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a b s t r a c t 

Several mechanisms have been proposed to explain the spontaneous generation of self-organised pat- 

terns, hypothesised to play a role in the formation of many of the magnificent patterns observed in Na- 

ture. In several cases of interest, the system under scrutiny displays a homogeneous equilibrium, which 

is destabilised via a symmetry breaking instability which reflects the specificity of the problem being 

inspected. The Turing instability is among the most celebrated paradigms for pattern formation. In its 

original form, the diffusion constants of the two mobile species need to be quite different from each 

other for the instability to develop. Unfortunately, this condition limits the applicability of the theory. 

To overcome this impediment, and with the ambitious long term goal to eventually reconcile theory and 

experiments, we here propose an alternative mechanism for promoting the onset of pattern. To this end 

a multi-species reactive model is studied, assuming a generalized transport on a discrete and directed 

network-like support: the instability is triggered by the non-normality of the embedding network. The 

non-normal character of the dynamics instigates a short time amplification of the imposed perturbation, 

thus making the system unstable for a choice of parameters that would yield stability under the con- 

ventional scenario. In other words, non-normality promotes the emergence of patterns in cases where a 

classical linear analysis would not predict them. The importance of our result relies also on the fact that 

non-normal networks are pervasively found, motivating the general interest of the mechanism discussed 

here. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

We are surrounded by spatially heterogeneous patterns ( Nicolis

nd Prigogine, 1977; Murray, 2001 ). In many applications, the in-

erplay between microscopic entities is modelled by means of

eaction-diffusion equations-partial differential equations which 

overn the deterministic evolution of the concentrations in a

ulti-species model, across time and space. Homogeneous equi-

ibria of a generic reaction-diffusion system may undergo a sym-

etry breaking instability, when exposed to a heterogeneous per-

urbation, and this underlies the self-organisation theory of pattern

ormation. 

The instability can develop according to different modalities,

epending on the specificity of the system under consideration.

mong existing approaches, the celebrated Turing instability occu-
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ies a prominent role ( Turing, 1952 ). The condition for the emer-

ence of Turing patterns has been elegantly grounded in an in-

erplay between slow diffusing activators and fast diffusing in-

ibitors ( Gierer and Meinhardt, 1972 ). Indeed, the parameter space

or which the instability materialises shrinks to zero when the ra-

io of the diffusion coefficients tends to 1, an observation that lim-

ts the range of applicability of the theory, at least in its original

onception. To state it differently, the conditions for Turing insta-

ility are solely met in a small region of the available parameter

pace, in stark contrast with the diversity of patterns that are rou-

inely found across different fields and scales ( Ball, 1999 ). Consid-

ring more than two families of interacting entities and accounting

or the role of endogenous or exogenous noise enhance the robust-

ess of the scheme and partially overcome the above limitations

 Patti et al., 2018; Arbel-Goren et al., 2018 ). 

In their pioneering paper, Othmer and Scriven (1971) extended

he Turing theory of pattern formation to reaction-diffusion sys-

ems defined on several discrete lattices, in arbitrary dimensions.

ore recently Nakao and Mikhailov (2010) extended the analy-

is to systems defined on complex networks, a setting that is

https://doi.org/10.1016/j.jtbi.2019.07.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2019.07.004&domain=pdf
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Fig. 1. Attraction landscape. A schematic layout to depict the landscape of a generic 

reaction-diffusion system, defined on a symmetric network (a): the basin of attrac- 

tion associated with the homogeneous equilibrium, x ∗ (light blue) is displayed; the 

latter extends considerably to eventually encompass a large fraction of orbits (as 

e.g. A 1 ). Only trajectories which are sufficiently distant from the homogeneous fixed 

point (as e.g. B 1 ) can evolve towards a different, possibly nonhomogeneous, equilib- 

rium x ′ (turquoise). Once the dynamics is made to flow on a non-normal support 

(panel b), the effective basin of attraction of the homogeneous fixed point shrinks 

considerably. This is the direct signature of the short time amplification of the im- 

posed perturbation, as stimulated by the non-normal character of the underlying 

support. The amplification makes it possible for the system to overcome the barrier 

as displayed in (c) and eventually results in the dynamical landscape, that is picto- 

rially exemplified in (b). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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relevant to, for example, multi-species systems confined in com-

partmentalised geometries ( Holland and Hastings, 2008 ), optically

controlled bioreactors ( Horsthemke et al., 2004 ), bistable chemical

networks ( Kouvaris et al., 2016 ), embryonic development ( Bignone,

20 01; Schnabel, 20 06 ) and neuroscience ( Buscarino et al., 2016 ).

The dispersion relation, which ultimately signals the onset of the

instability, is a function of the discrete spectrum of the Laplacian

matrix, i.e. the diffusion operator, associated with the underlying

network. Laplacian eigenvalues set the spatial characteristics of the

emerging patterns when the system under scrutiny is rooted on

a heterogeneous support. Patterns for systems evolved on com-

plex graphs yield a macroscopic segregation into activator-rich

and activator-poor nodes ( Nakao and Mikhailov, 2010 ). They are

termed Turing patterns, because of the analogy with their contin-

uum counterparts. For undirected (symmetric) networks, the topol-

ogy defines the relevant directions for the spreading of the pertur-

bation, but cannot impact on the onset of the instability, which

emerges under the very same conditions that apply when the sys-

tem is defined on a continuous support. Network asymmetry can

however trigger the system unstable, seeding the emergence of a

generalised class of topology driven patterns, which extends be-

yond the conventional Turing scenario ( Asllani et al., 2014b ). As

such they do not have any counterpart in the case of systems de-

fined on continuous domains. 

Starting from these premises, we here set out to explore a new

situation that is faced when the network of connections is non-

normal ( Trefethen and Embree, 2005; Asllani and Carletti, 2018 ),

hence inherently asymmetric, but the ensuing dynamics proves

stable under a standard linear stability analysis. Otherwise stated,

we will deal with homogeneous equilibria which are deemed sta-

ble and rely on the short time amplification of the perturbation,

as instigated by the non-normal character of the network, to find

a path towards the heterogeneous attractor. Non-normal patterns

display a characteristic amplitude, comparable to that associated

with their conventional homologues. Small initial perturbations,

self-consistently amplified by the non-normality, suffice to cross

the barrier which separates the basins of attraction of, respectively,

the homogeneous and heterogeneous solutions. The latter can be

ideally pictured as the minima of a generalised energy landscape,

as schematically highlighted in Fig. 1 . Equally, small perturbations

cannot trigger the instability when the system is instead defined

on a symmetrised version of the non-normal support. The net ef-

fect is a contraction of the basin of attraction of the homogeneous

fixed point, as produced by the imposed degree of non-normality. 

