiral and approximates the μ-λ parameter space sustaining oscillations
(limit cycles) in the full nonlinear system.

We also determine parametric expressions for the fold curve. Inside the fold curve
there are three steady states: on the fold curve two of states coalesce, and outside the
fold curve there is one steady state. Setting Det(M2) = 0

�⇒ μ
K1

(1 + c)(1 + c2)

(

1 − b

1 + c
− 2c(b + c)

)

+ λT̂ ′(c) = Γ K

(K + c)2
. (23)

Equations (23) and (16) constitute a linear system for μ and λ, so we again easily
derive parametric expressions for μ(c) and λ(c).

Similarly, to determine parametric expressions for the curve on which Discr(M2)

changes sign we set Discr(M2) = 0

�⇒ (R1c + 1)2 + 4R1h R3c + λT̂ ′(c) = 0, (24)

which is quadratic in μ and linear in λ. Combining (24) with (16) we can again
determine parametric expressions for μ and λ. In summary, we have developed a
quick method for determining the three key curves characterising the geometry of the
bifurcation diagram, for any T̂ (c).
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It is of course, a fortunate accident of construction thatwe can obtain these analytical
expressions for this particular model. Since our model is qualitatively similar to any
other mechanochemical model that is based on Class I calcium models, the analytical
progress we make here is very useful since the insights gained from it can be applied
to other mechanochemical models. A different model would have a more complex
set of linear stability equations, that look quite different, but that are fundamentally
saying the exact same thing. Crucial to the behaviour is the shape of the manifolds
rather than the detail of the algebraic expressions.

5 Illustrative examples

5.1 Contraction stress is a Hill function T̂(c) of order 1

5.1.1 Hopf curves

We assume that the calcium-induced stress T̂ (c) is the Hill function

T̂ (c) = αc

1 + αc
, α > 0, (25)

assuming that when the calcium level increases sufficiently the stress saturates to a
constant value, Ts = 1. This is a reasonable assumption since the cells reach a point
at which they stop responding mechanically to calcium since the molecules involved
in contraction, calmodulin and myosin light chain kinases, saturate for sufficiently
high calcium levels (Stefan et al. 2008). Also, T̂ = 0 when c = 0, i.e. we assume no
contraction stress without calcium. T̂ ′(0) = α is the rate of increase of T̂ at c = 0
and 1/α is the scale of ‘ascent’ to the saturation level Ts . Therefore, we can call α the
‘mechanical responsiveness factor’ of the cytoskeleton to calcium.

Choosing T̂ (c) = 10c/(1 + 10c) as an illustrative example, in Fig. 4 we use (16) to
plot the steady state as a function ofμ, for selected increasing values of λ (equilibrium
curve). For λ < 4 the equilibrium curve is qualitatively similar to that of theAtri model
(see Fig. 3a) but at λ = 4 the curve changes qualitatively and a second non-zero steady
state exists for 4 < λ < 40/7, and a part of the curve corresponds to negative values
of μ (see Appendix A.3 for details). For λ > 40/7 no steady state exists for positive
μ and hence λ ≤ 40/7 is the biologically relevant range of the model, for α = 10 (see
Appendix A.3).

In Fig. 5 we plot the Hopf curve and the fold curve. We observe the following:
(i) for λ = 0 we recover the Hopf points and the fold points of the Atri model, as
expected. (ii) As λ increases the range of μ that sustains oscillations decreases. There
is a global minimum value ofμ that can sustain oscillations,μmin. (iii) The oscillations
are suppressed for a critical maximum value of λ, λmax, and the system is in a high
calcium state. Overall, we conclude the following from the Hopf curve:

– for low IP3 values the Atri system does not sustain oscillations but there are two
possibilities for the mechanochemical model as λ increases:
• for μ < μmin no increase in λ will ever elicit oscillations.
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Fig. 4 Steady states of the system (11)–(12) when T = 10c/(1 + 10c) as μ is increased, for selected
λ = 0, 2, 3, 4, 5–from right to left, the thick (red) curve is for λ = 0 and the dashed curve is for λ = 4.
(Plot done with Mathematica.)

