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1 Relating simulation units to experimental units
Based on [1, 2], we approximated the correspondence between time, space and VEGF concentration in

our simulations and real experiments.

Space Since in our model we account for cell nucleus positions, we chose the voxel size such that it
approximately corresponds to the size of the nucleus of an endothelial cell. Thus, we fixed the voxel width,
h “ 5 µm.

Time In experiments from [1, 2], confocal microscopy imaging was carried out with time intervals of 15
minutes. Thus, in order to relate our simulation time to experimental time, we fix 0.03 of simulation time “
15 minutes. Then we calibrated our model, using this time correspondence, such that the dynamics of
vascular growth in simulations and experiments from [1, 2] are in good quantitative agreement.
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VEGF concentration In [1, 2], experiments were performed with uniform VEGF concentrations of 0,
5, and 50 ng/ml. Using molar mass of a VEGF molecule (40 kDa), the Avogadro constant (NA “ 6.022 ˆ
1023 mol´1) and assuming that a cell is exposed to all VEGF molecules within a sphere of radius equal to
20 µm, simple computation yields the following correspondence

V “ 0, external VEGF molecules „ 0 ng{ml;
V “ 2500, external VEGF molecules „ 5 ng{ml;

V “ 25000, external VEGF molecules „ 50 ng{ml.

2 Subcellular scale: VEGF-Delta-Notch signalling pathway
The subcellular scale of our model accounts for the phenotype specification mediated by the VEGF-Delta-

Notch signalling pathway. Within a growing tumour, hypoxic regions of the tissue secrete tumour angiogenic
factors (TAFs), which diffuse towards the underlying vascular bed and activate quiescent endothelial cells
(ECs), thus inducing angiogenic sprouting [3, 4]. We focus on the vascular endothelial growth factor (VEGF),
the most well-studied TAF. The canonical Delta-Notch pathway interacts with the VEGF pathway enabling
a contact-mediated communication between ECs allowing them to coordinate their decision making processes
[5, 6, 7, 8]. Specifically, ECs acquire one of the two phenotypes, tip or stalk, which are characterised by dis-
tinct gene expression

SM-Fig 1. An illustration of the
kinetic reactions of the
VEGF-Delta-Notch signalling
pathway for the individual cell
system. The reactions are labelled by
blue circled numbers (see text for
description). Next and Dext represent
extracellular levels of Notch and Delta,
respectively.

patterns (tip cells: high Delta and VEGFR2, low Notch; stalk
cell: low Delta and VEGFR2, high Notch) [5, 7, 9]. Phenotypic
switching modifies EC behaviour which is manifested in cell-cell
and cell-ECM interactions [3, 10]. In our model, these interac-
tions are accounted for at the cellular and tissue scales. In turn,
the local extracellular environment (configuration of the cellular
and tissue scales) serves as a modulator of VEGF-Delta-Notch
signalling [4, 11], thus, dynamical coupling between scales is
maintained in both directions. In this section, we present a
more detailed description of the formulation of the subcellular
scale model.

Phenotype specification via the VEGF-Delta-Notch signalling
pathway has been extensively investigated from the mathemat-
ical modelling perspective [12, 13, 14, 15, 16, 17, 18, 19, 20].
Here, we combine the lateral inhibition model of the Delta-
Notch signalling pathway developed in [13, 14] with the VEGF
signalling pathway as was done in [15, 16]. We refer to these
works for a more detailed overview of the biological foundation
of the model.

Individual cell system
Let N denote the level (number of proteins) of Notch receptor
in a cell, D – Delta ligand, I – Notch intracellular domain (NICD), R2 – VEGF receptor 2 (VEGFR2)
and R2˚ – activated, i.e. bound to VEGF, VEGFR2. We assume the focal cell is exposed to extracellular
levels of Notch and Delta, Next and Dext, respectively (which belong to neighbouring cells, whose signalling
dynamics we do not account for explicitly in the individual cell system, thus Next and Dext are assumed to
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be constant). We denote by V the extracellular level of VEGF. We assume V to be constant as maintained in
many in vitro experiments (e.g. [1, 2]). The kinetic reactions involved in our model are (see the illustration
in SM-Fig 1):

1a N`Dext Õ

k
`
t

k
´
t

rNDexts Ñ
kp

I`Dext Trans-binding/unbinding of an extracellular Delta ligand to a
Notch receptor on the focal cell and the following cleavage of a
NICD.