The role of non-normality has been already studied in

Neubert et al., 2002 , where it was shown that reactivity, i.e. the

amplification of the disturbance as seeded by the non-normal na-

ture of the reaction terms, is a necessary condition for the onset

of classical Turing patterns, i.e. patterns ensuing from a reaction-

diffusion system defined on a continuous domain. Endogenous

noise, or perpetual exogenous perturbations, can effectively con-

tribute to the stabilisation of the patterns ( Biancalani et al., 2010 ),

the effectiveness increasing with the degree of non-normality of

the reaction component ( Biancalani et al., 2017 ). At variance with

the former studies, we shall hereafter focus on the non-normality

as stemming from the couplings which define the spatial support

of the investigated model. The reason for such a choice is twofold:

on the one hand, existing reaction models do not exhibit a large

non-normal behaviour ( Ridolfi et al., 2011 ), and on the other hand,

a strong non-normality manifests as a natural property of em-

pirical networks, as has been recently reported in Asllani et al.,

2018 . In conclusion, based on the above, we can show that the

non-normal nature of the imposed spatial couplings contributes

to significantly enlarging the parameter space where patterns are

predicted to occur, potentially increasing the applicability of the

theory. 
The paper is organised as follows: in the next section we will

ntroduce the mathematical framework and then turn, in Section 3 ,

o discussing the emergence of pattern for a reactive model that

mplements a generalized transport scheme on a non-normal,

etwork-like support. In Section 4 we will develop the concept of

he pseudo-dispersion relation for predicting the onset of the non-

ormal instability. This serves as a powerful diagnostic tool beyond

he linear order of approximation, as routinely employed. Finally,

n Section 5 we summarise and draw our conclusion. 

. Reaction-diffusion models on symmetric networks and their 

eneralization to directed supports 

We consider the coupled evolution of two species which are

ound to relocate on a directed network. We introduce the index

 = 1 , . . . , N to identify the nodes of the collection and denote by u i 
nd v i the positive and non-dimensionalised concentrations of the

pecies on the i th node. Local, reactive dynamics are assumed to

e governed by the non-linear functions f (u i , v i ) and g(u i , v i ) . The

nderlying network is characterised by a binary adjacency matrix

 : A ij is equal to unity if there is a link that goes from node j to
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ode i , and zero otherwise. The species relocate across the net-

ork, following available edges. More specifically, and with ref-

rence to species u , we postulate that the rate of change of the

oncentration u i , as reflecting the interaction with the neighboring

ode j , is modulated by D u (u j − u i ) . Taking into account the contri-

ution of all neighboring nodes, the net change of concentration at

ode i , relative to species u , is given by D u 
∑ N 

j=1 A i j (u j − u i ) where

he sum is restricted to the subset of nodes j for which A ij � = 0 and

 u is the positive transport coefficient for species u . Collecting this

nformation together, the system under examination obeys the fol-

owing set of 2 N ordinary differential equations: 
 

˙ u i = f (u i , v i ) + D u 

∑ N 
j=1 L i j u j 

˙ v i = g(u i , v i ) + D v 
∑ N 

j=1 L i j v j , 
(1) 

here the “dot” denotes 
d 

dt 
, L i j = A i j − δi j k 

in 
i 

are the elements of

he Laplacian matrix L where δi j = 1 if i = j and 0 otherwise, and

 

in 
i 

= 

∑ 

j A i j stands for the incoming degree of node i , i.e. the num-

er of connections pointing towards i . It is worth emphasising

hat the above operator is different from standard diffusion and

t converges to the latter only in the limiting setting of a sym-

etric (undirected) spatial support. It is worth emphasising that

he above operator is different from standard diffusion and it con-

erges to the latter only in the limiting setting of a symmetric

undirected) spatial support. With some abuse of language, we will

owever occasionally refer to the implemented transport rule as

iffusion. We also recall that standard reaction-diffusion systems

n continuous domains are customarily described by a closed set

f partial differential equations (PDEs) for concentrations. When

iscretising the PDE over a finite spatial periodic mesh, the prob-

em can be equivalently recast in the form (1) , for a specific choice

f the operator L , e.g. a (centred) second order finite differences

atrix for a square lattice, and by properly rescaling the coupling

onstants, so as to account for the selected mesh size, e.g. the 2 D

attice case. The use of the Laplace matrix L can thus be seen

s a mathematical extension of the classical framework of regu-

ar supports ( Othmer and Scriven, 1971 ) to the one of complex

etworks. 

As a prerequisite for the forthcoming analysis, we shall as-

ume the existence of a homogeneous equilibrium. This is labelled

(u ∗, v ∗) , and satisfies the condition f (u ∗, v ∗) = g(u ∗, v ∗) = 0 . The

olution (u i , v i ) = (u ∗, v ∗) for all i is further assumed to be stable

nder homogeneous perturbations. As first intuited by Turing, the

forementioned equilibrium can become unstable upon injection of

 small heterogeneous perturbation, which activates the diffusive

ouplings. The latter are otherwise silenced, as long as the solution

tays homogeneous. Under specific conditions, non-homogeneous

isturbances amplify: the system is consequently driven towards

ifferent asym ptotic attractors, termed in the literature as Turing

atterns. To isolate the conditions that make the instability possi-

le, one proceeds with a conventional linear stability analysis. The

ey idea is to introduce a small perturbation of the homogeneous

quilibrium, x = (u 1 , . . . , u N , v 1 , . . . , v N ) T − (u ∗, v ∗) T and insert it in

he governing Eq. (1) . By expanding to first order in the perturba-

ion, we obtain the following linear system: 

d 

dt 
x = ( J 0 + L ) x , (2) 

here the Jacobian matrix J 0 is 

 0 = 

(
f u 1 N f v 1 N 

g u 1 N g v 1 N 

)
= J 0 � 1 N , (3)

ith J 0 = 

(
f u f v 
g u g v 

)
the 2 × 2 Jacobian of the reaction part evalu-

ted at the fixed point (u ∗, v ∗) and where 1 is the N × N identity
N 
atrix. The generalised Laplacian operator L is the matrix given

y 

 = 

(
D u L 0 N 

0 N D v L 

)
= 

(
D u 0 

0 D v 

)
� L , (4) 

hat takes into account both the transport coefficients and the ge-

metry of the support. 

