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Deterministic continuum models formulated as nonlocal partial differential equations for the evolutionary
dynamics of populations structured by phenotypic traits have been used recently to address open questions
concerning the adaptation of asexual species to periodically fluctuating environmental conditions. These models
are usually defined on the basis of population-scale phenomenological assumptions and cannot capture adaptive
phenomena that are driven by stochastic variability in the evolutionary paths of single individuals. In light of
these considerations, in this paper we develop a stochastic individual-based model for the coevolution of two
competing phenotype-structured cell populations that are exposed to time-varying nutrient levels and undergo
spontaneous, heritable phenotypic changes with different probabilities. Here, the evolution of every cell is
described by a set of rules that result in a discrete-time branching random walk on the space of phenotypic states,
and nutrient levels are governed by a difference equation in which a sink term models nutrient consumption by
the cells. We formally show that the deterministic continuum counterpart of this model comprises a system
of nonlocal partial differential equations for the cell population density functions coupled with an ordinary
differential equation for the nutrient concentration. We compare the individual-based model and its continuum
analog, focusing on scenarios whereby the predictions of the two models differ. The results obtained clarify the
conditions under which significant differences between the two models can emerge due to bottleneck effects
that bring about both lower regularity of the density functions of the two populations and more pronounced
demographic stochasticity. In particular, bottleneck effects emerge in the presence of lower probabilities of
phenotypic variation and are more apparent when the two populations are characterized by lower fitness initial
mean phenotypes and smaller initial levels of phenotypic heterogeneity. The emergence of these effects, and
thus the agreement between the two modeling approaches, is also dependent on the initial proportions of the two
populations. As an illustrative example, we demonstrate the implications of these results in the context of the
mathematical modeling of the early stage of metastatic colonization of distant organs.

DOI: 10.1103/PhysRevE.102.042404

I. INTRODUCTION

Adaptation to dynamically changing environments occurs
in a variety of biological and ecological contexts [1–4]. In
particular, when changes in nutrient availability occur, in-
dividuals in a population can either adopt a highly plastic
phenotype [5], which enables them to acquire different traits
based on environmental cues, or a risk-spreading strategy
(e.g., bet-hedging), which allows at least some fraction of
the population to survive in the face of sudden environmental
changes by producing offspring adapted to the new conditions
[6–8].

Mathematical modeling of evolutionary dynamics in time-
varying environments has received considerable attention
from mathematicians and physicists over the past 50 years—
see, for instance, Refs. [9–20] and references therein. Re-
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cently, deterministic continuum models formulated in terms
of nonlocal partial differential equations (PDEs) for the evo-
lutionary dynamics of populations, structured by phenotypic
traits, have been used to address open questions concerning
the adaptation of asexual species to periodically fluctuating
environments [21–28].

Although more amenable to analytical and numerical
approaches, which allow for a more in-depth theoretical
understanding of the underlying dynamics, these determin-
istic continuum models are usually defined on the basis of
population-scale phenomenological assumptions. This makes
it more difficult to incorporate the finer details of pheno-
typic adaptation by single individuals. Moreover, such models
cannot capture adaptive phenomena that are driven by
stochastic effects in the evolutionary paths of single indi-
viduals. This will be particularly relevant at low population
levels, which are commonly observed when risk-spreading
adaptive strategies occur [29]. Ideally, we want to derive de-
terministic continuum models from first principles (i.e., as the
appropriate limit of discrete stochastic models that track the
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evolution of single individuals), which permit the representa-
tion of individual-scale adaptive mechanisms, and account for
possible stochastic interindividual variability in evolutionary
trajectories [30–33].

In light of these considerations, we develop a stochastic
individual-based (IB) model for the evolutionary dynam-
ics of two competing phenotype-structured cell populations
that are exposed to time-varying nutrient levels and undergo
spontaneous, heritable phenotypic changes with different
probabilities. In this model, every cell is viewed as an
individual agent whose phenotypic state is modeled by a
discrete variable, which represents the normalized level of
expression of a gene that allows cells to cope with nutri-
ent scarcity. For instance, activation of hypoxia-inducible
factors allows mammalian cells to adapt to oxygen depriva-
tion [34]. In the model, cells proliferate, die and undergo
phenotypic changes according to a set of rules that cor-
respond to a discrete-time branching random walk on the
space of phenotypic states [32,35]. We assume that the cell
proliferation rate depends on nutrient levels, and that nu-
trient concentration is governed by a difference equation
in which a sink term models nutrient consumption by the
cells.

This work builds on our earlier analytical and numerical
studies of deterministic continuum models for the evolu-
tionary dynamics of competing phenotype-structured asexual
populations exposed to periodically oscillating nutrient levels
[22,23]. In [22], we focused on a scenario where the evolu-
tion of nutrient levels was independent from the dynamics of
the populations, and we analyzed the long-time behavior of
the solutions to the model equations, to dissect the role of
spontaneous, heritable phenotypic changes in the adaptation
of asexual species to fluctuating environments. In Ref. [23],
we extended the original model by letting the nutrient lev-
els coevolve with the competing populations and carried out
simulation-assisted analysis of the long-time behavior of the
solutions to the model equations to investigate how nega-
tive feedback mechanisms, which regulate population growth
through nutrient consumption, may shape the evolutionary
dynamics of cell populations under oscillating environmental
conditions. In this paper, we show that the models considered
in Refs. [22,23] can be formally obtained as the deterministic
continuum limit of the stochastic IB model presented here.
Moreover, we conduct a comparative study between the IB
model and its continuum analog, our aim being to explore
scenarios in which differences between the outcomes of the
two models may emerge.

The paper is organized as follows. In Sec. II, we introduce
the stochastic IB model. In Sec. III, we present its determin-
istic continuum counterpart (a formal derivation is provided
in Appendix A), which comprises a system of nonlocal PDEs
for the population density functions (i.e., the cell distribution
over the space of phenotypic states) coupled with an ordinary
differential equation (ODE) for the nutrient concentration.
In Sec. IV, we present the main results of the comparative
study between the two models. As an illustrative example,
in Sec. V we interpret our results in the context of the early
stage of metastatic colonization of distant organs by cancer
cells. In Sec. VI, we summarize the main findings and outline
directions for future research.

II. STOCHASTIC INDIVIDUAL-BASED MODEL

We model the evolutionary dynamics of two competing
cell populations in a well-mixed system. Cells in the two
populations proliferate (i.e., divide), die and undergo sponta-
neous, heritable phenotypic changes. We assume that the two
populations differ only in their probability of phenotypic vari-
ation. The population undergoing phenotypic changes with a
higher probability is labeled by the letter H , while the other
population is labeled by the letter L. The phenotypic state
of every cell at time t ∈ [0, t f ] ⊂ R+ is characterized by a
variable x ∈ [0, 1] ⊂ R+, which represents the normalized
level of expression of a gene that allows cells to cope with
nutrient deprivation. In particular, we assume that cells in
the phenotypic state x = 0 are best adapted to nutrient-rich
environments, whereas cells in the phenotypic state x = 1 are
best adapted to nutrient-scarce environments.

