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Abstract
The intestinal epithelium is crucial to maintaining a healthy gut.
Central to this are the crypts of Lieberkühn, which coordinate
the rapid self-renewal of the epithelium to protect the small
intestine and colon during digestion. Further, mutations in crypt
cells may initiate colorectal cancer. It is, therefore, important to
understand how crypts function during homeostasis and dis-
ease. Mathematical and computational modeling has contrib-
uted to increasing our understanding of crypt dynamics.
However, many open questions remain to be addressed,
particularly regarding the role of mechanics in intestinal crypt
dynamics. In this article, we review the state-of-the-art in crypt
modeling and explain why further progress requires the inte-
gration of new theory from continuum mechanics with cell-
based computational models and experimental data.
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Introduction
The intestinal epithelium is a monolayer that protects
the small intestine and colon during digestion and
simultaneously facilitates nutrient absorption [44,19].
Its rapid self-renewal is controlled by millions of crypts
of Liehberkühn, uniformly-spaced invaginations lining
the gut. In the intestines, multipotent stem cells are
localized in crypt bases where they coordinate cell pro-
liferation, death, and migration to facilitate the constant
turnover of the epithelium every 3e5 days [19], with
increased turnover in chronic inflammation [40].
Consequently, the crypt has become a canonical model
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for studying stem cell dynamics [5]. In general, prolif-
erative cells are only found in the crypts. Hence, when
gut tissue is injured or inflamed, crypts are crucial to
restoring barrier function by generating new tissue [27].
Moreover, colonic cancer is known to originate in colonic
crypts [5]. For these reasons, understanding how crypt
dynamics maintain homeostasis in health, how they are

restored following injury, and disrupted in disease is of
high clinical importance.

While considerable research attention has been directed
toward the crypt, many questions remain unresolved.
For example, what processes ensure that, during ho-
meostasis, each crypt maintains a uniform and robust
structure, while large numbers of cells proliferate and
migrate? Additionally, little is known about how the
crypt’s specialized cell populations are generated and
how its invaginated structure arises during develop-

ment. Such fundamental questions are intimately
related to the concept of tissue growth and its in-
teractions with tissue mechanics.

The crypt’s compartmentalized nature renders it ideal
for mathematical and computational modeling. Signifi-
cant efforts have focussed on using cell-based ap-
proaches to model the crypt, validate existing
hypotheses, and generate new ones [17]. While such
theory has yielded insight into the dynamics of healthy
and diseased crypts, more can be achieved, particularly

regarding the role of mechanics in regulating subcellular
signaling pathways and thereby rates of cell prolifera-
tion, migration, and death. This is now possible due to
the development of morphoelasticity theory, which ex-
tends continuum mechanics to account for biological
tissue growth [21].

This review provides an introduction to the crypt, and
relevant modeling approaches. We describe the crypt
structure and the signaling pathways known to
contribute to homeostasis. Relevant modeling ap-

proaches (discrete and continuum) are then introduced,
with their strengths and limitations, and a summary of
the advances they have enabled. We close by discussing
open questions that will advance the modeling field, and
in turn, increase understanding of the role of biome-
chanics in regulating healthy and diseased intestinal
crypts.
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Biological background
We now introduce the main components of the crypt.

We describe its structure and surrounding environment,
including signaling pathways involved in its regulation of
health and disease; the reviews by Gehart and Clevers
[19] and Spit et al. [44] contain further details.