1b D`Next Õ

k
`
t

k
´
t

rDNexts Ñ
k1
p

D`Next Trans-binding/unbinding of a Delta ligand on the focal cell to
an extracellular Notch receptor on the focal cell followed by
either endocytotic recycling of the Delta ligand (upper
reaction with the rate k1

p) or its degradation (lower reaction
with the rate k2

p).

Œ
k2
p Next

2 H Õ

bR2H
SpI;I0,λI,R2,nR2q

γ
R2 NICD-dependent production of a VEGFR2 receptor and its

degradation at a constant rate.

3 H Õ

bNH
SpI;I0,λI,N ,nN q

γ
N NICD-dependent production of a Notch receptor and its degra-

dation at a constant rate.

4 N `D Õ

k
`
c

k
´
c

rNDs Ñ
ke

H Mutual cis-inhibition of a Delta ligand and a Notch receptor
[13, 14].

5 R2` V Ñ
kv

R2˚ Ñ
γe

H Binding of an external VEGF to a VEGFR2 and the following
degradation of the activated receptor.

6 H Õ

bDH
SpR2˚;R2˚0 ,λR2˚,D,nDq

γ
D Production of a Delta ligand, dependent on activated (bound

to VEGF) VEGFR2, and its degradation at a constant rate.

7 I Ñ
γe

H Degradation of a NICD.

SM-Fig 2. An illustration of the shifted Hill
function for varying parameter λX,Y . The
functional form of HSp¨q is given by Eq (1). Here
X0 “ 2.0, nY “ 2.

Here HS pX;X0, λX,Y , nY q is the so-called shifted Hill
function

HS pX;X0, λX,Y , nY q “
1` λX,Y

`

X{X0

˘nY

1` pX{X0q
nY . (1)

This function represents the transcriptional regula-
tion of gene expression of a generic gene, Y , in re-
sponse to the signalling variable X. X0 and nY
are positive parameters characterising the activa-
tion threshold and cooperativity, respectively. For
0 ď λX,Y ă 1 (λX,Y ą 1) the production of Y
is down-regulated (up-regulated) as the amount of
X increases; if λX,Y “ 1 then X has no effect on
production of Y (see SM-Fig 2). We assume that
NICD signalling up-regulates production of Notch,
thus λI,N ą 1.0 (reaction 3 ), whereas production
of VEGFR2 is down-regulated, λI,R2 ă 1.0 (reaction
2 ). Activated VEGFR2 enhances Delta production,
λR2˚,D ą 1.0 (reaction 6 ). In these reactions, pref-
actors of the type bP characterise baseline production of the corresponding protein P .
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We assume the same degradation rate, γ, for all inactivated proteins (Notch, Delta, VEGFR2). The half-life
of activated signalling cues (NICD, activated VEGFR2) is much shorter, thus γe ą γ [16]. Furthermore,
we assume that complexes [Delta-Notch] once formed release the signal or undergo endocytosis very fast
compared to formation rate (i.e. k1,2

p " k˘t and ke " k˘c ). Thus, denoting kp “ k1
p`k

2
p, kt “ k`t

´

1´ k´t
k´t `kp

¯

,

kc “ k`c

´

1´ k´c
k´c `ke

¯

and η “
k2
p

kp
, we can simplify reactions 1a , 1b and 4 :

1a N `Dext ÝÑ
kt

I `Dext

1b D `Next ÝÑ
p1´ηqkt

D `Next
Œ
ηkt Next

4 N `D ÝÑ
kc

H

To illustrate the characteristic behaviour of the individual cell system given by the kinetic reactions 1
- 7 , we derive the associated mean-field limit equations:

dN
dt “ bNH

SpI; I0, λI,N , nN q ´ γN ´ ktDextN ´ kcND,

dD
dt “ bDH

SpR2˚;R2˚0 , λR2˚,D, nDq ´ γD ´ ηktNextD ´ kcND,

dI
dt “ ktDextN ´ γe I,

dR2
dt “ bR2H

SpI; I0, λI,R2, nR2q ´ γR2´ kv V R2,

dR2˚

dt “ kv V R2´ γeR2˚.