The eigenvalues λ of the 2 N × 2 N matrix J 0 + L define the fate

f the perturbation. If there exists (at least) one eigenvalue with

 positive real part, then the perturbation initially grows exponen-

ially, and the homogeneous fixed point is predicted unstable. An

legant procedure to compute the spectrum of J 0 + L involves the

igenvectors of the Laplacian matrix L . Assume the latter to be di-

gonalisable, introduce its eigenvalues �( α) and associated eigen-

ectors φ( α) , as 
∑ 

j L i j φ
(α) 
j 

= �(α) φ(α) 
i 

, with α = 1 , . . . , N. Then we

an expand the perturbation on the basis of the Laplacian ma-

rix and project the 2 N × 2 N Eq. (2) onto a collection of N inde-

endent 2 × 2 problems, each associated to a given subspace, as

panned by the corresponding eigenvector. When the underlying

etwork is symmetric, the Laplacian eigenvalues �( α) are real and

on-positive. Moreover, the eigenvectors form an orthonormal ba-

is of the embedding manifold. The short time evolution of the

mposed perturbation is exponential and the associated growth

or damping) factors λ can be readily computed as a function of

he eigenvalue entries �( α) , by solving the following characteristic

roblem: 

et 

(
f u + D u �(α) − λ f v 

g u g v + D v �(α) − λ

)
= 0 . (5) 

he eigenvalue with the largest real part, λ = max α � λ(�(α) ) , de-

nes the so called dispersion relation, which characterises the re-

ponse of the deterministic system (1) to external perturbations.

he quantity �( α) is the analogue of the wavelength for a spa-

ial pattern in a system defined on a continuous regular lattice,

here �(α) ≡ −k 2 , and k stands for the usual spatial Fourier mode.

or this reason the conditions for the onset of Turing patterns are

he same as those obtained for a continuous support and for any

sufficiently large) symmetric network. When the dispersion re-

ation λ( �( α) ) is positive over a finite range of �( α) , the pertur-

ation is triggered unstable. The combined action of the reactive

nd diffusive components produces a self-consistent amplification

f the small inhomogeneities, driving the system towards a pat-

erned stationary stable attractor. This constitutes the natural ex-

ension of the well-known Turing patterns, to systems defined on

 discrete, network-like support. The discrete dispersion relation is

ndeed identical to the one for continuous support, except for the

act that its domain of definition takes values on the finite set of

eal eigenvalues �( α) . The conditions for the onset of the instabil-

ty in the continuum and discrete settings hence coincide for suf-

ciently large networks and modulo small deviations that might

ventually arise, if the discrete spectrum does not extend to the

egion where the dispersion relation for the continuous support is

ositive. 

A completely different scenario is, instead, faced when net-

orks are assumed to be directed, e.g. when the edges connecting

wo adjacent nodes can be accessed in one direction only. Break-

ng the symmetry implies dealing with complex eigenvalues of the

ssociated Laplacian, a modification that can significantly impact

he onset of diffusion-driven, Turing-like, instabilities. Indeed, the

maginary component of �( α) contributes to the real part of λ, as

ollows from the self-consistent condition (5) . It can be shown that

his additional contribution favours the outbreak of the instability,

hus enhancing the intrinsic ability of the reaction-diffusion sys-

em to develop ordered patterns, as compared to its continuum (or

iscrete and symmetric) counterpart ( Asllani et al., 2014b ). 
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In this paper we are interested in the emergence of patterns

in systems defined on an asymmetric support, which are deemed

stable under a conventional linear stability analysis, for any kind

of perturbations. The latter can in fact grow, at short times, if the

underlying network is non-normal, yielding patterns also when lin-

ear stability returns a negative dispersion relation, λ< 0, a setting

where Turing instability cannot develop. The remaining part of this

section is devoted to revisiting the concept of non-normality. We

will in particular discuss how non-normality impacts the evolution

of a generic linear system, in arbitrary dimensions. To this end con-

sider a linear system 

d 
dt 

x = Mx , and assume M to be non-normal.

A matrix is said to be non-normal if it does not commute with its

adjoint ( Trefethen and Embree, 2005 ). If M is real, then taking the

adjoint amounts to computing the transpose of the matrix. Hence,

M is non-normal provided [ M , M 

T ] ≡ MM 

T − M 

T M � = 0 , where the

superscript T stands for the transpose operation. Observe that non-

normality is equivalent to the non-existence of a suitable orthogo-

nal basis of eigenvectors. 

A straightforward manipulation ( Trefethen and Embree, 2005 )

yields the following equation for the evolution of the norm of the

perturbation ‖ δx ‖ : 

d‖ δx ‖ 

dt 
= 

δx 

T H (M ) δx 

‖ δx ‖ 

(6)

where H (M ) = 

M + M 

T 

2 identifies the Hermitian part of M . The evo-

lution of the perturbation at short times is ultimately set by the

so-called numerical abscissa , ω = sup σ (H (M ) ) , where σ (H (M ))

stands for the spectrum of H ( M ). If ω > 0, then the non-normal

matrix is termed reactive , and perturbations may display an ini-

tial, transient growth ( Fig. 2 ). The degree of non-normal amplifica-

tion can be quantified through diverse indicators ( Trefethen and

Embree, 2005 ). In our setting, the reaction-diffusion system is

amenable to its linear homologue (2) , when operating in the

vicinity of a stationary stable homogeneous attractor. Asymme-

try, a key ingredient for non-normality, can be hence accommo-

dated in the matrix that encodes for paired couplings, so trigger-

ing a short time amplification of the imposed perturbation that

will prove instrumental for a generalised class of diffusion-driven
instabilities. 