We represent each cell as an agent that occupies a po-
sition on a lattice. We discretize the time variable and the
phenotypic state via th = hτ ∈ [0, t f ] and x j = jχ ∈ [0, 1],
respectively, where h, j ∈ N0, and τ ∈ R+

∗ and χ ∈ R+
∗ are

the time- and phenotype-step, respectively. We introduce the
dependent variable Nh

i, j ∈ N0 to represent the number of cells
of population i ∈ {H, L} on lattice site j (i.e., in the jth phe-
notypic state) at time-step h. The density (i.e., the phenotype
distribution) of population i, the size of population i, and the
total number of cells are defined, respectively, as follows

ni(th, x j ) = nh
i, j := Nh

i, j χ
−1, (1)

ρi(th) = ρh
i :=

∑
j

Nh
i, j and ρ(th) = ρh :=

∑
i

ρh
i . (2)

We further define the mean phenotype of population i and the
related standard deviation, respectively, as

μi(th) = μh
i := 1

ρh
i

∑
j

x j Nh
i, j (3)

and

σi(th) = σ h
i :=

(
1

ρh
i

∑
j

x2
j Nh

i, j − (
μh

i

)2

) 1
2

. (4)

Finally, the nutrient concentration at time-step h is modeled
by the discrete, nonnegative function S(th) = Sh.

A. Mathematical modeling of phenotypic changes

We account for spontaneous, heritable phenotypic changes
by allowing cells to update their phenotypic states according
to a random walk. More precisely, between the time-steps h
and h + 1, every cell in population i ∈ {H, L} either enters a
new phenotypic state, with probability λi ∈ [0, 1], or remains
in its current phenotypic state, with probability 1 − λi. Since
we assume that phenotypic changes occur randomly due to
nongenetic instability, rather than selective pressures [36],
then a cell of population i in phenotypic state x j that under-
goes a phenotypic change enters into either of the phenotypic
states x j±1 = x j ± χ with probabilities λi/2. No-flux bound-
ary conditions are implemented by aborting any attempted
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phenotypic variation of a cell if it requires moving into a
phenotypic state outside the interval [0,1].

B. Mathematical modeling of cell division and death

Cells divide, die, or remain quiescent with probabilities
that depend on their phenotypic states, the total number of
cells and the nutrient concentration. We assume that a dividing
cell is replaced by two identical cells that inherit the pheno-
typic state of the parent cell (i.e., the progenies are placed
on the same lattice site as their parent), while a dying cell
is removed from the population.

To translate into mathematical terms the idea that larger
population sizes correspond to more intense competition be-
tween cells, at every time-step h we allow cells to die due
to intrapopulation and interpopulation competition at a rate
proportional to the total cell number ρh, with constant of
proportionality d > 0.

We denote by p(x j, Sh) the division rate of a cell in the
jth phenotypic state, where Sh is the nutrient concentration.
Since x j represents the normalized expression level of a gene
that allows cells to cope with nutrient scarcity, we assume
that phenotypic variants with x j → 0 are characterized by
the maximal division rate when nutrient is abundant (i.e., if
Sh → ∞), whereas phenotypic variants with x j → 1 are char-
acterized by the maximal division rate when nutrient is scarce
(i.e., if Sh → 0). Our implicit assumption here is that cells
in the phenotypic state x j = 1 switch to other nutrients that
are abundant, and therefore they are no longer dependent on
the specific nutrient we are modeling. (We refer the interested
reader to Sec. V for a specific biological application of this
modeling approach.) Under these assumptions, and following
the modeling strategies that we proposed in Refs. [22,23], we
define the cell division rate p(x j, Sh) as follows:

p(x j, Sh) :=γ
Sh

κ + Sh

(
1 − x2

j

)
+ ζ

(
1 − Sh

κ + Sh

)
[1 − (1 − x j )

2]. (5)

In Eq. (5), the parameters γ > 0 and ζ > 0 model, respec-
tively, the maximum cell division rate of the phenotypic
variants best adapted to nutrient-rich and nutrient-scarce en-
vironments (i.e., cells in the phenotypic states x j = 0 and
x j = 1, respectively). To incorporate into the model the pos-
sible fitness cost associated with the ability to survive in
nutrient-scarce environments [37,38], we make the additional
assumption that ζ � γ . Moreover, κ > 0 is the Michaelis con-
stant of the nutrient, i.e. the nutrient concentration at which the
proliferation rate is half maximal. After a little algebra, Eq. (5)
can be rewritten as

p(x j, Sh) = γ g(Sh) − h(Sh)[x j − ϕ(Sh)]2, (6)

where

g(Sh) := Sh

κ + Sh
+ ζ 2κ2

γ (κ + Sh)(γ Sh + ζκ )
,

ϕ(Sh) := ζκ

γ Sh + ζκ
and h(Sh) := γ Sh + ζκ

κ + Sh
. (7)

Here, γ g(Sh) is the maximum fitness, ϕ(Sh) is the fittest phe-
notypic state and h(Sh) is a selection gradient. Consistent with
our modeling assumptions, we have

ϕ : [0,∞) → [0, 1], lim
S→0

ϕ(S) = 1 and lim
S→∞

ϕ(S) = 0.

Under these assumptions, between time-steps h and h + 1,
a cell in the jth phenotypic state may divide with probability

Pb := τ p(x j, Sh), (8)

die with probability

Pd := τ d ρh, (9)

or remain quiescent (i.e., do not divide nor die) with probabil-
ity

Pq := 1 − τ (p(x j, Sh) + d ρh). (10)

Notice that we are implicitly assuming that the time-step τ is
sufficiently small that 0 < Pi < 1 for all i ∈ {b, d, q}.

C. Mathematical modeling of nutrient dynamics

Following Ardaševa et al. [23], we describe the nutrient
dynamics via the following difference equation for Sh

Sh+1 = Sh + τ

[
Ih − ηSh

− θγ
Sh

κ + Sh

∑
j

(1 − x j )
2
(
Nh

H, j + Nh
L, j

)]
, (11)

complemented with a suitable initial nutrient concentration
S0. Since we consider a well-mixed system, there is no diffu-
sion of the nutrient. In the difference Eq. (11), the parameter
η > 0 represents the rate of natural decay of the nutrient,
while the last term on the right-hand side of the difference
Eq. (11) models the rate of nutrient consumption by the
cells and is based on the following argument. Cells in the
phenotypic state x j = 1 do not rely on the nutrient we are
modeling for their survival—these cells might produce en-
ergy via different metabolic pathways that do not require
the nutrient under consideration—and, as such, they do not
consume any nutrient. By contrast, cells in the phenotypic
state x j = 0 consume the nutrient at a rate proportional to
their cell division rate, with constant of proportionality θ > 0.
Finally, the rate at which the nutrient is consumed by cells in
phenotypic states x j ∈ (0, 1) is a fraction of the consumption
rate of cells in the phenotypic state x j = 0, with higher values
of x j correlating with lower rates of nutrient consumption. The
discrete, nonnegative function Ih on the right-hand side of the
difference Eq. (11) models the rate at which the nutrient is
supplied to the system. When the nutrient inflow is constant
we fix

Ih ≡ Ī � 0; (12)

when the nutrient inflow undergoes periodic oscillations we
prescribe

Ih := max
[
0, A sin

(2πth
T

)]
, (13)

with the parameters T > 0 and A > 0 modeling, respectively,
the period and the amplitude of the oscillations.
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FIG. 1. Flowchart illustrating the procedure underlying the com-
putational implementation of the stochastic IB model for each cell at
every time-step. Once all cells have undergone both the phenotype-
change step and the fate-decision step, the total number of cells is
computed and the nutrient level is updated.