(2)

A full description and reference values of the parameters used in Eq (2) can be found in S1 Table.

To facilitate the analysis of the system of equations Eq (2), we introduce dimensionless variables and
parameters (shown in SM-Table 1). The non-dimensional individual cell system reads

dn
dt “ βNH

SpρN i; 1.0, λI,N , nN q ´ n´ dextn´ κnd,

dd
dt “ βDH

SpρR2 r2˚; 1.0, λR2˚,D, nDq ´ d´ ηnextd´ κnd,

di
dt “ dextn´ τ i,

dr2
dt “ βR2H

SpρN i; 1.0, λI,R2, nR2q ´ p1` vextqr2,

dr2˚

dt “ vext r2´ τ r2˚.

(3)

For simplicity, we omit the bar in the dimensionless time variable.

We have studied numerically how the d- and n-nullclines of the system of equations Eq (3) change as we
vary the (non-dimensional) external Delta concentration, dext. SM-Fig 3A shows that for low values of dext
(SM-Fig 3A (1)) lateral inhibition is not strong enough to suppress the default [6] tip phenotype. As dext
increases, the system enters a bistable regime where both phenotypes, tip and stalk, coexist (see SM-Fig 3A

4



(2)). Finally, for higher values of dext, the tip phenotype is suppressed and the only stable steady state of
the system of equations Eq (3) corresponds to the stalk phenotype (see SM-Fig 3A (3)). A general picture
can be seen in a numerically computed bifurcation diagram (SM-Fig 3B). The effect of external VEGF, vext,
on phenotype specification is to enlarge the bistability region as its concentration increases (see SM-Fig 3C).
On the contrary, for a fixed value of vext, increasing concentration of the external Notch, next, reduces the
size of the bistability region (see SM-Fig 3D).

SM-Fig 3. Numerical simulations of the non-dimensional mean-field individual cell
VEGF-Delta-Notch system (Eq (3)). (A) d- and n-nullclines for varying level of external Delta, dext.
(1) For low values of dext (here dext “ 0.1) there is only one (stable) steady state of the system
corresponding to the tip phenotype. (2) A bistability region with two stable steady states: tip and stalk
cells, occurs for intermediate values of dext (here dext “ 0.3). The unstable saddle point is indicated by a
red unfilled circle. (3) For higher values of dext (here dext “ 1.0), the system is monostable with the stalk
phenotype as its only (stable) steady state. (B) Bifurcation diagram of non-dimensional Notch
concentration, n, as a function of external Delta ligand, dext, corresponding to the system of equations
Eq (3). Full lines denote stable steady states; dashed lines – unstable steady state; yellow filled dots –
saddle-node bifurcation points. (C) Phenotype diagram as a function of external Delta, dext, and external
VEGF, vext, corresponding to the system of equations Eq (3). (D) Phenotype diagram as a function of
external Delta, dext, and external Notch, next, corresponding to the system of equations Eq (3). Parameter
values used to make the plots (except for those indicated specifically) are listed in SM-Table 1.

Multicellular system
The individual cell model can be easily extended to a multicellular one. We need to specify the external

levels of Delta and Notch (Dext and Next, respectively) to which each individual cell is exposed. Dext and
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Variable/
Parameter

Ref.
value

Description

N0 “
γ
kt

2000.0 The characteristic level of Notch.

D0 “
γ
kt

2000.0 The characteristic level of Delta.

R20 “
γ
kv

2000.0 The characteristic level of VEGFR2.

ρN “
N0
I0

20.0 The ratio of the characteristic levels of Notch and NICD.

ρR2 “
R20
R2˚0

10.0 The ratio of the characteristic levels of unbound and bound VEGFR2.

n “ N
N0

Non-dimensional Notch receptor concentration.

D “ D
D0

Non-dimensional Delta ligand concentration.

i “ I
N0

Non-dimensional NICD concentration.

r2 “ R2
R20

Non-dimensional VEGFR2 concentration.

r2˚ “ R2˚
R20

Non-dimensional VEGF-bound VEGFR2 concentration.

βN “
bNkt
γ2 2.5 Non-dimensional baseline expression of Notch receptor.

βD “
bDkt
γ2 4.0 Non-dimensional baseline expression of Delta ligand.