Each test-tube-shaped crypt is lined with an epithelial
sheet (Figure 1). Adjacent colonic crypts are separated
by flat tissue regions. In the small intestine, crypts are
connected to large protrusions called villi that increase
gut surface area to aid nutrient absorption. Each crypt
contains a pool of slowly-cycling [45] (or even paused

[10]) stem cells in its base. In the small intestine,
Paneth cells are also found in the crypt base, where they
secrete factors that support the stem cell niche (the
stem cell pool and its microenvironment) [19,44]. As
stem cells divide, their offspring push
upward toward the lumen, in a conveyor belt fashion.
Transit-amplifying cells proliferate rapidly, before
differentiating into specialized, non-proliferating cells,
such as goblet cells [44]. Directly underneath the crypt
is an extracellular matrix network called the basement
membrane, which aids crypt maintenance and facilitates
Figure 1

The crypt at varying levels of biological and mathematical abstractions.
represents 100mm (adapted with permission from Shoshkes-Carmel et al. [43
ponents. (c) 3D crypt model by Thalheim et al. [48] (adapted with permission).
Almet et al. [1]). (e) Fluorescence image of in vitro murine small intestinal org
Gjorevski et al. [20]). (f) Schematic diagram of the organoid structure and rel
(adapted with permission). (h) 3D colon cancer organoid model from Yan et a
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communication with stromal cells [34]. The stroma
provides structural stability and additional regulatory
signals [29]. It is supported by a later of smooth muscle
cells. A schematic of a crypt is presented in Figure 1(b).

The development of crypt organoids has accelerated
understanding of crypt biology. Crypt organoids are
in vitro cell cultures generated from single stem cells or

isolated crypts, which grow into a confluent layer of
epithelial tissue, with crypt-like buds surrounding an
inner lumen (see Figure 1(f)). Organoids enable
detailed investigation of cellecell signaling, by knocking
out genes and/or embedding them in different media.
Moreover, as they are in vitro cultures, cell behavior can
be tracked at greater spatiotemporal resolution using
imaging techniques [20,42].

While multiple signaling pathways contribute to crypt
homeostasis [19,44], we describe the dominant ones:

1. Wnt signaling is the principal signaling pathway in
the crypt, and multiple Wnt proteins regulate cell
proliferation, stemness, cell migration, differentia-
tion, and apoptosis [19,44]. A decreasing Wnt
(a) Histological image of in vivo murine colonic crypts; the scale bar
]). (b) Schematic diagram of a single colonic crypt and essential com-
(d) 2D continuum representation of crypt (adapted with permission from
anoid; the scale bar represents 50mm (adapted with permission from
evant components. (g) 2D organoid model used in Langlands et al. [31]
l. [51] (reproduced with permission).
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gradient exists along the crypt axis, but it is not fully
known how this gradient arises or is maintained.
Furthermore, Wnt pathway mutations are among the
earliest to occur in colorectal cancer [19].

2. Bone Morphogenetic Protein (BMP) signaling sup-
presses stem cell multipotency and drives terminal
differentiation. An increasing BMP gradient from the
crypt base is maintained by the surrounding stroma,
and BMP inhibition has been shown to cause exces-
sive crypt formation [44].

3. Notch signaling governs cell fate specification [28].

In the small intestine, Notch-active stem and Paneth
cells arise through lateral inhibition caused by celle
cell contact [44].

4. The Hippo pathway regulates Wnt and Notch
signaling [4,42]. Inactive during homeostasis, its
transducers YAP and TAZ facilitate regeneration
Figure 2

A timeline of modeling approaches that have been applied to the crypt.
classified according to the discrete or continuum approach that is used, and
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following injury [47], while their loss results in un-
controlled proliferation [23].
The involvement of YAP and TAZ in crypt homeostasis
is significant because of their mechanotransductive
roles; their regulation of Wnt and Notch is triggered by