D. Computational implementation

Numerical simulations of the IB model are performed
using the open-source Java library Hybrid Automata
Library (HAL) [39]. At each time-step, we follow the pro-
cedures summarized in Fig. 1 and described hereafter to
simulate phenotypic changes as well as cell division and
death. All random numbers mentioned below are real numbers
drawn from the standard uniform distribution on the interval
(0,1) using the Java function Rand. Double().

a. Computational implementation of spontaneous, heritable
phenotypic changes. For each cell in population i, a random
number, r1, is generated and used to determine whether the
cell undergoes a phenotypic change (i.e., 0 < r1 < λi) or not
(i.e., λi � r1 < 1). If the cell undergoes a phenotypic change,
then a second random number, r2, is generated. If 0 < r2 <

1/2, then the cell moves into the phenotypic state to the
left of its current state, i.e., a cell in the phenotypic state x j

will move into the phenotypic state x j−1 = x j − χ , whereas if
1/2 � r2 < 1 then the cell moves into the phenotypic state to
the right of its current state, i.e. a cell in the phenotypic state
x j will move into the phenotypic state x j+1 = x j + χ . No-flux
boundary conditions are implemented by aborting attempted
phenotypic changes that would move a cell into a phenotypic
state outside the unit interval.

b. Computational implementation of cell division and death.
For each population, the number of cells in each phenotypic
state is counted. The size of each cell population and the total
number of cells are then computed via Eq. (2). Definition
Eqs. (8)–(10) are used to calculate the probabilities of cell

division, death and quiescence for every phenotypic state.
For each cell, a random number, r3, is generated and the
cells’ fate is determined by comparing this number with the
probabilities of division, death and quiescence corresponding
to the phenotypic state of the cell. If 0 < r3 < Pd , then the
cell is considered dead and is removed from the population. If
Pd � r3 < Pd + Pb, then the cell undergoes division and an
identical daughter cell is created. Finally, if Pd + Pb � r3 <

1, then the cell remains quiescent (i.e., does not divide nor
die).

c. Computational implementation of nutrient dynamic. At
each time-step, the number of cells of the two populations in
each phenotypic state is counted to evaluate the last term on
the right-hand side of the difference Eq. (11). The nutrient
concentration is then updated via the difference Eq. (11).

III. CORRESPONDING DETERMINISTIC
CONTINUUM MODEL

Using the formal method presented in Refs. [32,33], we let
the time-step τ → 0 and the phenotype-step χ → 0 in such a
way that

λiχ
2

2τ
→ βi ∈ R+

∗ for i ∈ {H, L}. (14)

Here, the parameter βi is the rate of spontaneous, heritable
phenotypic changes of cells in population i. It is then possible
to formally show (see Appendix A) that the deterministic
continuum counterpart of the stochastic IB model is given by
the following system of nonlocal PDEs for the cell population
density functions nH (x, t ) and nL(x, t ):

∂nH

∂t
= βH

∂2nH

∂x2
+ {p[x, S(t )] − d ρ(t )}nH ,

∂nL

∂t
= βL

∂2nL

∂x2
+ {p[x, S(t )] − d ρ(t )}nL,

ρ(t ) := ρH (t ) + ρL(t ), ρi(t ) :=
∫ 1

0
ni(x, t ) dx, (15)

posed on (0, 1) × (0, t f ] and subject to no-flux boundary con-
ditions, i.e.,

∂ni(0, t )

∂x
= 0,

∂ni(1, t )

∂x
= 0 for all t ∈ (0, t f ]. (16)

In the system of nonlocal PDEs (15), the nutrient concen-
tration S(t ) is governed by the continuum counterpart of the
difference Eq. (11), i.e., the following ODE posed on (0, t f ]:

dS

dt
= I (t ) − ηS − θγ

S

κ + S

∫ 1

0
(1 − x2) (nH + nL ) dx,

(17)
which can be easily obtained in a formal way by letting τ → 0
and h → 0 in the ODE (11). In the continuum modeling
framework given by the system of nonlocal PDEs (15), the
mean phenotype of population i and the related standard devi-
ation are defined, respectively, as

μi(t ) := 1

ρi(t )

∫ 1

0
x ni(x, t ) dx (18)
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TABLE I. Parameter values used in numerical simulations.

Description Values

λH Probability of phenotypic variation of population H {0.05, 0.4, 1}
λL Probability of phenotypic variation of population L {0.02, 0.2}
γ Maximum cell division rate of phenotypic variants x = 0 100
ζ Maximum cell division rate of phenotypic variants x = 1 50
κ Michaelis constant of nutrient 1
d Death rate due to inter- and intrapopulation competition {0.01, 0.1, 0.2, 0.4, 1.0}
θ Consumption rate of nutrient {10−5, 10−4, 2 × 10−4, 10−3}
η Rate of natural decay of nutrient 10−3

S0 Initial nutrient concentration {0, 10}
ai Initial size of population i 800
c Initial mean phenotype of both populations {0, 0.5, 1}
b Initial inverse variance of both populations {10, 1000}
Ī Constant rate of oxygen supply 10
A Amplitude of fluctuations in oxygen supply {30, 200}
T Period of fluctuations in oxygen supply 5
ε Scaling factor for the rate of phenotypic variation (Sec. IV B) {1,2,..,10}
ν Initial proportion of population H (Sec. IV D) {0.1, 0.2, 0.3, 0.7, 0.8, 0.9}
Z Initial total number of cells (Sec. IV D) 800
χ Phenotype-step 0.032
τ Time-step 10−3

t f Final time {10, 20, 40}

and

σi(t ) :=
(

1

ρi(t )

∫ 1

0
x2 ni(x, t ) dx − μ2

i (t )

) 1
2

, (19)

for i ∈ {H, L}.

IV. MAIN RESULTS

In this section, we compare the results of numerical sim-
ulations of the stochastic IB model introduced in Sec. II and
numerical solutions of the corresponding deterministic con-
tinuum model presented in Sec. III.

For consistency with previous mathematical studies of the
evolutionary dynamics of phenotype-structured populations,
which rely on the prima facie assumption that population
densities are Gaussians [40], simulations are carried out un-
der the assumption that the initial phenotype distribution of
population i for the IB model is of the form

n0
i, j = ai

( b

2π

) 1
2

exp
[
−b

2
(x j − c)2

]
, (20)

with i ∈ {H, L}. In Eq. (20), the parameter ai is related to
the initial size of population i, while the parameters b and c
are related, respectively, to the inverse of the initial standard
deviation and the initial mean phenotype of the two popula-
tions. The initial population density ni(x, 0) for the continuum
model is defined as the continuum analog of Eq. (20) (see
Appendix B).

First, we present a sample of base-case results that demon-
strate excellent quantitative agreement between the stochastic
IB model and its deterministic continuum counterpart. Then,
we perform a systematic sensitivity analysis of some key
parameters. In particular, we investigate how the base-case
results change as we vary the values of the probabilities of

phenotypic variation λH and λL (see Sec. IV B), the parame-
ters b and c in Eq. (20) (see Sec. IV C)—i.e., the inverse of the
initial standard deviation and the initial mean phenotype of the
two populations—and the parameters aH and aL in Eq. (20)
(see Sec. IV D)—i.e., the initial sizes of the two populations.

We consider the nutrient concentration to be nondimen-
sionalized and use the dimensionless parameter values listed
in Table I to carry out numerical simulations of the IB model.
The methods employed to numerically solve the equations of
the related continuum model are described in Appendix B.

A. Base-case results

We first assume that the supply rate of nutrient is constant
[i.e., we define the term Ih via Eq. (12)] and consider dif-
ferent values of the nutrient consumption rate θ . The results
displayed in Fig. 2 show excellent quantitative agreement be-
tween numerical simulations of the IB and continuum models,
both for relatively low and relatively high values of θ . As
expected, based on the results we presented in Ref. [23],
population L outcompetes population H , which eventually
goes extinct. Moreover, since the nutrient concentration con-
verges to smaller equilibrium values for larger values of the
nutrient consumption rate, higher values of θ correspond to
decreasing equilibrium sizes of population L and equilibrium
values of the mean phenotype which are closer to 1 (i.e., the
fittest phenotypic state in nutrient-scarce environments). In all
cases, the phenotype distribution of the surviving population
is unimodal and attains its maximum at the mean phenotype
[see Figs. 10(a) and 10(b) in Appendix C)].