• for 0.203 = μmin < μ < 0.289 when λ reaches a certain value, λOSC, oscil-
lations are elicited, and λOSC decreases as μ approaches 0.289. The oscillations
vanish at a larger value of λ.

– for IP3 values for which the Atri system sustains oscillations (0.289 < μ < 0.495)
in the mechanochemical model oscillations eventually vanish at a critical λ. This
critical λ decreases monotonically as μ increases towards 0.495.

– for high IP3 values (μ ≥ 0.495) no oscillations are sustained in the Atri system
and a further increase in λ will never elicit oscillations.

Therefore, for fixed cytoskeletal mechanical responsiveness factor, α = 10, and for
fixed parameter values as in Atri et al. (1993) a range of behaviours emerge as μ and
λ vary: at low IP3 levels that do not elicit oscillations in the Atri system mechanical
effects can elicit oscillations, for intermediate IP3 levels that do sustain oscillations
in the Atri system increasing mechanical effects always leads to the oscillations van-
ishing, and for high IP3 levels that cannot sustain oscillations in the Atri system no
amount of stretch activation can ever elicit oscillations.

Overall, we conclude that in this case mechanics can significantly affect calcium
signalling. A very important prediction of the model is that oscillations vanish for suf-
ficiently large stretch activation. This prediction agrees with the experiments reported
in Christodoulou and Skourides (2015) (Figure 5D); when the cells were forced to
enter a high, non-oscillatory calcium state they monotonically reduced their apical
surface area without oscillations. Interestingly, although the loss of oscillations did
not affect the reduction of the apical surface on average, it led to the disruption of the
patterning involved in AC and neural tube closure failed, leading to severe embryo
abnormality.

In fact, the model also agrees, qualitatively, with other experimental observations.
Intracellular calcium levels (which are regulated by IP3) directly affect cell contrac-
tility (Christodoulou and Skourides 2015). At low levels of IP3 and hence low levels
of calcium, cells are not able to contract and therefore AC does not take place. At a
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Fig. 5 Geometry of the bifurcation diagrams of the system (11)–(12) when T̂ (c) = 10c/(1+ 10c), plotted
using the analytical, parametric expressions we derived for μ and λ. The Hopf curve is dashed (blue colour
online) and the fold curve is drawn with a solid line (red colour online). The horizontal and vertical dashed
lines correspond, respectively, to the maximum value of λ, λmax = 1.686, and to the minimum value of μ,
μmin = 0.203, for which oscillations can be sustained. (Plot done with Mathematica.)

threshold IP3 value the system changes behaviour and calcium oscillations/transients
appear (mathematically this corresponds to a bifurcation). The calcium oscillations
enable the ratchet-like pulsating process of the AC to progress normally. At high levels
of IP3 the cell has been shown to enter a high-calcium state with no oscillations, as
mentioned above. (This corresponds to another bifurcation since the system changes
its qualitative behaviour.)

Regarding bistability, note that the fold curve consists of two branches very close to
each other since theAtri system is bistable for a very small range of IP3 concentrations.
As λ increases this range decreases and eventually vanishes at λ ≈ 0.83, where the
two fold curve branches merge.

Summarising, the parametric method we have developed allows us to easily plot
the Hopf curve, and the two other important curves of the bifurcation diagram, for
any functional form of T̂ (c) we may choose, and thus examine quickly the effect of
mechanics on calcium oscillations. We note that in the experiments of Christodoulou
and Skourides (2015) the calcium-induced stress saturates to a non-zero level as cal-
cium levels increase and hence we chose a T̂ (c) that saturates. In other cell types it is
possible that the cell can relax back to baseline stress and in such a case T̂ (c) would
not be described by a Hill function, and more experiments should be undertaken to
determine the appropriate form of T̂ (c).
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5.1.2 Amplitude and frequency of the calcium oscillations

We now determine numerically the amplitude and frequency of oscillations (limit
cycles) of the system (11)–(12) when T̂ (c) = 10c/(1 + 10c).