mechanical cues. Indeed, Gjorevski et al. [20] showed
that culturing organoids in soft matrices increased stem
cell proliferation, while culturing them in stiffer
matrices stimulated stem cell differentiation and orga-
noid formation, through a YAP-dependent pathway.
Serra et al. [42] showed that transient activation of YAP/
TAZ was required to trigger Paneth cell differentiation,
which introduced mechanical heterogeneity in organo-
ids, leading to crypt budding. Despite increasing evi-
dence suggesting a regulatory role for mechanical
Models have been highlighted for the novelty of their approach and
the spatial effects that are considered.
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stimuli, such mechanisms can be difficult to probe
experimentally. In such situations, mathematical and
computational modeling can provide significant insight.
Mathematical and computational models of
the crypt
The approaches reviewed here can be termed
“discrete”, where the crypt is viewed as a collection of
individual cells (see Figure 1(c and g)) or “continuum”,
where it is modeled as a smooth tissue (Figure 1(d and
h)). Here, we focus on spatially-resolved models (for a
review of models that neglect spatial effects, see Carulli
et al. [11]). We discuss their strengths and weaknesses,
focusing on recent modeling studies (see Figure 2 for a
timeline of crypt modeling approaches).

Cell-based models
Cell-based models represent each cell as one or several
points in space with a prescribed cell region [35]. They
permit extraction of cell-scale data, such as migration
velocities and lineage [48,39], and tissue scale infor-
mation, such as mitotic distributions [13], for compari-
son with experimental data [5]. An example of a recent
and comprehensive cell-based model of the crypt is that
of Thalheim et al. [48]. We use this model as a bench-
mark for comparison with other models.

Thalheim et al. consider a 3D overlapping spheres model,

in which crypt geometry is specified by a surface of rev-
olution (see Figure 1(c)), a common representation
among 3D models [13,12,36]. In 2D geometries, cell
shape can be modeled via a Voronoi Tessellation, with
spatial connectivity defined through a Delaunay Trian-
gulation [31,2,39]; this is avoided in 3D due to compu-
tational costs. Adhesion to the crypt surface is enforced
by a triangular fiber network, representing the basement
membrane and included to ensure shape stability
[26,31,2]. Cells interact with the membrane through a
weakly-adhesive force. Detachment from the basement

membrane results in cell death [13,31,2]. Cell-based
models typically include forces that restrict cells to the
crypt surface [13,12,36]. Cells at the crypt top are
removed from simulations [12,13,39]. In Muraro et al.
[36], cells migrate out of the crypt and onto the villus.

Thalheim et al. model cells as elastic spheres, using
Langevin dynamics to update cell positions and sizes. In
other words, cells were modeled as cylinders [26], while
the subcellular element method represented cells as
collections of overlapping spheres [12]. Langevin

equations incorporate adhesion forces between over-
lapping cells, deformations induced by cellecell con-
tact, changes to cell volumes, and interactions with the
basement membrane. A popular alternative approach to
update cell positions is an over-damped form of New-
ton’s Second Law [31,2,36,13,39,26]. In Thalheim et al.,
proliferating cells grow in stochastic increments,
www.sciencedirect.com
dividing into two cells when their initial volume doubles
[12]. If cells are mechanically compressed, proliferation
may stop due to contact inhibition [13,39]. Cell prolif-
erative capacity and fate specification are determined by
Wnt and Notch levels. Wnt signaling is modeled as a
decreasing gradient from the base, a de facto approach
[31,2,36,13,39,26,12]. Stem cells that leave the base to
become transit-amplifying cells, which differentiate as

they migrate toward the crypt lumen. Notch activity is
determined by Notch levels from the nearest neighbors.
Stem cells are assumed to express high levels of Notch.
Transit cells differentiate into either Paneth cells (high
Wnt, low Notch) that migrate down toward the base, or
Goblet cells (low Wnt, low Notch) that migrate up the
crypt. Du et al. [12] consider the additional role of BMP
signaling in preventing the over-expansion of the stem
cell population.

A strength of cell-based models is their ability to inte-

grate processes acting on different spatial and temporal
scales within a multiscale framework. For example,
logic-based rules at the cell scale may be coupled to
subcellular mathematical models for gene regulatory
networks [22], which model gene activation as binary
states, or ordinary differential equations for biochemical
signaling pathways that describe continuous changes
[50]. This allows more biological detail to be incorpo-
rated and investigation of how perturbations subcellular
processes, for example due to genetic mutations, may
impact tissue-level behavior.