We then let the supply rate of nutrient undergo periodic
oscillations [i.e., we define the term Ih via Eq. (13)] and,
informed by numerical results presented in Ref. [23], we con-
sider different values of the consumption rate θ that lead to the
emergence of either mild (i.e., small-amplitude) or severe (i.e.,

042404-5



ALEKSANDRA ARDAŠEVA et al. PHYSICAL REVIEW E 102, 042404 (2020)

FIG. 2. Base-case results when the nutrient inflow is constant.
Comparison between numerical simulations of the IB (solid, colored
lines) and continuum (broken, black lines) models in the case where
the evolution of the nutrient concentration is governed by the differ-
ence Eq. (11), whereby the term Ih is defined via Eq. (12) with Ī =
10. (a) Dynamics of the population sizes (top panel), mean phenotype
of the surviving population (central panel), and nutrient level (bottom
panel) in the case where θ = 10−5. Here, aH = aL = 800, b = 1000,

and c = 0.5 in Eq. (20), and the values of the other parameters are
those listed in Table I with λH = 1 and λL = 0.2. The results from
the IB model correspond to the average over 30 realizations and the
related variance is displayed by the colored areas surrounding the
curves. (b) Same as panel (a) but for larger nutrient consumption,
i.e., θ = 10−4.

large-amplitude) fluctuations in the nutrient concentration Sh.
The results displayed in Fig. 3 demonstrate that, both for mild
and severe fluctuations in the nutrient concentration, the size
and the mean phenotype of the surviving population converge
to positive T -periodic functions. Furthermore, in agreement
with the analytical results we presented in Ref. [22], the
numerical results in Fig. 3 indicate that, when nutrient lev-
els undergo smaller fluctuations, population L survives [see
Fig. 3(b)]. However, when nutrient levels undergo larger fluc-
tuations, population H ultimately outcompetes population L
[see Fig. 3(a)]. In both cases, the phenotype distribution of the
surviving population is unimodal and attains its maximum at
the mean phenotype [see Figs. 10(c) and 10(d) in Appendix
C]. Moreover, excellent agreement between numerical simu-
lations of the IB and continuum models is observed.

The numerical results presented in Appendix D show that
analogous conclusions hold in the simplified scenario where
the concentration of nutrient is prescribed and does not coe-
volve with the cells.

FIG. 3. Base-case results when the nutrient inflow is periodic.
Comparison between numerical simulations of the IB (solid, col-
ored lines) and continuum (broken, black lines) models in the case
where the evolution of the nutrient concentration is governed by
the difference Eq. (11), whereby the term Ih is defined via Eq. (13)
with A = 200 and T = 5. (a) Dynamics of the population sizes (top
panel), mean phenotype of the surviving population (central panel),
and nutrient level (bottom panel) in the case where θ = 2 × 10−4.
Here, aH = aL = 800, b = 1000, and c = 0.5 in Eq. (20), and the
values of the other parameters are those listed in Table I with λH =
0.4 and λL = 0.02. The results from the IB model correspond to the
average over 30 realizations and the related variance is displayed by
the colored areas surrounding the curves. (b) Same as panel (a) but
for larger nutrient consumption, i.e., θ = 10−3.

B. Sensitivity analysis of the probabilities
of phenotypic variation

Based on the analytical results presented in Ref. [22] for
a simplified continuum model, we expect smaller values of
λH and λL (i.e., the probabilities of phenotypic variation) to
correlate with longer transient intervals in the dynamics of the
sizes of the two cell populations. To test this hypothesis, we
focus on the case where the supply rate of nutrient is constant
[i.e., when the term Ih is defined via Eq. (12)]. We carry out
numerical simulations of the IB model assuming

λi = ε �i, (21)

with �i fixed and ε ∈ {1, . . . , 10}. As summarized by the
plots in Fig. 4, smaller values of ε bring about longer transient
intervals [i.e., larger values of ttr in Fig. 4(d)] during which
the two populations coexist before population L ultimately
out-competes population H .

The results displayed in Figs. 4(a)–4(c) indicate that the
size of population L decreases during the transient, defined as
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FIG. 4. Emergence of longer transient intervals for lower proba-
bilities of phenotypic variation. (a–c) Numerical simulations of the
IB model in the case where the probabilities of phenotypic variation
λH and λL are defined via Eq. (21) with �H = 0.05, �L = 0.02,
and ε = 10 (a) or ε = 5 (b) or ε = 2 (c). The black dashed lines
highlight the time ttr such that ρL (t f ) − ρL (ttr ) < 100, while the solid
pink lines highlight the value of ρmin

L := min
h

ρh
L . These results corre-

spond to the average over 30 realizations and the related variance
is displayed by the colored areas surrounding the curves. (d) Plots
of ttr (black diamonds) and ρmin

L (pink squares) as functions of
ε ∈ {1, . . . , 10}. The evolution of the nutrient concentration is gov-
erned by the difference Eq. (11), whereby the term Ih is defined via
Eq. (12) with Ī = 10. Here, aH = aL = 800, b = 1000 and c = 0.5
in Eq. (20), and the values of the other parameters are those listed in
Table I with θ = 10−3.

the early part of the population trajectory, before approach-
ing steady-state. Moreover, longer transients correlate with
sharper drops in the size of population L, and thus smaller
minimum values of ρL [i.e., smaller ρmin

L in Fig. 4(d)], which
makes bottleneck effects that bring about both lower regular-
ity of the density functions of the two populations, and more
pronounced demographic stochasticity more likely to come
into play. This suggests that lower probabilities of phenotypic
variation may create conditions for the emergence of differ-
ences between predictions of the IB and continuum models.

To investigate this further, we compare numerical sim-
ulations of the IB model with numerical solutions of the
continuum model in the setting of Fig. 2 [i.e., defining the
nutrient supply term Ih via Eq. (12) and considering different
values of nutrient consumption rate θ ] but using lower values
of the probabilities of phenotypic variation λH and λL. The
results, summarized in Fig. 5, demonstrate that while excellent
quantitative agreement between numerical simulations of the
IB model and numerical solutions of the continuum model
is obtained for relatively large values of θ [see Fig. 5(b)],
significant differences in the behavior of the two models can
be observed for relatively low values of θ [see Fig. 5(a)]. Such
differences persist when smaller values of the time-step τ and
the phenotype-step χ are considered. More specifically, lower
time- and phenotype-steps correlate with a more drastic decay

FIG. 5. Sensitivity analysis of the probabilities of phenotypic
variation. (a) Comparison between numerical simulations of the
IB (solid, colored lines in the left panel) and continuum (broken,
black lines in the left panel) models under the parameter setting of
Fig. 2(a) but with λH = 0.05 and λL = 0.02. The results from the IB
model correspond to the average over 30 realizations and the related
variance is displayed by the colored areas surrounding the curves.
The plots in the central and right panels show the dynamics of the
sizes of the two populations for single realizations of the IB model
that match with (central panel) or differ from (right panel) numerical
solutions of the continuum model. (b) Same as panel (a) for the
parameter setting of Fig. 2(b) but with λH = 0.05 and λL = 0.02.

in the size of population L, which then becomes more prone
to extinction due to demographic stochasticity.