βR2 “
bNkv
γ2 4.0 Non-dimensional baseline expression of VEGFR2.

vext “
kv
γ V “

V
R20

1.25 Non-dimensional external VEGF concentration.

dext “
Dext
D0

0.0´ 5.0 Non-dimensional external Delta ligand concentration.

next “
Next
N0

0.0´ 5.0 Non-dimensional external Notch receptor concentration.

κ “ kc
kt

12.0 The ratio of cis- and trans-binding for Delta and Notch. According to [13],
κ ą 1.

τ “ γe
γ 5.0 The ratio of degradation rates of activated and non-activated receptors/li-

gands. Activated signals have shorter half-life, thus τ ą 1.

t̄ “ γt Non-dimensional time.

SM-Table 1. Non-dimensional variables and parameters of the VEGF-Delta-Notch system.
The reference values are computed according to the dimensional parameter values listed in S1 Table. For
the multicellular system external Notch and Delta, next and dext, respectively, vary according to the
configuration of the system (see text for details).
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Next are given by the levels of the corresponding proteins summed over all the neighbouring cells with which
the focal cell is in contact. Since in our multiscale model of angiogenesis we account for cell nucleus positions
instead of the exact cell membrane configurations, cell-cell interactions are assumed to be non-local, i.e.
beyond their first neighbours. We define an interaction radius, Rs, and assume that two cells are in contact
if they are contained (totally or partially) within a circular neighbourhood of radius Rs. Taking into account
that we use an on-lattice modelling approach with a uniform hexagonal discretisation of the domain, we
define a local neighbourhood of a cell located at the voxel with an index k P R2, vk, as a set of voxels

Hpkq :“ tvl : vl X BRspkq ‰ H, l ‰ k, l P Iu, (4)

where BRspkq denotes a circular neighbourhood of radius Rs centred at the centre of voxel k, and I is the
set of all voxel indices.

The amount of Delta on a neighbour l P Hpkq which is in contact with Notch receptors of the cell of interest
k is assumed to be proportional to the surface area of the overlap between the circular neighbourhood of
the focal cell k and the neighbour l. This is given by the weights αkl (see SM-Fig 4) defined as follows

SM-Fig 4. Illustration of values of the weight
coefficients, αkl (see Eq (5)). Rs is the
interaction radius. The colour bar indicates the
value of the weight, αkl, for each of the neighbours
in the lattice.

αkl “
|vl X BRspkq|

|vl|
, k, l P I. (5)

Here | ¨ | stands for the surface area.

Thus, the external Delta (Notch) concentration,
Dext (Next), for a cell situated in a voxel vk is de-
fined as follows

Dext “ Dk “

ÿ

l P Hpkq

αklDl

ÿ

l P Hpkq

αkl
,

Next “ Nk “

ÿ

l P Hpkq

αklNl

ÿ

l P Hpkq

αkl
.

(6)

We can now rewrite the kinetic reactions 1 - 7 for the multicellular system in a straightforward manner.
For each cell in the system, positioned in voxel vk, we consider the following kinetic reactions (numbered
with Roman numerals as equivalents of the kinetic reactions of the individual cell system numbered with
Arabic numerals)

I Nk `Dl ÝÑ
αklp1´ηqkt

Ik `Dl

l P Hpkq

Œ
αklηkt Ik

II H Õ

bR2H
SpIk;I0,λI,R2,nR2q

γ
R2k
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III H Õ

bNH
SpIk;I0,λI,N ,nN q

γ
Nk

IV Nk `Dk ÝÑ
kc

H

V R2k ` V Ñ
kv

R2˚k Ñ
γe

H

VI H Õ

bDH
SpR2˚

k
;R2˚0 ,λR2˚,D,nDq

γ
Dk

VII Ik Ñ
γe

H

Note that now the reactions 1a and 1b of the individual cell system result in the same reaction I of the
multicellular model. Reaction I is bimolecular between a Notch receptor in voxel vk and a Delta ligand
in a neighbouring cell in vl. As a result of this reaction, a NICD is produced in the cell to which the Notch
receptor belongs (voxel vk) and Delta on the neighbour, Dl, is either degraded or endocytotically recycled.

To summarise, the subcellular scale of our model is a stochastic system given by the multicellular system
with kinetic reactions I -VII. We simulate it using a variation of the Stochastic Simulation Algorithm
(SSA), the Next Subvolume method (NSV) [21]. We list transition rates and the corresponding stoichiometric
vectors used for simulation in SM-Table 2.