In Fig. 6 we plot the oscillation amplitude as a function of λ, for two selected values
of μ, using XPPAUT. For μ = 0.25 (Fig. 6a) the Atri system has no oscillations but
stable limit cycles arise in the mechanochemical model as λ is increased, which agrees
with the Hopf curve in Fig. 5. For μ = 0.3 (Fig. 6b) the Atri system has a stable limit
cycle and as λ increases, stable and unstable limit cycles emerge for a finite λ-interval,
and oscillations eventually vanish for sufficiently large λ. Forμ = 0.4 the Atri system
has a stable limit cycle and as λ increases, stable and unstable limit cycles emerge for
a finite range of λ values, and oscillations eventually vanish for a large enough value
of λ.

The oscillation amplitude changes slowly with λ for a fixedμ, that is the oscillation
amplitude is robust to changes in stretch activation.

In Fig. 7 we plot the oscillation amplitude as a function of μ, for three selected
values of λ, using XPPAUT. We see that as λ increases the amplitude decreases until
the oscillations vanish close to λ = λmax = 1.69, which agrees with the Hopf curve
in Fig. 5. We also observe that for λ = 0.5 and 1, in Figs. 7a, b respectively, there are
both stable and unstable limit cycles, and the right Hopf point is subcritical. Also, as λ

increases, the μ-range of unstable limit cycles decreases until it vanishes; for λ = 1.5
(Fig. 7c) there are only stable limit cycles, and the right Hopf point has become
supercritical. We see that as in the Atri model, the oscillation amplitude changes quite
rapidly with μ in the mechanochemical system.

In Fig. 8 we plot the frequency of the limit cycles as μ increases, for three values
of λ, using XPPAUT. For λ = 0.5 and λ = 1, the frequency increases rapidly close to
the LHP and the RHP and there is an ‘intermediate’ region where the frequency varies
slowly with μ, as in the Atri system (see Fig. 3). The ‘intermediate’ region becomes
smaller as λ increases, and for λ = 1.5 this region vanishes. We see that as λ increases
the frequency of oscillations decreases overall.

Summarising, for any value of μ and λ we can determine the range for oscil-
lations using the parametric expressions (21) and (22), and then use XPPAUT
(Ermentrout 2002) or other continuation software to obtain their amplitude and fre-
quency.

In Fig. 9 we plot the evolution of c(t), solving (11)–(12) numerically, for μ = 0.3
and selected values of λ; as expected from the bifurcation diagrams, the oscillations
are suppressed when λ is sufficiently increased.

5.1.3 Varying the cytosolic mechanical responsiveness factor

We now investigate if the Hopf curve changes qualitatively as the cytosol’s mechanical
responsiveness factor, α, varies. In Fig. 10a, using the parametric expressions (21)–
(22) we plot the Hopf curves for increasing values of α = 1, 2, 10, 100. We observe
that the Hopf curve changes qualitatively; for α ≈ 2 it develops a cusp and for smaller
values of α there is a “bow-tie”. This geometrical change corresponds to yet another
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Fig. 6 Amplitude of calcium oscillations for the system (11)–(12) when T̂ (c) = 10c
1+10c , as λ is increased,

for: a μ = 0.25 b μ = 0.3. The stable limit cycles are represented by dots and the unstable limit cycles
by the dash-dotted parts (respectively with blue and green colour online). The plots are computed with
XPPAUT and exported to Matlab for plotting

bifurcation, with α as a bifurcation parameter1. However, as for α = 10, oscillations
always vanish for a sufficiently large value of λ, λmax.

1 The cusped Hopf curve is the bifurcation curve of a cusp catastrophe surface, according to the catastrophe
theory developed by Zeeman (1977), and subsequently by Poston and Stewart (2014) and Stewart (2014).
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Fig. 7 Amplitude of calcium oscillations for the system (11)–(12) when T̂ (c) = 10c
1+10c , as μ is increased,

for selected values of λ (computed with XPPAUT and exported to Matlab for plotting). The LHP and the
RHP are indicated. The stable limit cycles are represented by dots and the unstable limit cycles by the
dash-dotted parts (respectively with blue and green colour online): a λ = 0.5 b λ = 1 c λ = 1.5. As λ

increases, for any fixed μ the amplitude decreases until it becomes zero
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Fig. 8 Frequency of calcium oscillations for the system (11)–(12) when T̂ (c) = 10c
1+10c as a function of