This is because, when lower values of λH and λL are
considered, a relatively small nutrient consumption rate θ

corresponds to a longer initial phase of cell dynamics during
which the size of population L decays and the size of popula-
tion H grows. After this initial phase, the numerical solutions
of the continuum model exhibit trend inversion, with the size
of population L converging to a stable positive value and the
size of population H decaying to zero. Numerical simulations
of the IB model, however, demonstrate that there are realiza-
tions whereby, due to stochastic effects, the aftermath of the
initial phase of cell dynamics is the extinction of population L
and the survival of population H [see right panel of Fig. 5(a)].

Differences between the discrete and the continuum mod-
els are also observed when the supply rate of nutrient
undergoes periodic oscillations [i.e., when the term Ih is de-
fined via Eq. (13)] and different values of θ are considered,
provided that lower values of λH and λL are chosen (results not
shown). In this case, for values of nutrient consumption rate θ

leading to the emergence of severe fluctuations in the nutrient
level (i.e., when population H is ultimately selected according
to the continuum model), there is an excellent quantitative
agreement between the two models. However, for values of θ

leading to the emergence of mild fluctuations in nutrient levels
(i.e., when the continuum model predicts that population L
will ultimately be selected after an initial phase of population
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FIG. 6. Sensitivity analysis of the initial mean phenotype and the initial standard deviation when the nutrient inflow is constant. (a) Com-
parison between numerical simulations of the IB (solid, colored lines in panels 2–4) and continuum (broken, black lines in panels 2–4) models
in the case where the initial phenotype distributions of the two populations are defined as shown by the plots in the first panel, corresponding to
different values of c in Eq. (20). The purple line in the first panel highlights the equilibrium value of the fittest phenotypic state ϕ(S∞), which
is computed by substituting into Eq. (7) the long-time limit S∞. The evolution of Sh is governed by the difference Eq. (11), whereby the term
Ih is defined via Eq. (12) with Ī = 10. Here, aH = aL = 800 and b = 10 in Eq. (20), and the values of the other parameters are those listed in
Table I with λH = 0.05, λL = 0.02 and θ = 10−3. The results from the IB model correspond to the average over 30 realizations and the related
variance is displayed by the colored areas surrounding the curves. (b) Same as panel (a) but for b = 1000.

size contraction), there are realizations of the IB model in
which population L is outcompeted by population H .

C. Sensitivity analysis of the initial standard deviation
and the initial mean phenotype

Based on analytical results presented in Ref. [22] for a
simplified continuum model, in the case where the nutri-
ent concentration coevolves with the cells according to the
difference Eq. (11) and the supply rate Ih is defined via
Eq. (12), we anticipate stronger bottleneck effects in the pres-
ence of both small initial standard deviations, σ 0

H,L, and large
distances between the initial mean phenotypes, μ0

H,L, and
the equilibrium value of the fittest phenotypic state, ϕ(S∞),
which is computed by substituting the long-time limit S∞
of the nutrient concentration into Eq. (7). Since the results
presented in Sec. IV B demonstrate that stronger bottleneck
effects may promote the emergence of differences between
the predictions of the two models, we expect that larger val-
ues of |μ0

H − ϕ(S∞)| and |μ0
L − ϕ(S∞)|, along with smaller

values of σ 0
H and σ 0

L , will increase the likelihood of observing
differences between numerical simulations of the IB and con-
tinuum models.

To test this hypothesis, we first suppose the nutrient supply
rate to be constant and we carry out numerical simulations
for different values of the parameters b and c in Eq. (20).
We recall that larger values of b correlate with lower σ 0

H
and σ 0

L ; moreover. Moreover, in the setting considered here,
lower values of c correspond to higher |μ0

H − ϕ(S∞)| and
|μ0

L − ϕ(S∞)| (i.e., less fit initial mean phenotypes). The plots

presented in Fig. 6(a) reveal excellent quantitative agreement
between numerical simulations of the IB and continuum mod-
els for sufficiently large values of σ 0

H and σ 0
L , regardless of

the values of |μ0
H − ϕ(S∞)| and |μ0

L − ϕ(S∞)| (i.e., indepen-
dently of the value of c). However, and consistent with our
expectations, the numerical results presented in Fig. 6(b) show
that, for sufficiently small values of σ 0

H and σ 0
L , higher |μ0

H −
ϕ(S∞)| and |μ0

L − ϕ(S∞)| (i.e., lower values of c) correlate
with stronger bottleneck effects leading to the emergence of
differences between the cell dynamics produced by the two
models.

We now suppose that the nutrient supply rate undergoes
periodic oscillations and perform numerical simulations for
different values of the parameter c (i.e., the initial mean phe-
notype of the two populations), which correspond to different
values of the quantities |μ0

H− < ϕ > | and |μ0
L− < ϕ > |,

where

< ϕ >:= 1
2

[
min

th∈[0,T ]
S̃(t h) + max

th∈[0,T ]
S̃(t h)

]
, (22)

with S̃(t h) = S̃h being the positive T -periodic function to
which Sh converges as h → ∞. In the setting considered
here, smaller values of c correspond to higher |μ0

H− < ϕ >

| and |μ0
L− < ϕ > | (i.e., less fit initial mean phenotypes).

The results presented in Fig. 7(b) indicate that excel-
lent quantitative agreement is observed between numerical
simulations of the IB and continuum models when the con-
sumption rate θ is such that the nutrient level undergoes severe
fluctuations (i.e., when population H is ultimately selected
according to the continuum model), regardless of the values
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x

FIG. 7. Sensitivity analysis of the initial mean phenotype when the nutrient inflow is periodic. (a) Comparison between numerical
simulations of the IB (solid, colored lines in the central and right panel) and continuum (broken, black lines in the central and right panel)
models in the case where the initial phenotype distributions of the two populations are the same and both defined as shown by the plots in the
left panel, which correspond to different values of the parameter c in Eq. (20). The purple line in the first panel highlights the value of the
quantity < ϕ > defined according to Eq. (22). The evolution of Sh is governed by the difference Eq. (11), whereby the term Ih is defined via
Eq. (13) with A = 30 and T = 5. Numerical simulations are carried out assuming aH = aL = 800 and b = 1000 in Eq. (20), and using the
parameter values listed in Table I with λH = 0.05, λL = 0.02, and θ = 10−3. The results from the IB model correspond to the average over 30
realizations and the related variance is displayed by the colored areas surrounding the curves. (b) Same as panel (a) but for θ = 5 × 10−5.

of |μ0
H− < ϕ > | and |μ0

L− < ϕ > | (i.e., independently of
the value of c). However, the results presented in Fig. 7(a)
show that, when θ is such that the nutrient level undergoes
mild fluctuations (i.e., when the continuum model predicts
population L to be ultimately selected after an initial phase
of population size contraction), good quantitative agreement
between numerical simulations of the IB and continuum mod-
els is observed only if |μ0

L− < ϕ > | and |μ0
H− < ϕ > | are

sufficiently small (i.e., only if c is sufficiently large). Indeed,
larger values of these distances correlate with stronger bot-
tleneck effects that may drive discrepancies between the cell
dynamics of the two models.