However, with greater biological detail comes greater
model complexity. For cell-based models, there is no
standard way to analyze simulation results, which are
obtained by averaging multiple realizations. Further-
more, incorporating biological detail increases the
number of model parameters. As the dimension of the
parameter space increases, it becomes more difficult to
identify the mechanism(s) driving observed results and/
or to fit the models to experimental data. Individual-
based models can be computationally expensive to
simulate, particularly when 3D geometries and/or so-

phisticated implementations, such as the immersed
boundary method, which accounts for fluidestructure
interactions between cells [16], are used.

Cell-based models also generally assume a fixed geom-
etry. Processes, such as crypt invagination [46] and
fission [31] occur in development, cancer, and regen-
eration, but cannot be modeled properly without ac-
counting for deformability. As forces are specified at the
cell scale, it can be difficult to estimate deformations on
the scale observed in vivo [13,48]. The rigid geometry,

thus, limits the scope of what can be investigated. While
some cell-based organoid models account for tissue
deformation [41,31,2,49], they do not produce de-
formations on the scale needed to study fission or
invagination.
Current Opinion in Biomedical Engineering 2020, 15:32–39
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Continuum models
When studying processes characterized by large de-
formations, such as crypt fission or invagination, an
alternative approach is to focus on the macroscale. The
crypt tissue may be represented as multiple, interacting
diffusible species [15,51], viscous fluids [30], or elastic
sheets [25,18]. Morphoelasticity theory, which extends
nonlinear elasticity to account for tissue growth [21], is
another promising approach to tackle problems that
cannot be addressed with cell-based models.

Continuum mechanics models are rooted in more
developed branches of mathematics than cell-based
models; governing equations come from first principles
and deformations arise naturally due to mechanical
forces and torques. As growth typically occurs on longer
timescales than those associated with elastic/visco-
elastic deformations, quasi-static mechanical equilib-
rium may be assumed. At each time step, the material
deformation gradient can be decomposed into distinct
growth and elastic deformations. First, growth is defined
locally, and different tissue regions may overlap after

growth. The elastic deformation map then reassembles
the grown material to be geometrically compatible,
which may induce residual stresses (see Figure 3).
Figure 3

Potential application of morphoelasticity to the crypt. Here, the crypt is trea
growth phase, as a proxy for tissue proliferation, and the subsequent elastic
effects of the underlying substrate, and boundary conditions.
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Morphoelasticity has been used to study many biological
processes [3], including wound healing, artery remod-
eling, and brain cortical folding, the latter sharing many
similarities with crypt invagination. Several continuum-
mechanics models for crypt and/or villi buckling have
been proposed [14,37,8,38], but lack biological speci-
ficity. Morphoelasticity has recently been used to study
cylindrical buckling along the gastrointestinal tract [7],

while Almet et al. [1] considered the effect of material
heterogeneity and large deformations on the growth of
an idealized crypt model (Figure 1(d)). Despite these
advances, the biological realism of continuum crypt
models remains limited.

Continuum frameworks, formulated using ordinary and
partial differential equations, can be analyzed using a
range of analytical tools, including asymptotic methods
and linear stability and weakly nonlinear analysis. In this
way, it is possible to assess the qualitative and quanti-

tative effects of varying different model parameters and
systematically reveal the mechanisms driving observed
behaviors.

There are several challenges with tissue-level contin-
uum modeling. By construction, in such models, there is
ted as a growing, elastic rod. Crypt evolution is decomposed into an axial
deformations due to residual stresses induced by growth, mechanical

www.sciencedirect.com
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Table 1

Desirable features of an ideal crypt model, and the current efficacy of continuum and cell-based frameworks to capture them. The two
classes of frameworks have complementary strengths and limitations.