When simulated in a simple two-dimensional domain, with only first-neighbour (voxels that share an edge)
interactions, the multicellular system (reactions I -VII) produces the classical chessboard pattern [12] of
alternating tip/stalk cells. However, our system amplifies the range of possible patterns beyond the classical
one. This is due to accounting for mutual cis-inhibition of Delta and Notch within the same cell and non-
locality of interactions within the radius Rs. Specifically, increasing the cis-binding parameter, kc, allows
tip cells to be neighbours since increasing kc reduces the lateral inhibition ability of cells (see SM-Fig 5). In
contrast, increasing interaction radius, Rs, enhances the ability of a tip cell to inhibit more neighbours and
prevent them from acquiring the tip phenotype. Thus, the distance between two tip cells increases as Rs
grows (see S1 Fig).

For completeness, we list the mean-field limit equations corresponding to the multicellular kinetic reactions
I -VII:

dNk
dt “ bNH

SpIk; I0, λI,N , nN q ´ γNk ´ ktDkNk ´ kcNkDk,

dDk

dt “ bDH
SpR2˚k ;R2˚0 , λR2˚,D, nDq ´ γDk ´ ηktNkDk ´ kcNkDk,

dIk
dt “ ktDkNk ´ γe Ik,

dR2k
dt “ bR2H

SpIk; I0, λI,R2, nR2q ´ γR2k ´ kv V R2k,

dR2˚k
dt “ kv V R2k ´ γeR2˚k .

(7)

Here Dk and Nk are given by Eq (6) and k P I.
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Reac-
tion, R

Transition rate νR
k νR

l

I
p1´ηqαklkt

Ω NkDl p´1, 0,`1, 0, 0qT p0, 0, 0, 0, 0qT

ηαklkt
Ω NkDl p´1, 0,`1, 0, 0qT p0,´1, 0, 0, 0qT

II
ΩbR2H

SpIk; ΩI0, λI,R2, nR2q p0, 0, 0,`1, 0qT p0, 0, 0, 0, 0qT

γR2k p0, 0, 0,´1, 0qT p0, 0, 0, 0, 0qT

III
ΩbNHSpIk; ΩI0, λI,N , nN q p`1, 0, 0, 0, 0qT p0, 0, 0, 0, 0qT

γNk p´1, 0, 0, 0, 0qT p0, 0, 0, 0, 0qT

IV kc
Ω NkDk p´1,´1, 0, 0, 0qT p0, 0, 0, 0, 0qT

V
V R2k p0, 0, 0,´1,`1qT p0, 0, 0, 0, 0qT

γeR2˚k p0, 0, 0, 0,´1qT p0, 0, 0, 0, 0qT

VI
ΩbDHSpR2˚k ; ΩR2˚0 , λR2˚,D, nDq p0,`1, 0, 0, 0qT p0, 0, 0, 0, 0qT

γDk p0,´1, 0, 0, 0qT p0, 0, 0, 0, 0qT

VII γeIk p0, 0,´1, 0, 0qT p0, 0, 0, 0, 0qT

SM-Table 2. Transition rates of the multicellular VEGF-Delta-Notch system. The transition
rates are appropriately scaled with the system size parameter, Ω (in our simulations, we fix Ω “ 200). νRr
denotes a stoichiometric vector corresponding to a reaction R in a cell at voxel vr indexed as
pN,D, I,R2, R2˚qT . The transition rates are calculated for all k P I and l P Hpkq, where I denotes the set
of voxel indices in the system.

3 Multiscale simulation algorithm
For the formulation of the algorithm we use the following notation:

I The set of voxel indices in the lattice, L.

NI The total number of voxels in the lattice, L.

Cs “ pN ,D, I,R2,R2˚q The full-lattice configuration of the variables of the subcellular scale:
Notch, N “ pN1, . . . , NNI q; Delta, D “ pD1, . . . , DNI q; NICD, I “
pI1, . . . , INI q; VEGFR2, R2 “ pR21, . . . , R2NI q; activated (bound to
VEGF) VEGFR2, R2˚ “

`

R2˚1 , . . . , R2˚NI
˘

.