D. Sensitivity analysis of the initial population sizes

Motivated by the numerical results presented in Sec. IV C,
we hypothesize that differences between numerical simula-
tions of the IB and continuum models, which are observed
for sufficiently large values of |μ0

i − ϕ(S∞)| (i.e., sufficiently
small c) and sufficiently small values of σ 0

i (i.e., sufficiently
high b), will be amplified when smaller initial sizes of popu-
lation L are considered and the initial total number of cells is
held fixed. Indeed, lower values of ρ0

L may exaggerate stochas-
tic effects associated with small population sizes in the course
of the population bottleneck that occurs in the initial phase of
the cell dynamics (i.e., when the size of population L decays).
To test this hypothesis, we focus on the case where the nutrient
inflow rate is constant and carry out numerical simulations for
which the parameters aH and aL (i.e., the parameters linked to

the initial population sizes) in Eq. (20) are related as follows:

aH = νZ and aL = (1 − ν)Z, (23)

with Z fixed and for increasing values of 0 < ν < 1.
The results presented in Fig. 8 show that higher values

of ν lead to a sharper bottleneck in population L and longer
transient intervals during which the two populations coexist.
For all admissible values of ν, the solutions of the continuum
model are such that the size of population L evolves to a stable
positive value and population H becomes extinct. By contrast,
for ν sufficiently large there are realizations of the IB model
whereby population H outcompetes population L. Moreover,
the size of population H may undergo small stochastic fluctua-
tions about a stable positive value that is larger than that about
which the size of population L fluctuates—i.e., the mean size
of population H is larger than the mean size of population L.

Analogous results pertain when a periodic nutrient inflow
defined via Eq. (13) is considered, provided that values of θ

leading to the emergence of mild fluctuations in the nutrient
level are chosen (i.e., when the continuum model predicts
population L to be ultimately selected after an initial phase
of population size contraction) along with sufficiently high
|μ0

L− < ϕ > | and |μ0
H− < ϕ > | (results not shown).

V. APPLICATION TO THE MATHEMATICAL MODELING
OF METASTATIC COLONIZATION

The results presented in Sec. IV lead us to conclude that
significant differences between the predictions made by the
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FIG. 8. Sensitivity analysis of the initial population sizes.
(a) Comparison between numerical simulations of the IB (solid,
colored lines) and continuum (broken, black lines) models in the case
where ai in Eq. (20) is defined via Eq. (23) with Z = 800 and ν =
0.1. The evolution of the nutrient concentration is governed by the
difference Eq. (11), whereby the term Ih is defined via Eq. (12) with
Ī = 10. Numerical simulations are carried out assuming b = 1000
and c = 0.5 in Eq. (20), and using the parameter values listed in
Table I with λH = 0.05, λL = 0.02, and θ = 10−3. The results from
the IB model correspond to the average over 30 realizations and the
related variance is displayed by the colored areas surrounding the
curves. (b)–(f) Same as (a) but for ν = 0.2 (b), ν = 0.3 (c), ν = 0.7
(d), ν = 0.8 (e), ν = 0.9 (f).

stochastic IB model and the corresponding deterministic con-
tinuum model can arise due to the occurrence of bottleneck
effects, which may be encountered during the early stage of
colonization of new habitats by invasive species across a wide
range of ecological scenarios. As an illustrative example, here
we demonstrate the implications of such differences between
the two modeling approaches when studying in silico the
metastatic colonization of distant organs by cancer cells.

A. Essentials of the biological problem

Metastasis is a multistep process that requires cancer cells
to leave the primary tumour site, survive in the blood circu-
lation, extravasate and proliferate at distant sites. During the
course of such a multifaceted process, cancer cells need to
sequentially acquire different phenotypic characteristics and
ultimately adapt to the environmental conditions of distant
organs, which may be significantly different from those of the
primary tumour [41–43].

TABLE II. Parameter values used in numerical simulations.

Parameter Value Units

γ 0.66 day−1

ζ 0.5 day−1

d 5.2 × 10−4 day−1 cells−1

K 1.25 × 105 cells
θ 8.2 × 10−9 mmol cells−1

κ 2.1 × 10−3 mmol
η 0.24 day−1

Iv 1.5 × 10−4 mmol day−1

α {0.01,1,10} –
λH 0.02 –
λL 0.002 –
aH , aL 25 cells
b 1000 –
c 0 –
τ 10−3 day
t f 365 day
χ 0.032 -

Cancer cells have been reported to undergo spontaneous,
heritable phenotypic variation [44], which may facilitate adap-
tation to unpredictable environmental changes, such as those
faced during the colonization of a new niche following ex-
travasation [45]. Since metastases are seeded by single cancer
cells or small cell clusters, which originate from the primary
site, the adaptive process undergone by cancer cells during
the early stage of colonization may be strongly impacted by
demographic stochasticity.

B. Definition and calibration of the model

We use the stochastic IB model presented in Sec. II and
its deterministic continuum analog provided in Sec. III to
investigate the role that spontaneous, heritable phenotypic
changes play in the evolutionary dynamics of cancer cells
during the early stage of colonization of a distant organ upon
extravasation. In particular, we model the dynamics of cancer
cells within a small metastatic lesion that is embedded in a
1 mm3 portion of tissue and we assume the metastatic lesion
to consist of two competing populations of cancer cells which
undergo spontaneous, heritable phenotypic changes with dif-
ferent probabilities.

As before, the population with the lower probability of
phenotypic variation is labeled by the index L, while the other
population is labeled by the index H . Coherently with the ex-
isting literature [46], we choose the value of the probability of
phenotypic variation λH reported in Table II and we estimate
the probability of phenotypic variation λL to be one order of
magnitude smaller than λH (i.e., λL = 0.1λH ).

In this case, the phenotypic state of every cell at any time
th is characterized by the discrete variable x j ∈ [0, 1], which
models the normalized level of expression of a gene that
controls the cell metabolic state, for example, the GLUT-1
gene [47]. In this scenario, cells in the phenotypic state x j = 0
have a fully oxidative metabolism and produce energy through
oxygen consumption only; cells in the phenotypic state x j = 1
express a fully glycolytic metabolism and produce energy
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through glucose consumption only; cells in other phenotypic
states x j ∈ (0, 1) produce energy via both oxygen and glu-
cose consumption, and higher values of x correlate with a
less oxidative and more glycolytic metabolism [23]. Cells in
the phenotypic state x j = 0 are best adapted to oxygen-rich
environments (i.e., normoxic conditions), while cells in the
phenotypic state x j = 1 are best adapted to oxygen-poor envi-
ronments (i.e., hypoxic conditions), since they rely on glucose
as their primary source of energy and do not require oxygen
for their survival. We assume that glucose is not a limiting
factor in cancer cell proliferation, since its level remains con-
stantly high [48].

Under the biological scenario corresponding to these as-
sumptions, the parameter γ in our model represents the
maximum proliferation rate of fully oxidative phenotypic vari-
ants, while the parameter ζ is the maximum proliferation rate
of fully glycolytic phenotypic variants. Based on the existing
literature [49], we estimate the values of these parameters to
be those reported in Table II. Notice that since glucose is an
inefficient energy source compared to oxygen, we have that
ζ < γ [50].

In particular, letting the average diameter of a cell be about
20 μm, we estimate the maximum number of cells that can be
accommodated in 1 mm3 of tissue to be K = 1.25 × 105 [51],
and we assume that only 1% of them can be cancer cells since,
during the early stage of metastatic colonization, other cells
that are present in the tissue prior to cancer cell extravasation
will leave very limited amount of space available for cancer
cells to invade. Hence, using the fact that the approximate
carrying capacity for our model in oxygen-rich environments
is γ /d [23], we estimate the value of the death rate due intra-
and interpopulation competition d as follows:

γ

d
≈ K

100
	⇒ d ≈ 100

γ

K
.

We assume the phenotype distributions of the two cell popu-
lations at time th = 0 to be of the form given by Eq. (20) with
the values of the parameters aH , aL, b and c corresponding
to a biological scenario whereby the two cell populations are
both small and mainly composed of cells in the fully oxidative
phenotypic state x j = 0 (cf. the values of the parameters aH ,
aL, b, and c reported in Table II).