Fig. 2. Non-normal dynamics. Time evolution for the norm of x , solution of the sta- 

ble linear system ˙ x = Ax for a normal (blue) and non-normal (red) system. In both 

cases the system is stable, meaning that the spectral abscissa is negative α( A ) ≡
sup � σ ( A ) < 0 . The norm ‖ x ( t ) ‖ can however undergo a short time amplification 

if the numerical abscissa is positive, ω( A ) ≡ sup σ ( H ) > 0 where H = 

(
A + A ∗

)
/ 2 is 

the Hermitian part of A . The norm of the solution is bounded below by the Kreiss 

constant K(A ) ≤ sup t≥0 ‖ x (t) ‖ / ‖ x (0) ‖ ( Trefethen and Embree, 2005 ). (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

F
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. Non-normal patterns for stable systems 

Without loss of generality, we shall assume in the following

he Brusselator model ( Prigogine and Nicolis, 1967; Prigogine and

efever, 1968; Boland et al., 2008 ), as a reference scheme involv-

ng a cubic reaction. The Brusselator is a paradigm of non-linear

ynamics, and it is often employed in the literature as a reference

odel for self-organisation, synchronisation and pattern formation.

his choice amounts to setting f (x, y ) = 1 − (b + 1) x + cx 2 y and

(x, y ) = bx − cx 2 y where b and c denote positive non-dimensional

arameters. The system admits a trivial homogeneous fixed point

or (u i , v i ) = (1 , b/c) , ∀ i , that is stable provided c > b − 1 . We can

asily determine the conditions for a Turing instability. Assuming

s a starting point a symmetric spatial support, we conclude that

he diffusion coefficients need to comply with the necessary con-

ition D u < D v for patterns to emerge. A straightforward calcula-

ion enables us to conclude that c < D v /D u (b + 1 − 2 
√ 

b ) , as an ad-

itional constraint on the parameters, for the Turing instability.

he above conditions allow us to isolate the domain in the pa-

ameter space ( b , c ) where Turing patterns are predicted to occur.

he region of interest is displayed in Fig. 3 , with a green shad-

ng, and it is delimited by the curves c = b − 1 (dashed line) and

 = D v /D u (b + 1 − 2 
√ 

b ) (solid line) (region ( iii )). It is worth not-

ng that the latter region reflects the instability conditions on both

ontinuous and discrete supports. 

Consider now the Brusselator model defined on a directed,

on-normal network. In the following we choose to operate with

he class of non-normal networks introduced in Asllani and Car-

etti, 2018 . The recipe for the network generation goes as follows:

tart with a weighted directed 1 D ring, and assume the weights

o be randomly drawn from a uniform distribution U [0, γ ], where

is a (large) scalar parameter. Further, label the nodes with an

scending index, when circulating clockwise across the ring. Then,
ig. 3. Different domains in the parameter plane ( b , c ) that yield pattern formation 

or the Brusselator model. Distinct domains of interest are isolated in the refer- 

ence plane ( b , c ) and depicted with different colour codes. In region ( iii ) (shaded in 

green), a Turing instability develops for the Brusselator model defined on a contin- 

ous or symmetric discrete support. In region ( ii ) (yellow), topology driven patterns 

merge: the homogeneous fixed point is triggered unstable by the directed nature 

f the spatial support; here patterns can be stationary or wave-like. Finally, red 

ots define region ( i ), where non-normality drives the onset of pattern formation, 

otwithstanding the prediction of the linear stability analysis that deems the homo- 

eneous fixed point stable, and thus resilient to external perturbation. In white is 

he region where patterns cannot be established. The Turing region is bounded from 

elow by the curve c = b − 1 (dashed line) and from above by c = 

D v 
D u 

(b + 1 − 2 
√ 

b ) 

solid curve). The underlying non-normal network (generated according to the pro- 

edure discussed in the main body of the paper) is made up of N = 100 nodes. The 

model parameters are D u = 0 . 5 and D v = 1 . 925 . the initial conditions for u (resp. 

 ) are uniformly drawn from an N -dimensional sphere of radius δ = 0 . 2 centred u ∗

resp. v ∗). (For interpretation of the references to colour in this figure legend, the 

eader is referred to the web version of this article.) 
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or all i = 1 , . . . , N, we create with probability p 1 , 0 < p 1 < 1, a weak

ink of order 1, namely much smaller than the weights on the di-

ected ring, that bridges the (i + 1) th node to the i th one. This

rocedure returns a non-normal network which displays a richer

opology as compared to that of the initial direct skeleton. More-

ver, its degree of non-normality correlates positively with γ : the

arger γ the more pronounced the inherent non-normality, as re-

ealed through standard quantitative indicators ( Asllani and Car-

etti, 2018 ). In the following we shall operate with γ = 50 and

p 1 = 0 . 4 . 

As already stated, the imaginary component of the eigenvalues

f the Laplacian matrix seeds an enlargement of the region of

arameter space where the instability is predicted to occur. The

ortion of the parameter plane where the instability extends is de-

icted in yellow in Fig. 3 and labelled as region ( ii ). Here, the dis-

ersion relation is positive and the ensuing patterns bear a topo-

ogical imprint, as they are ultimately reflecting the directionality

f the embedding spatial support. It is worth emphasising that the

russelator model evolved on a symmetric network or a contin-

ous support cannot develop Turing patterns for the same choice

f parameters. The boundaries of the region where topological

atterns develop can be traced analytically ( Asllani et al., 2014b ). 

More interesting for our current study, is what happens above

egion ( ii ). Here, the dispersion relation, the rate which governs the

xponential evolution of the perturbation, is negative, thus imply-

ng linear stability. Patterns, resembling those generated inside the

omain of (topological or Turing-like) instability, are instead ob-

erved, when integrating numerically the governing equations. A

ed dot is plotted in Fig. 3 if the patterns are obtained, upon nu-

erical integration, for the corresponding values of the reaction

arameters ( b , c ). The results displayed in Fig. 3 refer to one real-

sation of the dynamics. Repeating the analysis to account for an

xtended set of independent numerical experiments yields equiv-

lent conclusions. The amplitude of the noise is assumed so small

hat patterns cannot set in when the non-normal network is re-

laced with its symmetrised analogue (see also Fig. 9 where the

mergence of this novel class of patterns is studied in terms of

he pseudo-dispersion relation). Denote by A the adjacency ma-

rix of the non-normal network, as obtained via the procedure

iscussed above. Then, (A + A 

T ) / 2 is the adjacency matrix which

haracterises the associated symmetric network. We anticipate that

ropensity to self-organisation exhibited by the system stems ul-

imately from the characteristic dynamics as displayed by linear

on-normal systems at short times. We shall return to elaborate

n this point in the following. 