Csi “ pNi, Di, Ii, R2i, R2˚i q The configuration of the variables of the subcellular scale in voxel vi.

Cc “ pE,D, c,m, lq The full-lattice configuration of the following variables: cellular
scale cell distribution, E “ pE1, . . . , ENI q; subcellular Delta, D “

pD1, . . . , DNI q, used as a proxy to define cell phenotype; tissue scale
ECM concentration, c “ pc1, . . . , cNI q; tissue scale BM component con-
centrations, m “ pm1, . . . ,mNI q; tissue scale orientation landscape
variable of ECM fibril alignment, l “ pl1, . . . , lNI q.

ωpiÑ jq Transition rate for a migration event from voxel vi to voxel vj .

τij Time step corresponding to the transition ωpiÑ jq.
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τ Time step of the next transition to occur.

swappAi, Ajq A swap operator for the variable A exchanging its values corresponding
to voxels vi and vj , respectively.

t Simulation time.

Tmax Final simulation time.

NR Number of realisations.

Algorithm 1. Pseudocode algorithm of multiscale model simulations.
1: Specify simulation setup.
2: Nullify the realisation counter, countR “ 0.
3: while countR ă NR do
4: countR “ countR ` 1.
5: Initialisation.
6: Set t “ 0, τ “ 1.0.
7: while t ă Tmax do
8: Obtain Cs by simulating the subcellular VEGF-Delta-Notch multicellular system with the final

simulation time, τ .
9: Given Cc, compute migration transition rates, ωpiÑ jq, (see Eq (7) of the main text) for all i, j P I.

10: Sample waiting times for each transition from the exponential distribution with the intensity given
by the corresponding transition rate, τij “ ExppωpiÑ jqq, for all i, j P I such that ωpiÑ jq ą 0.

11: Find the migration event with the minimum waiting time: τ “ τīj̄ “ min
i,j

τij .

Set the jump direction vector, s “ h´1
pqj̄ ´ qīq, where h is the voxel width.

12: Perform the migration event: swappEī, Ej̄q and swappCsī , C
s
j̄ q.

13: Update the orientation landscape due to traction forces generated by the migration event according
to Eq (16) (of the main text) with i “ ī and j “ j̄ and the migration direction s.

14: Do a general update of the tissue scale variables with the final time τ : fibrils relaxation, l, (Eq (17)
of the main text); ECM concentration, c, (Eqs (18)-(19) of the main text); BM component
concentration, m, (Eqs (20)-(21) of the main text).

15: Increment the simulation time: t “ t` τ .
16: [Optional] Calculate statistics.
17: end while
18: [Optional] Post-processing and statistical analysis.
19: End of the current realization.
20: end while
21: End of simulation.

For clarity, we add a few comments to the pseudocode Algorithm 1.

line 1 Simulation setup is defined by specifying the lattice dimensions, Nx
I and Ny

I , the set of indices corre-
sponding to the vascular plexus, IV P , the initial cell nucleus positions, Iinit, the initial ECM alignment,
sinit, the initial ECM and BM component concentrations, cinit and minit, respectively, the distribution
of VEGF, V , and the final simulation time, Tmax. In our simulations, we used 4 different simulation
setups, as listed in S4 Table.

line 5 Initialisation of all variables is done as specified in S3 Table.

line 6 In this line we set τ “ 1.0. This is used as the final simulation time for the first simulation of
the subcellular VEGF-Delta-Notch system, i.e. for the initial phenotype patterning. Initial pattern
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SM-Fig 5. Examples of steady state patterns of the VEGF-Delta-Notch multicellular system
for different cis-inhibition parameter values. Final steady state patterns established during single
stochastic simulations of the system described by the kinetic reactions I -VII for a uniform hexagonal
lattice of 10ˆ 12 voxels. Cis-inhibition parameter was taken as (A) kc “ 6.0e´ 4; (B) kc “ 10.0e´ 4; (C)
kc “ 15.0e´ 4. External VEGF level, V “ 2500, and the rest of the parameter values as in S1 Table.
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stabilisation from a uniform configuration set in the initialisation takes longer than when a pre-pattern
exists and only several cells change their positions. Thus a value of 1.0 was chosen as a value sufficiently
larger than a typical time step for a migration event (defined in line 8 ).