μ and for λ = 0.5, 1, 1.5 (computed with XPPAUT and exported to Matlab for plotting). For λ = 0.5
and 1 there are stable limit cycles and unstable limit cycles, represented by dots and dash-dotted lines,
respectively. For λ = 1.5 there are only stable limit cycles (blue colour online)

We also observe that asα increases,λmax, the critical stretch activation value beyond
which oscillations vanish, decreases, i.e. oscillations are sustained for a smaller range
of λ values. To investigate this more systematically we have determined parametric
expressions for λmax and α as functions of c, and we plot λmax(α) in Fig. 10b. We see
that as α increases, λmax decreases monotonically, and hence oscillations are sustained
for an increasingly smaller range of λ, which agrees with Fig. 10a. Also, since λmax(α)

asymptotes to a positive value as α → ∞ for any T̂ (c) = αc
1+αc , the systemwill always

sustain some oscillations, irrespective of the value of α. Therefore, we predict that for
cytosols that are more responsive to calcium (higher α), oscillations vanish at a lower
λmax.To test this experimentally the responsiveness of the cytosol to calcium should
be manipulated whilst monitoring whether oscillations appear. The contractility of the
cytosol could be manipulated by inhibiting Myosin II contractility using the ROCK
inhibitor (Y-27632).

However, since (21) does not depend on T̂ (c),μmin is constant and not zero for any
α. Therefore, as we expect, IP3 is always required in order to obtain oscillations, for
any λ and any α but the minimum level of IP3 does not change with α. Also, for fixed
λ, as α, the mechanical responsiveness factor of the cytosol, increases, the IP3 level
required to induce oscillations also decreases. Additionally, for fixedμ, as α increases
λmax reduces.

Summarising, we conclude that as the cytosol’s mechanical responsiveness
increases a lower level of stretch activation is sufficient to sustain oscillations. Also,
there will always be oscillations for some values of μ and λ when the contraction
stress is modelled as a Hill function of order 1.
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a λ = 0

b λ = 1

c λ = 3

Fig. 9 Evolution of c(t) with time, solving the system (11)–(12) numerically, when T̂ (c) = 10c
1+10c , μ =

0.289 a λ = 0 (Atri model): limit cycles b λ = 1: limit cycles with increased frequency and amplitude c
λ = 3: decaying solution; limit cycles (oscillations) disappear
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a

b

Fig. 10 a Hopf curves for the system (11)–(12) and T̂ (c) = αc
1+αc , α = 1, 2, 10, 100 (see legend) b The

maximum value of λ for which oscillations are sustained, λmax, decreases with α. Both plots are drawn
using the parametric expressions (21)–(22), in Mathematica. The horizontal line is the asymptote of the
λmax curve as a → ∞. It represents the smallest possible λmax in this system and since this is non-zero
there are always be calcium oscillations for any value of a
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5.2 Hopf curves for T̂(c) a Hill function of order 2

It is instructive to investigate whether a different functional form of T̂ will change
our conclusions. We thus model T̂ (c) as a Hill function of order 2, T̂ (c) = αc2

1+αc2
,

which models a cytosol which is less sensitive to calcium for low calcium levels than
T̂ (c) = αc

1+αc but which saturates faster. In Fig. 11 we plot the Hopf curves of the
system (11)–(13) for increasing α, the cytosolic mechanical responsiveness factor,
using again the parametric expressions (21)–(22).

Comparing Fig. 11 with Fig. 10a we see that the Hopf curves have the same quali-
tative behaviour for the two Hill functions. Oscillations can be sustained for any value
of α and they always vanish for a sufficiently large value of λ, Also, as in the Hill
function of order 1, as α increases λmax decreases while μmin is constant. Also, a
cusp again develops but for the Hill function of order 2 the value of α at which this
occurs increases. We conclude that the conclusions are robust to the change of the Hill
function. In future work Hill functions of higher order or other functional forms of T
can be investigated.