In Fig. 4 the dispersion relation is shown for different choices

f the parameters ( b , c ). Selected points in the parameter space

re displayed with a symbolic marker (respectively circle, square,

riangle) in Fig. 3 . In the top-left panel of Fig. 4 the dispersion re-

ation λ is plotted against the real part of the Laplacian eigenvalues

, when operating inside the region of conventional Turing order.

he continuum dispersion relation (solid blue line) predicts insta-

ility, i.e. it takes positive values. Green symbols, obtained for the

russelator model evolved on a symmetrised network support (as

efined above), follow, as expected, the profile of the dispersion

elation for the continuous support. Red circles refer instead to the

odel operated on a non-normal, hence directed, network, of the

ype discussed above. Again the system is predicted unstable, the

stimated growth rate of the perturbation being larger as com-

ared to the symmetric case. In the insets annexed to the panel,

he time evolution of the norm of the perturbation is represented,

or both symmetric (top, green curve) and asymmetric (down, red

urve) settings. In both cases the curves grow and eventually reach

n equilibrium plateau, the signature of the existence of a non-

omogeneous solution. The corresponding patterns, as obtained in

he asymptotic regime of the evolution, are displayed in the boxes
nnexed immediately below the corresponding dispersion relation.

he nodes of the collection, arranged in a 2 −dimensional circu-

ar array for the sake of visual representation, are coloured with

n appropriate code which reflects the steady state concentration

f species u . The system segregates into nodes rich/poor in acti-

ators/inhibitors, the polarisation being more notable in the asym-

etric setting (bottom figure). In the second plot of the top row,

he parameters are set so as to have the system initiated in re-

ion ( ii ) of Fig. 3 (square symbol). The system defined on sym-

etric graphs is now stable: the norm of the perturbation damps

teadily and the homogeneous fixed point proves resilient to ex-

genous perturbation of the initial state (the dispersion relation is

egative). No patterns can hence develop, as displayed in the sec-

nd panel of the second row. Conversely, the dispersion relation

omputed for the Brusselator on the directed network (red circles)

ignals the instability, which eventually materialises in a topology

riven pattern, as displayed in the bottom middle panel. Finally,

or region ( i ) we obtain the result enclosed in the red box of Fig. 4 .

he dispersion relations are now negative, thus implying that the

erturbation should asymptotically vanish. While no patterns are

bserved for the system integrated on a symmetric support, this is

anifestly not the case when the underlying graph is assumed to

e non-normal. The short time growth of the perturbation, as re-

orted in the small (lower) inset of the top right panel, stabilises

n a macroscopic pattern (lower panel of the column enclosed in

ed) which shares striking similarities (in terms of density distribu-

ion and corresponding amplitude) with the homologous patterns

btained inside the region of linear instability. From these observa-

ions it appears already evident that the mechanism that drives the

mergence of non-normal pattern from the asymptotically stable

omogeneous solution resides in the ability to amplify the pertur-

ation imposed at short time. The idea, that we will now explore,

s that the short time amplification, as triggered by non-normality,

akes the system jump across the barrier that separates homo-

eneous and heterogeneous attractors, thus yielding a spatially ex-

ended pattern, which could not be anticipated via a linear stability

nalysis. 

To further investigate this issue, we introduce a quantitative in-

icator, A , for measuring the amplitude of the patterns that are

ventually established by means of the alternative routes high-

ighted above. This is defined as: 

 = 

√ ∑ 

i 

[
(u 

∞ 

i 
− u 

∗) 2 + [(v ∞ 

i 
− v ∗) 2 

]
, (7) 

here u ∞ 

i 
(resp. v ∞ 

i 
) is the asymptotic stationary value of u i ( t )

resp. v i (t) ) at node i . In Fig. 5 , the scalar quantity A averaged

ver a large sample of independent realisations, 〈 A 〉 , is plotted as

 function of b , at fixed value of c . Circles (red) refer to the sys-

em evolved on the non-normal network, the same network em-

loyed in the analysis that led to Fig. 3 . Squares (green) stand for

he values of 〈 A 〉 recorded when the system is studied on the sym-

etrised version of the network. As can be appreciated by visual

nspection of Fig. 5 , non-normality drives a significant enlargement

f the region of the parameter space that yields heterogeneous pat-

erns (see the light red region in Fig. 5 ), beyond the domain where

opological patterns (or pattern of directionality) are found to oc-

ur (see the light blue region in Fig. 5 ). Notice also that the pat-

erns sustained by non-normality have a characteristic amplitude

omparable to that associated with conventional Turing patterns,

s quantified by 〈 A 〉 . The same conclusion is reached upon inspec-

ion of the annexed histograms. Performing a vertical cut, for a

alue of b at the threshold (vertical line located at the point A)

f the leftmost bifurcation, one finds that non-normal patterns are

haracterised by a bimodal distribution of the associated ampli-

ude. The coexistence of homogeneous, 〈 A 〉 ∼ 0, and patterned so-

utions, 〈 A 〉 = O(1) , suggests that the transition is of first order.
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Fig. 4. The dispersion relation and the ensuing patterns in different regions of the parameter plane. Turing patterns (b, c) = (26 , 61 . 1) (left column), topology-driven patterns 

(b, c) = (24 , 61 . 1) (middle column), patterns of non-normality (b, c) = (22 . 5 , 61 . 1) (right column, enclosed in the red box). The position of the selected working points is 

marked in Fig. 3 , with, respectively, a triangle, a square and a circle. In all cases, the dispersion relation is drawn for the non-normal (directed) network (red symbols) and 

the symmetrised network (green symbols). Recall that the instability is set once the dispersion relation is positive. The insets in the panels that form the first row, show the 

time evolution of the norm of the system for the non-normal network (red curves) and the symmetric settings (green curves). Here, the system is initialised δ-close to the 

equilibrium (see caption of Fig. 3 ), with δ = 0 . 2 . The remaining parameters, as well as the network employed, are those used in Fig. 3 . The ensuing patterns are displayed for, 

respectively, the symmetric setting (second row), and the non-normal network. In particular, in the third row, the patterns are depicted when representing the network with 

a stylised lattice layout (as for the symmetric setting). In the fourth row, the edges of the networks are instead shown. Nodes displaying a low concentration are assigned to 

the central portion of the cluster.. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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The histogram obtained for a symmetric setting returns instead a

unique peak, at zero 〈 A 〉 . This is also true when the vertical cut is

performed well inside the region of non-normal patterns (vertical

line located at B). Non-normal patterns are instead associated with

macroscopic amplitudes. 
The results of Fig. 5 reveal another important fact: patterns are

lso found for symmetric networks, in a small region outside (but

n proximity of) the Turing domain. Such patterns are again due

o non-normality, as stemming from the reaction term. Indeed the

acobian of the Brusselator is non-normal for any choice of b and
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Fig. 5. On the amplitude of the ensuing patterns. Main panel (centre): the average pattern amplitude 〈 A 〉 is plotted as a function of the parameter b , for c = 61 . 1 . Red circles 

refer to the system evolved on a non-normal network, while green squares stand for its symmetrised analogue. The grey region corresponds to parameters giving rise to 