line 8 The subcellular VEGF-Delta-Notch system is simulated using the Next Subvolume (NSV) method with
the final time given by the time step of the last migration transition, τ (except for the first iteration
step in which we use τ “ 1.0).

line 10 An equivalent procedure to sample a number, x, from the Poisson distribution with intensity λ is
x “ 1{λ log

`1{Unifr0,1s
˘

, where Unifr0, 1s is the uniform distribution on r0, 1s.

line 12 The swapping events account for both a simple migration event, when the destination voxel vj̄ is free
and the cell from voxel vī is just put in a new position (voxel vj̄), and a switching event, when the
destination voxel vj̄ is occupied and cells exchange their positions (the values of the subcellular scale).

4 Next Subvolume (NSV) method
The Next Subvolume (NSV) method is one of the modifications of the standard Stochastic Simulation

Algorithm (SSA) [22], introduced in [21]. For reaction-diffusion systems, it is more efficient than the SSA
since the computational effort grows as the logarithm of the number of voxels (subvolumes in 3D) instead
of the linear dependency exhibited by the SSA.

In the SSA the time step for the next reaction to occur is generated from the Poisson distribution with the
intensity equal to the total propensity for all voxels in the system. Then the reaction is chosen probabilis-
tically according to the weight given by the local (for each voxel separately) propensities of each reaction.
A major advantage of the NSV method is that time steps for the next reaction are generated for each voxel
separately and stored in a sorted way according to the next time for a reaction to occur. Implementation of
this algorithm is usually done by utilising a data structure called “priority queue” for which many efficient
algorithms exist. This decreases the overall complexity of the simulating algorithm from linear (for the SSA)
to logarithmic (for the NSV method) of the total number of voxels.

5 Metric definitions
Here we provide more details on definitions of and computational algorithms for the metrics used for model

calibration. Firstly, we recall some of the notation used in the main text.
I Total set of voxel indices.

vi A voxel indexed by i P I.

E “ pE1, . . . , ENI q Distribution of cell nuclei. Here NI denotes cardinal of I.

Tmax Final simulation time in a single realization of our model.

ι A cell label.

We introduce a partitioning of a simulation time interval r0, Tmaxs with a uniform step ∆ as follows:

T p∆q “
"

tk “ ∆k, k “ 0, . . . ,K, K “

Z

Tmax
∆

^*

, (8)

where txu denotes the largest integer less than or equal to x P R.

12



The pseudocode algorithms shown below should be considered as complementary to the general algorithm
of multiscale simulations, Algorithm 1.

We also note that since the simulations we perform are stochastic, the statistic corresponding to tk P T p∆q
is calculated at time t̄ such that t ă tk ă t̄, where t and t̄ are time moments corresponding to two consecutive
times of migration events at the cellular scale of the multiscale simulation.

Displacement The displacement statistic characterises the average displacement a cell makes in ∆disp

time. In our simulations, ∆disp is taken such that it corresponds to 15 minutes, in order to be able to
compare to the data in [2]. However, in general, ∆disp can be chosen arbitrary.

The general algorithm to compute this statistic is given in Algorithm 2. Therein, the concatenation
operator, ¨ _ ¨, is defined as v1 _ v2 “

`

v1
1 , . . . v

1
N1
, v2

1 , . . . v
2
N2

˘

for vectors v1 “
`

v1
1 , . . . v

1
N1

˘

and v2 “
`

v2
1 , . . . v

2
N1

˘

.

Algorithm 2. Pseudocode algorithm for computing the displacement statistic.
1: Specify the length of the displacement interval, ∆disp.
2: Create an empty vector of displacements, Vdisp “ H.
3: for each realization do
4: Nullify the simulation time, t “ 0.
5: k “ 1.
6: V 1

“ p0, . . . , 0q P Rmax cell, where max cell “
ÿ

iPI

Eiptq.

7: while t ă Tmax do
8: Obtain time step, τ , for the next migration event, ωpiÑ jq, (see Algorithm 1).
9: Identify labels of cells whose nuclei are in voxels vi and vj , ιi and ιj , respectively, (if Ejptq “ 0, i.e.

vj is empty, then only ιi).
10: Increment the components of the displacement vector, corresponding to the labels of migrating cells,

V kιi “ V kιi ` h and V kιj “ V kιj ` h, where h is the voxel width (if Ejptq “ 0, i.e. vj is empty, then only
increment V kιi ).