Crypt feature Continuum Discrete (cell-based)

Deformability ✓✓: Can use continuum mechanics theory ✓: Not well-developed
Mechanical effects ✓✓: Very well-placed
Clonal cell tracking ✓: Possible for a few models ✓✓: Can easily track cell lineages
Subcellular detail Has not been considered in detail ✓✓: Very well-suited for this
Stochasticity × ✓

Cell migration Possible for certain models ✓✓

Population control ✓: Laws to prescribe local growth ✓✓

Interaction with
external environment ✓✓: Can prescribe mechanical forces ✓: Computationally expensive
Cellular heterogeneity ✓: Coarse-grained heterogeneity ✓✓: Individual cell heterogeneity
Cell sorting × : Not possible ✓: Possible in some models
Experimental parametrization Possible but has not been implemented ✓: Possible with enough biological detail
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no individual cellular unit, despite the need to incor-
porate relevant cellular-level detail. This is evident in
the crypt, which is spatially and temporally heteroge-
neous in numerous ways, including growth capacity and
stiffness, which depend on cellular processes.
Describing such features in a continuous setting is non-
trivial, but feasible. For instance, one may need to
couple the various processes, spanning subcellular,

cellular, and tissue scales. However, multiscale ap-
proaches, such as homogenization theory or micro-
mechanics, are, in principle, available. Parameterizing
such models poses a different challenge. For instance, a
key mechanical parameter is the stiffness, e.g. Young’s
modulus; stiffness is easily obtained with a macroscale
material, but less so with a small biological sample.
Atomic Force Microscopy has become useful for
measuring the mechanical properties of individual cells,
including stem and Paneth cell stiffnesses [41]. How-
ever, there is a clear need to perform such experiments

across the entire crypt, although it is unclear how the
stiffness that may be determined from a biological
experiment is related to the value in the continuum
setting.
Outlook
As crypt modeling has become more mature and
experimental data collection methods more sophisti-
cated [24], our understanding of the crypt and its role in
gut health has increased. The next challenge is to un-
derstand how biochemical and biomechanical processes
interact across multiple spatiotemporal scales. A
particular challenge relates to crypt fission: during
fission, a bifurcation at the crypt base results in the
formation of two new crypts. In disease, crypt fission
drives the expansion of adenomas, allowing mutated
crypts to spread [5,31], but it is also vital for tissue
www.sciencedirect.com
regeneration after injury [23]. Further complicating the
issue, it has been recently suggested that crypts may
fuse together [9,6]. The ubiquity of crypt fission, during
homeostasis, cancer and regeneration, make under-
standing how it arises of great clinical significance, while
its distinctive mechanical features, particularly the
tissue deformations akin to buckling, render it amenable
to investigation with mechanistic modeling.

Addressing the above challenges requires further
development of continuum and cell-based models,
particularly biologically-specialized continuum models
of the crypt. We believe that morphoelasticity theory is
well-suited to fill this void, but doing so in a way that is
consistent with cell activity is a significant challenge. A
related challenge is model validation against experi-
mental data. As it is now possible to collect dynamic,
cell-scale data [24], this challenge can start to be
addressed.

As indicated in Table 1, neither cell-based nor contin-
uum frameworks capture all aspects of an “ideal” crypt
model. Instead, we advocate an integrated approach: by
linking discrete and continuum models by, say, mapping
model parameters, we can harness the complementary
advantages of each approach and switch between them,
depending on the considered problem. These studies
are also needed to establish the robustness of model
predictions to changes in the assumptions about
microscopic processes.

Another significant challenge concerns parameter esti-
mation. Aside from the sheer number of parameters and
uncertainty in their values, equally important for a given
model is the number of chosen rules that do not emerge
from first principles. In evaluating the results of a model,
Current Opinion in Biomedical Engineering 2020, 15:32–39
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the ultimate test is whether it can reproduce data. But
even though research is becoming more interdisciplinary
[36], many models are not validated against biological
data. As experimental data become more detailed and
widely available, and as models become more complex
and multiscale, in attempting to connect the two, it
becomes ever more important to consider how param-
eter uncertainty affects results. Model inference tools

represent a promising way forward [32,33], but signifi-
cant work remains to be done.
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