Turing instability and the blue one to instability driven by the network directionality. Finally, the domain coloured in pink highlights the region where the homogeneous 

fixed point is stable according to a linear stability analysis, but where patterns can emerge due to non-normality. The insets show histograms of pattern amplitudes, for two 

specific values of b , namely b ∼ 20.5 (A), b ∼ 22.5 (B). Red symbols refer to data collected when the Brusselator model evolves on a non-normal support. The green histograms 

are computed from simulations that assume symmetric support. The remaining parameters have been set to D u = 0 . 5 , D v = 1 . 925 , δ = 0 . 2 . Simulations have been performed 

using the same networks as in Fig. 3 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

c  

f  

a  

i  

a  

g  

p  

s  

n

 

b  

p  

o  

o  

n  

a  

b  

c  

F

i

n

F

t

 , and this is a sufficient condition to trigger the system unstable,

or a perturbation of modest size, also beyond the strict bound-

ries, obtained under the linear stability framework. The positive

nterference of two distinct sources of non-normality, respectively

ssociated with the reaction and diffusion parts, enlarges the re-

ion deputed to the instability, as already remarked. Interestingly,

atterns of non-normality can also exist for systems displaying a

ymmetric Jacobian, when the embedding spatial support is made

on-normal ( Asllani and Carletti, 2018 ). 
ig. 6. On the stability domain. Left panel: average pattern amplitude as a function of the

ndependent realisations of the dynamics. Right panel: the size of the stability domain δ

etwork (red symbols) and on its symmetric analogue (green symbols), and plotted as a

or the analysis we employed the networks used in Fig. 3 . (For interpretation of the refe

his article.) 
To shed further light on the mechanism that seeds the insta-

ility at negative dispersion relation, and so elaborate on the role

layed by non-normality, we study the response of the system,

n both symmetric and asymmetric supports, at different values

f the size of the initial perturbations applied on the homoge-

eous equilibrium. In the left panel of Fig. 6 , we plot the aver-

ge pattern amplitudes as a function of δ, for a given choice of

 : in the case of symmetric networks (green symbols) patterns

an only develop for macroscopic perturbations ( δ > δcrit = 0 . 83 ).
 size of the initial perturbation δ, for b = 22 . 56 . The average is computed over 500 

crit is computed for, respectively, the Brusselator model defined on the non-normal 

 function of b . The remaining parameters are set to c = 61 . 1 , D u = 0 . 5 , D v = 1 . 925 . 

rences to colour in this figure legend, the reader is referred to the web version of 
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Fig. 7. Transient amplification and linearised dynamics. Left panel: we show the time evolution of the norm of the perturbation for the linearised dynamics (dotted line) 

and for the full non-linear model (solid line). For the linear system, we can see the transient growth and the subsequent decrease towards the asymptotic equilibrium. The 

non-linear system stabilises eventually to a value of the norm which is different from zero. Here, δ = 0 . 2 . Right panel: 
(δ) := max t || � x (t) || − || � x (0) || as a function of the 

perturbation size δ, for non-normal (red symbols) and symmetric networks (green symbols). The parameters are set to b = 22 , c = 61 . 1 , D u = 0 . 5 , D v = 1 . 925 . The networks 

employed are those used in Fig. 3 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Patterns of non-normality for D v /D u ∼ 1 . We plot the average pattern am- 

plitude 〈 A 〉 as a function of the parameter b , for c = 23 . 72 and D v /D u = 1 . 5 , for 

the Brusselator model evolving on the non-normal network used in Fig. 3 . Values 

of b lying in the blue region yield instability driven patterns due to the network 

directionality. The region coloured in pink highlights the interval in b where the 

homogeneous fixed point is linearly stable and patterns can emerge due to non- 

normality. Each point is the average over 100 independent replicas. The remaining 

model parameters are the same as those used in Fig. 3 . (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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On the other hand, for non-normal networks, a perturbation with

δ > δcrit = 0 . 005 suffices for the initiation of the patterns. For any

b we define δcrit to be the smallest value of the initial perturbation

for which patterns emerge. In the right panel of Fig. 6 , the value

of δcrit is plotted against b : the basin of attraction of the homoge-

neous state shrinks considerably when the system is defined on a

non-normal support, an observation which helps explain the aug-

mented propensity of non-normal systems for pattern formation.

The shrinking of the basin of attraction of the homogeneous fixed

point follows the transient growth of the perturbation, as driven

by non-normality. In the left panel of Fig 7 the evolution of the

norm of the perturbation is tracked under the linear approxima-

tion, which follows Eq. (2) . The norm grows at short times, and

then converges to zero, as it should since the homogeneous fixed

point is linearly stable. The evolution of the perturbation as ob-

tained for the full non-linear model is, instead, quite different, as

can be visually appreciated. Non-linearities eventually stabilise the

norm to a non-zero value which was made accessible to the sys-

tem under the transient evolution. In the right panel of Fig. 7 ,


(δ) := max t || x (t) || − || x (0) || is represented as a function of the

perturbation size δ for, respectively, the non-normal network (red

symbols) and the symmetric one (green symbols). The two curves

run parallel to each other on the log-log plot and the relative shift

is rationalised as follows: Consider, for example, the right panel of

Fig. 6 , where δcrit is plotted against b and focus in particular on

b = 22 . For the case of a non-normal network, we readily obtain

( δcrit ) nn � 0.05, while ( δcrit ) sym 

� 0.6. On the other hand, the value

of 
(0.05) (i.e. a direct measure of the transient growth induced

by non-normality for δ � 0.05, under the linear approximation) is

about 0.4 (see right panel of Fig. 7 , plotted for b = 22 ), i.e. of the

correct order of magnitude to explain the observed discrepancy be-

tween ( δcrit ) sym 

and ( δcrit ) nn . 