6 Summary, conclusions and future research directions

A wealth of experimental evidence has accumulated which shows that many types of
cells release calcium in response to mechanical stimuli but also that calcium release
causes cells to contract. Therefore, studying this mechanochemical coupling is impor-
tant for elucidating a wide range of body processes and diseases. In this work we have
focused attention on embryogenesis, where the interplay of calcium and mechanics is
shown to be essential in AC, an essential morphogenetic process which, if disrupted,
leads to embryo abnormalities (Christodoulou and Skourides 2015).

We have presented a new analysis of experimental data that supports the existence
of a two-waymechanochemical coupling between calcium signalling and contractions
in embryonic epithelial cells involved in AC.

We have then developed a simple mechanochemical ODE model that consists of
an ODE for θ , the cell apical dilation, derived consistently from a full, linear vis-
coelastic ansatz for a Kelvin-Voigt material, and two ODEs governing, respectively,
the evolution of calcium and the proportion of active IP3 receptors. The two latter
ODEs are based on the well-known, experimentally verified, Atri model for calcium
dynamics (Atri et al. 1993). An important feature of ourmodel is the two-way coupling
between calcium and mechanics which was proposed for the first time in models by
Murray (2001); Murray et al. (1988); Murray and Oster (1984) and Oster and Odell
(1984). However, in those models hypothetical bistable calcium dynamics were con-
sidered whereas here we have updated those models with recent advances in calcium
signalling, as encapsulated by the Atri model. We have also modelled the calcium-
dependent contraction stress in the cytosol as a Hill function T̂ (c), since experiments
indicate that themechanical responsiveness of the cytosol to calcium saturates for high
calcium levels.
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Fig. 11 Hopf curves for the
system (11)–(13) when

T̂ (c) = αc2

1+αc2
, for

α = 1, 2, 10, 100 drawn using
the parametric expressions
(21)–(22), in Mathematica
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The early mechanochemical models included an ad hoc stretch activation calcium
flux, λθ , in the calcium ODE. Here, we have also derived, for the first time, this
“stretch-activation” flux as a “bottom-up” contribution from stretch sensitive calcium
channels (SSCCs), thus expressing the parameter λ as a combination of the structural
characteristics of an SSCC λ can also be thought of as a coupling parameter between
calcium signalling and mechanics. Despite an extensive literature search we could
not find experimental measurements for SSCCs; this could be a direction for future
experiments.

For any T̂ (c), we have analytically identified the parameter regime in theμ–λ plane
corresponding to calcium oscillations and applied this result in two illustrative exam-
ples, T̂ (c) = αc/(1+αc) and T̂ (c) = αc2/(1+αc2). In both cases, as λ increases, the
oscillations are eventually suppressed at a critical λ, λmax—see, respectively, Figs. 10a
and 11. The prediction is in agreementwith experiments (Christodoulou and Skourides
2015) where a high, non-oscillatory calcium state is associated with a very high stress
in the cytosol and continuous contraction (Figure 5D). This high-calcium, high-stress
state is associated with failure of AC and consequently with defective tissue morpho-
genesis. This makes sense since calcium oscillations are the ‘information carrier’ in
cells so we indeed expect that if they vanish the task at hand, in this case AC, will not
be performed correctly. In summary, we have shown that there are scenarios where
mechanical effects significantly affect calcium signalling and this is a key result of
this work.

For T̂ (c) = αc/(1+αc) we have also shown analytically that as α, the mechanical
responsiveness factor of the cytosol, increases, λmax decreases but it never becomes
zero (see Fig. 10b). This means that for any α, there will always be a μ-λ region for
which oscillations are sustained. Furthermore, for the illustrative example of T̂ (c) =
10c/(1+10c)wehavedeterminednumerically the oscillation amplitude and frequency
as the bifurcationparametersμ andλvary, usingXPPAUT.We found that the behaviour
is qualitatively similar to the Atri model (see Fig. 3) for lower λ values but that it
changes for larger λ values (see Fig. 6). We found that, as λ increases the amplitude
of oscillations decreases (see Fig. 7) but their frequency increases (see Fig. 8). More
experiments could be undertaken to test these predictions.