We let the function Sh represent the concentration of oxy-
gen available to cancer cells at time th. The dynamic of Sh

is governed by the difference Eq. (11), whereby the term Ih

models the rate at which cancer cells are supplied with oxygen
by blood vessels found in the tissue. Here, the parameter η

is the rate of natural decay of oxygen, the value of which is
estimated based on Ref. [52], κ is the Michaelis constant of
oxygen and θ is a conversion factor for cell consumption of
oxygen, the values of which are chosen consistent with those
reported in Ref. [49]. Making the simplifying assumption that
oxygen supply from blood vessels is constant over time, we
define Ih via Eq. (12). Furthermore, denoting by Iv the average
amount of oxygen released from a single healthy blood vessel,
the value of which is chosen based on experimental measure-
ments reported in Ref. [53], we use the following definition of
the term Ī in Eq. (12):

Ī := α Iv. (24)

The parameter α > 0 in Eq. (24) models the level of tissue
oxygenation, which is known to be organ-specific—viz. lungs
and bones are, respectively, highly and poorly oxygenated
organs [54].

In summary, the parameter values used to carry out numer-
ical simulations of the IB model are those reported in Table II
and the parameter values of the corresponding continuum
model are defined accordingly.

C. Results

We expect lower values of α in Eq. (24) (i.e., lower levels
of tissue vascularisation) to correlate with a lower satura-
tion value of the oxygen concentration. On the basis of the
simulation-assisted analysis carried out in Ref. [23], we can
foresee that lower saturation values of the oxygen concentra-
tion will bring about cancer cell populations of smaller size
and will favour glycolytic phenotypic variants (i.e., cells in
phenotypic states x j → 1) over oxidative phenotypic variants
(i.e., cells in phenotypic states x j → 0). Under the biological
conditions corresponding to the initial phenotype distribu-
tions considered here (cf. the values of the parameters b
and c reported in Table II), the initial mean phenotype of
the two cancer cell populations is the fully oxidative phe-
notypic state x j = 0 and, therefore, lower values of α will
correspond to initial mean phenotype of lower fitness. Hence,
based on the results of the sensitivity analysis presented in
Sec. IV, we expect smaller α to make it more likely that dif-
ferences between the IB model and its continuum counterpart
will emerge. This is confirmed by the results presented in
Fig. 9.

The sample dynamics of the size of the cell populations H
and L displayed in Fig. 9 demonstrate that when α is suffi-
ciently high there is excellent quantitative agreement between
the discrete and continuum models [see Fig. 9(a)]. However,
the match between the two models deteriorates as the value of
α decreases. This discrepancy arises because, in contrast with
the deterministic continuum model, the IB model predicts that
population L may be driven to extinction by demographic
stochasticity, resulting in the survival of population H [see
Figs. 9(b) and 9(c)].

These results communicate the biological notion that
higher probabilities of spontaneous, heritable phenotypic
changes may constitute a competitive advantage for cancer
cells during the early stage of metastatic colonization of
poorly oxygenated distant organs. The same results act also
as a proof of concept for the idea that whilst stochastic effects
associated with small cell numbers, which cannot be captured
by deterministic continuum models formulated as nonlocal
PDEs, can be, in a first approximation, neglected when mod-
eling the metastatic colonization of highly oxygenated distant
organs, such as the lungs, they become particularly relevant
when considering poorly oxygenated organs, such as the
bones. This supports the idea that particular care should be
taken when selecting the mathematical modeling approach
employed to describe such a process of biological coloniza-
tion of new habitats.

VI. CONCLUSIONS

We developed a stochastic IB model for the evolution-
ary dynamics of two competing phenotype-structured cell
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FIG. 9. Application to the mathematical modeling of metastasis.
(a) Comparison between numerical simulations of the IB (solid,
colored lines) and continuum (broken, black lines) models, in the
case where realistic parameter values corresponding to the early
stage of metastatic colonization of distant organs by cancer cells are
considered (cf. parameter values reported in Table II). The evolution
of the oxygen concentration is governed by the difference Eq. (11),
whereby the term Ih is defined via Eq. (12) and the term Ī in Eq. (12)
is defined according to Eq. (24) with α = 10. (b, c) Same as panel
(a) but for α = 1 and α = 0.01, respectively.

populations that are exposed to time-varying nutrient levels
and undergo spontaneous, heritable phenotypic changes with
different probabilities. We formally derived the determinis-
tic continuum counterpart of this model and carried out a
systematic comparison between numerical simulations of the
IB and continuum models.

We presented base-case results that demonstrate an ex-
cellent quantitative match between the outcomes of the two
models. These results agree with our previously published
analytical and numerical results for related deterministic
continuum models [22,23]. Moreover, we investigated the im-
portance of stochastic effects in driving differences between
the predictions made by the two models and how these cannot
be captured by the deterministic continuum model. Finally,
considering suitably parameterised versions of the IB and
continuum models, we demonstrated how such differences
may impact on the mathematical modeling of the early stage
of metastatic colonization of distant organs by cancer cells.

The results obtained indicate that bottleneck effects, which
are crucial during the colonization of new habitats by invasive
species, can lead to significant differences between the two
models. In fact, more prominent population bottlenecks bring
about sharper drops in cell numbers. This correlates with both
lower regularity of the density functions of the two popula-
tions and more pronounced demographic stochasticity, which
cause a reduction in the quality of the approximations em-
ployed in the formal derivation of the deterministic continuum
model from the stochastic IB model [cf. the approximations
given by Eqs. (A2)–(A5) and (A7)]. In particular, bottle-
neck effects emerge in the presence of lower probabilities of
phenotypic variation, and are more apparent when the two
populations are characterized by less fit initial mean pheno-
types and smaller initial levels of phenotypic heterogeneity.
The emergence of these effects, and thus the agreement be-
tween the two modeling approaches, is also dependent on the
initial proportions of the two populations.

The generality of our assumptions make the discrete mod-
eling framework considered here applicable to a broad range
of asexual organisms exposed to dynamically changing en-
vironments. Such a modeling framework, along with the
related method to formally derive corresponding continuum
models, can be easily extended to incorporate the effects of
additional biological aspects related to spatial structure, such
as cell movement, inter-cellular spatial interactions, nutrient
diffusion and the presence of multiple sources of nutrient
distributed across the spatial domain. These extensions will
enable a more biologically relevant exploration of the scenar-
ios under which stochastic effects may result in discrepancies
between the predictions made by discrete stochastic mod-
els and those made by their deterministic continuum limits.
This will ultimately help disentangle the impact of, different
sources of, stochasticity on the emergence of spatiotem-
poral evolutionary patterns in a variety of living systems
[55,56].
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APPENDIX A: FORMAL DERIVATION OF THE
DETERMINISTIC CONTINUUM MODEL GIVEN BY THE

SYSTEM OF NONLOCAL PDES (15)

Using a method analogous to that employed in
Refs. [32,33], we show that the coupled system of nonlocal
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FIG. 10. Sample phenotype distributions for base-case results.
Comparison between the phenotype distributions of the surviving
population for the IB (solid, colored lines) and continuum (broken,
black lines) models in the case where the evolution of the nutrient
concentration is governed by the difference Eq. (11). The results
from the IB model correspond to the average over 30 realizations.
(a) Phenotype distribution at numerical equilibrium (i.e., at time
t f = 10) under the simulation set-up of Fig. 2(a). (b) Phenotype
distribution at numerical equilibrium (i.e., at time t f = 10) under
the simulation set-up of Fig. 2(b). (c) Phenotype distribution at the
time instants t1 = 17.5 and t2 = 20 under the simulation set-up of
Fig. 3(a). (d) Phenotype distribution at the time instants t1 = 17.5
and t2 = 20 under the simulation set-up of Fig. 3(b).