As mentioned in the Introduction, Turing patterns require the

inhibitor to diffuse faster than the activator. Moreover, the ratio of

the diffusivities D v /D u should be sufficiently large for the pattern

to materialise in an extended region of parameter space. For the

Brusselator, sending D v /D u → 1 contextually implies setting b and

c very large for the patterns to set in via a conventional Turing

instability. Network asymmetry, and the associated non-normality,

enable us to extend the region where patterns are reported to oc-

cur to smaller ratios of D v /D u → 1 , without forcing the reactive pa-

rameters to extremely large values. As an example see Fig. 8 where
e show the pattern amplitude for D v = 0 . 75 and D u = 0 . 5 , result-

ng in D v /D u = 1 . 5 , for values of the parameters b and c of the

ame order of the ones used in Fig. 5 . Patterns of non-normality

o exist for a large range of values of the b parameter (observe

lso that in this setting Turing patterns cannot develop on a sym-

etric support). The patterns are of a non-neglibile magnitude up

o b ∼ 21. Below this value the magnitude reduces, as depicted in

ig. 8 . This is a spurious effect due to the fact that, for b ∈ [20, 21],

here is a coexistence of two distinct solutions, one corresponding

o the macroscopic pattern and the other to the persisting homo-

eneous state (see also Fig. 5 ). 

. Pseudo-dispersion relation 

In the above discussion we have shown that patterns can

merge due to the non-normality of the underlying network when

he dispersion relation would deem the homogeneous fixed point
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Fig. 9. Dispersion relation and pseudo-dispersion relation. Left panel: Fixing the parameters (b, c) = (22 . 5 , 61 . 1) (see also Fig. 4 ) we plot the dispersion relation for the 

non-normal (directed) network (red circles) and symmetrised network (green squares). Empty symbols stand for the pseudo-dispersion relation, with an identical code for 

the assigned colours. The system cannot exhibit Turing patterns because the dispersion relations are consistently negative. However the pseudo-dispersion relation is positive 

when dealing with a non-normal network. This implies that the system undergoes an initial amplification which can eventually form a macroscopic pattern. Right panel: 

using the same symbol/colour scheme as in the left panel, we show the maximum of the dispersion relation as a function of b . We can see that the pseudo-dispersion relation 

for the non-normal network (empty red circles) is positive for a much larger parameter range. Hence, non-normality of the embedding support favours the emergence of 

patterns. Here δ = 0 . 2 and each point is the average over 50 independent replicas. The remaining parameters, as well as the networks selection, are those used in Fig. 3 . (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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table. Our conclusions rely on a direct numerical integration of

he governing equations and we lack a predictive tool that could

ventually be employed to anticipate the phenomenon. In the fol-

owing we shall propose an extended definition of the disper-

ion relation that builds on the concept of the pseudospectrum

 Trefethen and Embree, 2005 ). We begin by recalling the definition

f the pseudospectrum, σε( M ) , of a matrix M , namely: 

ε ( M ) = σ ( M + E ) , ∀ || E || < ε, (8)

here σ ( M ) denotes the spectrum of the matrix M and ε is a

calar positive defined quantity. The pseudospectrum is an im-

ortant and relatively recent mathematical tool which has been

uccessfully applied to different disciplinary contexts where non-

ormality occurs ( Trefethen and Embree, 2005 ). The Kreiss con-

tant, a lower bound for the linear growth of an imposed pertur-

ation, can be computed from the pseudospectrum. 

While the behaviour of a linear (non-normal) system is rela-

ively well understood in the framework of pseudospectrum the-

ry, extending this to non-linear models is challenging. Consider a

eneric non-linear system, ˙ x = f ( x ) , where f : R 

n → R 

n is a vector-

alued non-linear function. 

The problem of local stability is tackled by performing a Taylor

xpansion about a given fixed point x ∗, f ( x ∗) = 0 . The evolution of

he perturbation ε near the equilibrium x ∗ is then given by: 

˙ = 

(
Df ( x 

∗) + 

1 

2! 
εT D 

2 f ( x 

∗) 
)
ε + . . . , (9) 

here Df ( x ∗) and D 

2 f ( x ∗) are, respectively, the Jacobian matrix

nd the Hessian tensor 1 of the non-linear function f , both eval-

ated at the fixed point. Keeping only the first term on the right

and side corresponds to performing a linear analysis, i.e. comput-

ng the spectrum of Df ( x ∗) , and straightforwardly yields the defi-

ition of the dispersion relation, as introduced above. 

Accounting for the second term in the expansion results in a

uadratic problem that cannot be solved exactly. We can, however,

ake some progress by replacing εT D 

2 f ( x ∗) / 2 with a constant fac-

or that depends on the equilibrium point and also on the ini-
1 With a slight abuse of notation we denote with such symbol the term 

 

i j ∂ i j f l ( x 
∗) εi ε j for each component f l of the vector f = ( f 1 , . . . f n ) . 

(  

d  

t  

T  
ial perturbation, ε0 = x (0) − x ∗. In this way Eq. (9) can be written

gain as a linear system 

˙ = 

[ 
Df ( x 

∗) + 

1 

2! 
εT 

0 D 

2 f ( x 

∗) 
] 
ε ≡ [ J ( x 

∗) + P ( x 

∗, ε0 ) ] ε, (10) 

here J is the Jacobian and P stands for a perturbation that is

mall, but not negligible. The spectrum of J + P can thus provide

nformation about the possible growth of the initial perturbation.

n analogy with the dispersion relation, and borrowing the name

rom the pseudospectrum, we define the pseudo-dispersion relation

ε to be the largest real part of the eigenvalues of J + P . A positive

alue for λε implies that ε grows in time. The perturbation hence

s amplified and the system can possibly head towards a different

ttractor. 