In the experiments of Christodoulou and Skourides (2015) the calcium-induced
stress saturates to a non-zero level as calcium levels increase but in other cell types
it is possible that the cell can relax back to baseline stress and in such a case T̂ (c)
cannot be modelled as a Hill function. Experiments could be undertaken also in other
calcium-induced mechanical processes to determine the appropriate form of T̂ (c) and
the model could then be modified appropriately.

Another approximation we have made is that the mechanical properties of the cell
(Young’s modulus, Poisson ratio, viscosity) are constant. However, their values can
change significantly with space and also with embryo stage (Brodland et al. 2006;
Luby-Phelps 1999; Zhou et al. 2009). One of the next steps in the modelling would
be to take these variations into account.

Due to the complexity of calcium signalling all models introduce approximations.
One important approximation in this work is that we neglect stochastic effects, even
though the opening and closing of IP3 receptors and of the SSCCs is a stochastic pro-
cess. However, the deterministic models still have good predictive power, whilst being
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more amenable to analytical calculations (Cao et al. 2014; Thul 2014). A multitude
of deterministic and stochastic calcium models have been developed (Atri et al. 1993;
Goldberg et al. 2010; Gracheva et al. 2001; Sneyd et al. 1994, 1998; Timofeeva and
Coombes 2003; Wilkins and Sneyd 1998); see also the comprehensive reviews (Rüdi-
ger 2014; Sneyd andTsaneva-Atanasova 2003; Thul 2014) and the books (Dupont et al.
2016; Keener and Sneyd 1998), among others. Future work could involve developing
stochastic mechanochemical models.

The interplay of mechanics and calcium signalling in non-excitable cells is impor-
tant in processes occurring not only in embryogenesis but also in wound healing
and cancer, amongst many others, and more efforts should be devoted to developing
appropriate mechanochemical calcium models that would help elucidate the currently
many open questions. In this connection, the insights we have obtained from the sim-
ple model we have developed here are a first step in this direction. We will aim to
extend our models to more realistic geometries. Moreover, we have fixed all parame-
ters here, except μ, λ and α; and the variation of other parameter values may lead to
other bifurcations and biologically relevant behaviours.

Finally, the newly discovered SSCCs merit much more experimental investigation
and modelling; in this work we have adopted a simple model for their behaviour,
assuming that they are quasisteady and also made restricting assumptions about their
opening and closing rates. In further experimental work, the parameter values asso-
ciated with SSCCs should be measured and perhaps more sophisticated models for
SSCCs should be developed.
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A Appendix

A.1 Supplementary information on the presented experimental results

Explanations about Figure 1: Plot of surface area (measured in μm2) and calcium
oscillation amplitude over time of a single embryonic, epithelial cell undergoing
apical constriction in Xenopus (Christodoulou and Skourides 2015). Measurements
were taken every 10 seconds from a time lapse movie of a stage 9 Xenopus embryo
expressing Lulu-GFP +GECO-RED (see Christodoulou and Skourides 2015). To nor-
malise the surface area, all the area values were divided by the first measured value
(which is the largest since the surface area is decreasing with time). For measuring
calcium oscillation amplitudes, the signal intensity of the non-ratiometric calcium
sensor (GECO-RED) was also measured over time. For normalization, all values were
divided by the highest signal intensity value. Note that we tracked the surface area and
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calcium level of cells induced to undergo AC at gastrula stage in order to decouple
AC from other morphogenetic movements, like mediolateral junction shrinkage and
convergent extension, which take place in later embryogenic stages and which would
also influence the cell shape and surface area.