PDEs (15) can be formally derived as the appropriate
continuum limit of our discrete model.

In the case where the dynamics of the cells is governed by
the rules described in Sec. II, the principle of mass balance
gives the following difference equations

nh+1
i, j = {2 τ p(x j, Sh) + [1 − τ (p(x j, Sh) + dρh)]}

×
[
λi

2
nh

i, j+1 + λi

2
nh

i, j−1 + (1 − λi )n
h
i, j

]
,

for i ∈ {H, L}, which can be rewritten as

nh+1
i, j = (1 + τ p(x j, Sh) − τ d ρh)

[
λi

2
nh

i, j+1

+ λi

2
nh

i, j−1 + (1 − λi )n
h
i, j

]
. (A1)

Using the fact that the following relations hold for τ and χ

sufficiently small

th ≈ t, th+1 ≈ t + τ, x j ≈ x, x j±1 ≈ x ± χ,

nh
i, j ≈ ni(x, t ), Sh ≈ S(t ), (A2)

nh+1
i, j ≈ ni(x, t + τ ), nh

i, j±1 ≈ ni(x ± χ, t ), (A3)

ρh
i ≈ ρi(t ) :=

∫ 1

0
ni(x, t ) dx, (A4)

FIG. 11. Base-case results when the nutrient concentration is
prescribed. Comparison between numerical simulations of the IB
(solid, colored lines) and continuum (broken, black lines) models in
the case where the nutrient concentration is prescribed and defined
via Eq. (D1). (a) Dynamics of the population sizes (left column)
and the mean phenotype of the surviving population (right column)
in the case where M = 1, T = 5 and A = 0 in Eq. (D1). Here,
aH = aL = 800, b = 10 and c = 0.5 in Eq. (20), and the values of
the other parameters are those listed in Table I with λH = 0.05 and
λL = 0.02. The results from the IB model correspond to the average
over 30 realizations and the related variance is displayed by the
colored areas surrounding the curves. (b, c) Same as panel (a) but
for A = 0.5 [row (b)] and A = 1 [row (c)].

and

ρh ≈ ρ(t ) :=
∫ 1

0
nH (x, t ) dx +

∫ 1

0
nL(x, t ) dx. (A5)

Equation (A1) can be formally rewritten in the approximate
form

ni(x, t + τ ) = {1 + τR[x, S(t ), ρ(t )]}
[

λi

2
ni(x + χ, t )

+ λi

2
ni(x − χ, t ) + (1 − λi )ni(x, t )

]
, (A6)

with R[x, S(t ), ρ(t )] := p[x, S(t )] − dρ(t ). If the function
ni(x, t ) is twice continuously differentiable with respect to the
variable x, then for χ sufficiently small we can use the Taylor
expansions

ni(x ± χ, t ) = ni ± χ
∂ni

∂x
+ χ2

2

∂2ni

∂x2
+ h.o.t., (A7)

where ni ≡ ni(x, t ). Substituting Eq. (A7) into Eq. (A6) and
dividing both sides of the resulting equation by τ , after a little

042404-13



ALEKSANDRA ARDAŠEVA et al. PHYSICAL REVIEW E 102, 042404 (2020)

algebra we find

ni(x, t + τ ) − ni(x, t )

τ

= R[x, S(t ), ρ(t )]ni(x, t ) + λiχ
2

2τ

∂2ni(x, t )

∂x2

+ R[x, S(t ), ρ(t )]
λiχ

2

2

∂2ni(x, t )

∂x2
+ h.o.t.

If, in addition, the function ni(x, t ) is continuously differen-
tiable with respect to the variable t , letting τ → 0 and χ → 0
in such a way that the condition given by Eq. (14) is met, then
from the latter equation we formally obtain

∂ni(x, t )

∂t
= βi

∂2ni(x, t )

∂x2
+ R[x, S(t ), ρ(t )] ni(x, t ),

which gives the system of nonlocal PDEs (15). Finally, the
no-flux boundary condition Eqs. (16) follow from the fact that
the attempted phenotypic variation of a cell is aborted if it
requires moving into a phenotypic state that does not belong
to the interval [0,1].

APPENDIX B: DETAILS OF NUMERICAL SIMULATIONS
OF THE CONTINUUM MODEL

To construct numerical solutions of the system of nonlocal
PDEs (15) posed on (0, 1) × (0, t f ], and subject both to the
no-flux boundary condition Eqs. (16) and to the continuum
analog of the initial condition Eq. (20), i.e.,

ni(x, 0) = ai

( b

2π

) 1
2

exp
[
−b

2
(x − c)2

]
, (B1)

with i ∈ {H, L}, we use a uniform discretization of the interval
(0,1) as the computational domain of the independent variable
x, and we discretize the time interval (0, t f ] with the uniform
step �t = 0.0001. The method for constructing numerical
solutions is based on a three-point finite difference explicit
scheme for the diffusion terms and an explicit finite difference
scheme for the reaction term [57]. Moreover, the ODE (17),
which is subject to the initial condition S(0) = 10 and com-
plemented with the continuum analogues of the alternative
definitions of the term Ih that are specified in the main body
of the paper, is solved numerically by using an explicit Euler
method with step �t . Given the values of the parameter τ ,
χ , λH and λL of the IB model, the values of the parameters
βH and βL are defined so that the condition given by Eq. (14)

is met. The other parameter values are chosen to be coherent
with those used to carry out numerical simulations of the IB
model, which are specified in the main body of the paper.

APPENDIX C: SAMPLE PHENOTYPE DISTRIBUTIONS
FOR THE BASE-CASE RESULTS PRESENTED

IN SECTION IV A

Figure 10 shows the phenotype distribution of the surviv-
ing population when the supply rate of nutrient is constant
[(a)–(b)] and when the nutrient supply undergoes periodic
oscillations [(c)–(d)].

APPENDIX D: BASE-CASE RESULTS IN THE CASE
WHERE THE NUTRIENT CONCENTRATION IS

PRESCRIBED

We carried out preliminary numerical simulations in the
case where, instead of being the solution of the difference
Eq. (11), the nutrient concentration is prescribed and given
by

Sh := M + A sin
(2πth

T

)
, (D1)

where M > 0 is the mean nutrient level, and the parameter
0 � A � M models the semi-amplitude of possible oscilla-
tions of the nutrient level, which have period T > 0. We fix
the values of M and T and consider three different values of
A that correspond to distinct environmental regimes: constant
nutrient level (i.e., no oscillations), mild nutrient fluctuations
(i.e., small-amplitude oscillations) and severe nutrient fluctu-
ations (i.e., large-amplitude oscillations).

The results presented in Fig. 11 show that, for all values of
A considered, there is an excellent quantitative match between
the numerical simulations of the IB and continuum models.
In agreement with the analytical results that we presented in
Ref. [22], when the nutrient concentration is constant, pop-
ulation L outcompetes population H [see Fig. 11(a)]. The
same outcome is observed in the presence of mild nutrient
fluctuations [see Fig. 11(b)]. By contrast, population L is out-
competed by population H when severe nutrient fluctuations
occur [see Fig. 11(c)]. In all cases, the phenotype distribution
of the surviving population is unimodal and attains its max-
imum at the mean phenotype (results not shown). Moreover,
when the nutrient level is constant, the size and the mean phe-
notype of the surviving population converge to stable values.
However, in the presence of T -periodic nutrient fluctuations,
the size and mean phenotype of the surviving population con-
verge to T -periodic functions.
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