Let us observe that the spectrum of J + P is not, in general,

 small perturbation of the spectrum of J . We cannot therefore

se the tools developed in Asllani et al., 2014a; Hata and Nakao,

017 but rely instead on a continuation method (see Appendix A ).

et us denote by η the norm of P and observe that if ε0 → 0

hen η → 0. Let us denote by μη the eigenvalue of J + P , such that

| P || = η. Notice that, in doing this, we are abusing notation be-

ause P - and thus its norm - depends on ε0 , so different initial

erturbations can produce different P , but all with the same norm.

e can, however, account for this fact by averaging μη over sev-

ral initial conditions that share the condition || P || = η. For η = 0 ,

e have that μ0 is an eigenvalue of J and thus we can find an

igenvalue �( α) of the Laplacian matrix such that μ0 = μ0 (�
(α) ) .

hen varying continuously s ∈ (0, η) we can follow, with continu-

ty, μs ( �( α) ). In Fig. 9 (left panel) we show � μs ( �( α) ), for s = 0

nd s = η, as a function of �( α) computed with this procedure and

or the parameter values corresponding to the setting of the right

anel of Fig. 4 . We recall that for this parameter setting, the sys-

em defined on a non-normal network exhibits patterns of non-

ormality, while it does not when confined on its symmetrised ho-

ologue. Remarkably, the pseudo-dispersion relation captures this

ifference, the latter being positive for the non-normal network

empty red circles) while it is negative for the symmetric network

empty green squares). In the right panel of Fig. 9 we show the

ispersion relation and the pseudo-dispersion relation as a func-

ion of the model parameter b while fixing all the remaining ones.

he procedure outlined here can hence be regarded as a viable
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2 We here assume that the notation of repeated indices stand for a sum, that is 

U il V li = 

∑ 

U il V li . 
approach for predicting the stability of the system beyond the con-

ventional linear order of approximation. 

5. Conclusions 

The aim of this paper was to discuss a generalised route to pat-

tern formation. To this end we studied a reactive system that is

designed to explore a networked space and considered the inter-

esting setting where the network is non-normal. The concept of

non-normality is quite intriguing: a multidimensional linear sys-

tem, ruled by a non-normal matrix, can display a short time am-

plification for the norm of an injected perturbation, also in the

case when the latter is predicted to fade away asymptotically,

because of the stability assumption. For the case at hand, the

non-normality of the embedding support combines with the non-

normality inherited by the reaction component, to trigger the sys-

tem unstable, even if the corresponding dispersion relation is neg-

ative. Working with the Brusselator model, for illustrative purposes

for its recognised pedagogical value, we proved that non-normality

yields a contraction of the basin of attraction of the homogeneous

fixed point, and consequently acts as the main driver for the on-

set of the instability. This phenomenon can be quantitatively anal-

ysed based on the pseudo-dispersion relation, an effective tool

for predicting the fate of the perturbation beyond conventional

linear analysis and accounting for non-linear corrections. Taken

together, making the network of couplings non-normal favours

the spontaneous drive to macroscopic organisation, an observation

that could potentially help in overcoming the limitations intrin-

sic to other paradigmatic approaches to pattern formation. Non-

normality could result in a novel route to the emergence of self-

organised structures, widespread patterns of complexity of broad

applied and fundamental relevance ( Pastor-Satorras and Vespig-

nani, 2010 ). These conclusions are even more relevant given the

recent account on the ubiquity of non-normality across different

fields of investigations ( Asllani et al., 2018 ). To conclude, we re-

mark that we have here solely focused on a purely deterministic

setting. It is tempting to speculate that non-normality in a stochas-

tic framework (the noise source being exogenous or endogenous),

will eventually yield a more robust and flexible route to pattern

formation in dynamics modelling ( Biancalani et al., 2017; Fanelli

et al., 2017; Nicoletti et al., 2018 ). 
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Appendix A. Continuation method 

The computation of the eigenvalues/eigenvectors of J + P can-

not be tackled with a perturbative scheme because, as previously

mentioned, the correction on J is not sufficiently small. A possible

way to overcome this problem is to consider the modified matrix

J (s ) := J + s P , (A1)

where s ∈ [0, 1]. Hence J (s ) interpolates between the extreme cases

J , the known system, and J + P the system under scrutiny. For all

s we are interested in finding the eigenvalues, hereby cast into a

diagonal matrix D (s ) , and left/right eigenvectors, again organised

into a matrix form, U (s ) and V (s ) , where we explicitly emphasise

their dependence on s . In summary, we want to solve 

J (s ) V (s ) = V (s ) D (s ) and U (s ) J (s ) = D (s ) U (s ) . (A2)
Let us now assume s to be a variable and differentiate the pre-

ious equations with respect to s . Under the requirement of regu-

arity we obtain for V (s ) (and similarly for U (s ) ): 

 V (s ) + J (s ) 
d 

ds 
V (s ) = 

(
d 

ds 
V (s ) 

)
D (s ) + V (s ) 

d 

ds 
D (s ) . (A3)

eft multiply by U (s ) to obtain 

 P V + D U 

d 

ds 
V = U 

(
d 

ds 
V 

)
D + U V 

d 

ds 
D , (A4)

here, to simplify notation, we removed the explicit dependence

n s . 

This relation, and the other obtained for U , are matrix differen-

ial equations involving the unknown matrix functions U , V and D .

onsidering the diagonal terms of Eq. (A4) , and recalling that D is

 diagonal matrix, we obtain: 2 

( U P V ) ii + D ii U il 

d 

ds 
V li = U il 

(
d 

ds 
V li 

)
D ii + U il V lm 

d 

ds 
D mi , (A5)

hat is, the term involving the derivative of V cancels out and we

nd up with the derivative of D : 

 il V li 

d 

ds 
D ii = ( U P V ) ii , (A6)

hat is 

d 

ds 
μi (s ) = 

( U P V ) ii 
( U V ) ii 

, (A7)

here we reintroduced the eigenvalues μi (s ) = D ii . 

Considering now the component ij of Eq. (A4) , we can obtain,

fter some straightforward computation, 

 il 

d 

ds 
V l j = − ( U P V ) i j 

μi (s ) − μ j (s ) 
+ 

( U V ) i j 

μi (s ) − μ j (s ) 

( U P V ) j j 

( U V ) j j 

, (A8)

nd 

d 

ds 
U il 

)
V l j = 

( U P V ) i j 

μi (s ) − μ j (s ) 
− ( U V ) i j 

μi (s ) − μ j (s ) 

( U P V ) ii 
( U V ) ii 

. (A9)

Under the assumption of non-degenerate eigenvalues the above

atrix ODE can be numerically solved starting from the initial con-

itions μi (0) (eigenvalues of J ), U 0 and V 0 (resp. left and right

igenvectors of J ), up to s = 1 providing in this way the required

ontinuation of the eigenvalues. Proceeding along this line and us-

ng a first order method to solve the ODE returns the pseudo-

ispersion relations displayed in Fig. 9 . 
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