Explanations about Figure 2: (a) Plot of surface area (μm2) and calcium oscillation
frequency over time from 10 neural plate cells of stage 16 Xenopus embryo using
the mem-GFP +GECO RED sensor molecule. The average surface area of each cell
was evaluated for four time intervals; 0–10, 10–20, 20–30 and 30–40 min. For nor-
malization for each cell, the average surface area in each time period was divided
by the average surface area of the first period (0–10 min). The calcium oscillation
frequency in each cell was calculated by counting the number of calcium oscillations
in each time interval. This value was then divided by 10 since there are 10 minutes
in each time interval. (b) Plot of average calcium oscillation amplitude of 10 neural
plate cells (same cells as in (a)). The signal intensity of the non-ratiometric calcium
sensor (GECO-RED) was measured per calcium oscillation in each of the cells over
time. For normalization, the values were then divided by the highest intensity value.
The average value in each of the four time intervals was plotted.

A.2 Analysis of the Atri model

A.2.1 Linear stability analysis

The steady states (S.S.) of (14)–(15) are the intersections of the nullclines of the
system. Setting

F = 0 �⇒ h = Γ

μK1

c(1 + c)

(K + c)(b + c)
, (26)

G = 0 �⇒ h = 1

1 + c2
. (27)

we obtain

μK1
1

1 + c2
b + c

1 + c
− Γ c

K + c
= 0, (28)

which can be cast as a quartic in c. (Note that (16) reduces to (28) for λ = 0, as
expected.) In Figure 12 we plot the equilibrium curve (28) in order to visualise the
number of steady states and the corresponding value(s) of c, as μ is increased. The
qualitative behaviour of the solutions of the system can be determined by plotting
the nullclines (26) and (27). When the nullclines cross the system has a steady state,
and when they touch the system has a double (degenerate) steady state. Nullcline
(26) passes through the origin of the (c,h) plane, has a maximum at h = hM and
saturates to the constant value h = Γ

μK1
as c → ∞. hM can be found analytically by

differentiating (26):
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Fig. 12 The steady states of (14)–(15) as a function of the bifurcation parameter μ, as obtained using
the analytical expression (28). As μ increases, from small to large, there is one steady state, a double
(degenerate) steady state at μ1 = 0.28814, then three steady states, then a double (degenerate) steady state
at μ2 = 0.28925, and for values of μ larger than 0.28925 one steady state

dh

dc
= Γ

μK1

c2(b + K − 1) + 2bcK + bK

(K + c)2(b + c)2
, (29)

and setting dh/dc = 0, which leads to a quadratic equation for c. Rearranging, and
since c > 0, we discard the negative root, obtaining

cM (b, K ) = bK + √

(1 − b)b(K − K 2)

1 − b − K
(30)

and, hence, substituting (30) in (26) we obtain

hM = h(cM ) = Γ

μK1

cM (1 + cM )

(K + cM )(b + cM )
. (31)

Therefore, hM scales with Γ /(μK1) and depends on the parameters K and b in a
much more complicated manner. For the parameter values from Atri et al. (1993) we
have cM = 0.169 and hM = 0.279/μ.

Nullcline (27) is a decreasing function of c; it has a maximum at (0,1) and tends to
0 as c → ∞. For μ1 = 0.28814 and μ2 = 0.28925 the nullclines touch and there is
a double steady state; for values of μ < μ1 and μ > μ2 there is one S.S. and there
are three S.S. for μ1 < μ < μ2. (μ1 and μ2 are obtained by differentiating (28) and
finding the roots of dμ

dc = 0.) Note that we present the values of μ with five decimal
places because the bifurcation analysis depends sensitively on μ, as we will see later.

We then linearise the system near the steady states. We determine the Trace
(Tr), Determinant (Det) and Discriminant (Discr) of the Jacobian of the system as
follows
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Tr = Fc + Gh = Fc − 1 = Γ

(K + c)

(

− K

K + c
+ (1 − b)Γ c

(1 + c)(b + c)

)

− 1

Det = FcGh − FhGc = − Γ

(K + c)

(

− K

K + c
+ (1 − b)Γ c

(1 + c)(b + c)

)

+ 2Γ c2

(1 + c2)(K + c)

Discr = (Tr)2 − 4Det.

Taking the parameter values of Atri et al. (1993) we identify the bifurcations of the
system asμ increases by determiningwhere theTr,Det, andDiscr change sign.Wefind
a richer bifucation structure as μ increases. This behaviour was not analysed in such
detail in Atri et al. (1993) or in later literature. Given the very sensitive dependence
on precise values of μ, these details are probably of more mathematical interest than
of biological significance. The parameter values are summarised in Table 1.

• 0 < μ < 0.27828: one stable node.
• μ = 0.27828: the stable node becomes a stable spiral (bifurcation Discr=0)
• μ = 0.28814: Stable spiral present. Also, a saddle and an unstable node (UN)
emerge (bifurcation Det=0, fold point)

• μ = 0.28900: the stable spiral becomes an unstable spiral. The other two S.S. are
still a saddle and an unstable node. (Tr=0, Hopf bifurcation)

• μ = 0.28924 the unstable spiral becomes an unstable node, and we have two
unstable nodes and a saddle (Discr=0)

• μ = 0.28925: one unstable node (Det=0, fold point)
• μ = 0.28950: the unstable node becomes an unstable spiral (Discr=0)
• μ = 0.49500: the unstable spiral becomes a stable spiral. (Tr=0, Hopf bifurcation)

From the regimes identified above we are particularly interested in the regime of
relaxation oscillations, since their amplitude and/or frequency encodes the information
in calcium signals. Relaxation oscillations are sustained for 0.28900 ≤ μ ≤ 0.49500
since at μ = 0.28900 a Hopf bifurcation (HB) arises, the stable spiral becomes
unstable, and we expect relaxation oscillations (limit cycles) in the nonlinear system.
As μ increases the unstable spiral becomes a stable spiral close to μ = 0.495000 and
the limit cycles eventually vanish.

A.3 Linear stability analysis of themechanochemical model with no IP3

Here we analyse the case μ = 0. Biologically, this corresponds to treating the cell
with thapsigargin so that all calcium is depleted from the ER and there is no flux from
the ER. The model (11)–(13) simplifies to

dc

dt
= − Γ c

K + c
+ λθ, (32)

dθ

dt
= − θ + T̂ (c), (33)

dh

dt
= 1

1 + c2
− h. (34)
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Table 1 Parameter values, taken
from Atri et al. (1993)

Parameter values
Parameter Value

b 0.111

k1 0.7µM

k f 16.2µM/s

kμ 0.7µM

γ 2µM/s

kγ 0.1µM

β 0–0.02µM/s

k2 0.7µM

τh 2s

Equation (34) is decoupled from Eqs. (32) and (33), and we can thus continue
with a two-dimensional analysis for Eqs. (32)–(33). The steady states satisfy

λT̂ (c) = Γ c

K + c
. The Jacobian of the system (32)–(33) has entries

M11 = − Γ K

(K + c
)2
, M12 = λ, M21 = T ′(c
), M22 = −1.

Hence

Tr(M1) = − Γ K

(K + c
)2
− 1 < 0, Det(M1) = Γ K

(K + c
)2
− λT̂ ′(c
)

Discr(M1) =
(

Γ K

(K + c
)2
− 1

)2

+ 4λT̂ ′(c
) > 0.

Therefore, for any T̂ (c), Discr(M1) > 0, Tr(M1) < 0 always, and Det(M1) can
be negative or positive, the steady states can only be stable nodes or saddles, and
oscillations cannot be sustained. For some choices of T̂ a non-zero steady state may
exist and this means biologically that even without calcium flux from the ER a non-
zero calcium concentration can be sustained in the cytosol due to the stress-induced
calcium release.

For T̂ (c) as given in (25), there is always a steady state (c
, θ
)=(0, 0). A second
steady state

c
 = δ − K

1 − αδ
, where δ = Γ

αλ
, (35)

exists if

δ > K and αδ < 1 ⇒ Γ < λ <
Γ

αK
(36)

or δ < K and αδ > 1 ⇒ Γ

αK
< λ < Γ . (37)
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We can easily show that the steady state (0,0) loses its stability and becomes a saddle
when the second stable S.S. emerges (as a stable node). This means that there is a
range of λ values for which the system sustains a non-zero calcium concentration
even without a CICR flux. For even larger values of λ there is no steady state and the
model ceases to be biologically relevant.
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