11: t “ t` τ .
12: if t ą ∆dispk then
13: Vdisp “ Vdisp _ V

k.
14: k “ k ` 1.
15: V k “ p0, . . . , 0q P Rmax cell, where max cell “

ÿ

iPI

Eiptq.

16: end if
17: end while
18: end for
19: The output vector, Vdisp, is a sample of cell displacements during all time intervals of length ∆disp for all

cells in all realisations. We use it to compute a probability density function of displacement in ∆disp time
(as in Fig 10A of the main text).

Orientation This statistic is used to characterise persistence of cell migration. The following procedure
is used for its computation.

Each individual cell in a single realization is associated with a label, ι. We record its trajectory within the
lattice during the simulation, ppι, tq P R2, where t P r0, Tmaxs.
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Each ppι, tq (or any sample extracted from it) is a polygonal chain, since cells perform jumps at discrete
time moments and are assumed to be motionless between them. We define the length of a polygonal chain
ppι, tq given the time partitioning Tι as follows

lpppι, tq | Tιq “
ÿ

k

‖ppι, tk`1q ´ ppι, tkq‖, tk P Tι.

Here ‖¨‖ is the Euclidean norm in R2.

We denote by T rι “ ttkuk the ascending sequence of time moments of migration events of the cell with
label ι. Thus, T rι defines the real trajectory of the cell ι (see SM-Fig 6A).

We also define a partitioning of the simulation time interval, defining the smoothed trajectory (see SM-
Fig 6B), as T sι “ T p∆orientq (using Eq (8)), where ∆orient is a uniform time step. In order to be able to
compare our simulation results with experimental data from [1], ∆orient was chosen such that it corresponds
to 20 minutes. However, in general, ∆orient can be arbitrary provided that it is greater than a typical waiting
time between migration events in our multiscale simulation algorithm.

Then the orientation quantity, Oι, is defined as

Oι “
lpppι, tq | T sι q
lpppι, tq | T rι q

.

When Oι is close to 1.0, the cell ι is characterised as persistent. Lower values of Oι correspond to
trajectories in which cells performed many backward jumps (in the direction opposite to the elongation
direction of a sprout).

The quantities Oι are computed for each individual cell in each realization. The overall sample of these
quantities is used to produce box plots of the type shown in Fig 10C of the main text.

Directionality The directionality statistic provides a breakdown of migration events by their direction
with respect to the direction of sprout elongation. We account for three types of movement: anterograde,
retrograde and no movement (still). Since in our simulations ECs polarise according to the alignment of
ECM fibrils (orientation landscape variable) which defines the direction of sprout elongation, any movement
of a cell from the voxel of origin is considered anterograde. In contrast, if there is a cell in the voxel of
destination of the migration event, then this cell is overtaken and is displaced to the voxel of origin. Thus,
this is a retrograde movement. To define cells that stay still, we introduce a parameter, ∆still. A cell is
assumed to be still if it has not moved in ∆still time (in our simulations this parameter corresponds to 20
minutes). A pseudocode for computing the directionality statistic is shown in Algorithm 3.
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SM-Fig 6. Illustrations of real and smoothed trajectories for an individual cell in a single
realization. (A) Unmodified (real) trajectory of an individual cell with a label, ι, in a single realization,
ppι, tq, t P r0, Tmaxs. (B) The smoothed trajectory is obtained from the real trajectory, ppι, tq, by extracting
a sample ppι, tkq such that tk`1 ´ tk « ∆orient. The colourbar indicates the trajectory length.

Algorithm 3. Pseudocode algorithm for computing the directionality statistic.
1: Specify length of a time interval to define ‘no movement’ events, ∆still.
2: Introduce counters for anterograde movement, counta “ 0, retrograde movement, countr “ 0, and ’no

movement’ events, counts “ 0.
3: for each realization do
4: Nullify the simulation time, t “ 0.
5: Create an empty array, A “ H, to record labels of cells which moved during ∆still.
6: k “ 1.
7: while t ă Tmax do
8: Obtain time step, τ , for the next migration event, ωpiÑ jq, (see Algorithm 1).
9: Identify labels of cells whose nuclei are in voxels vi and vj , ιi and ιj , respectively, (if Ejptq “ 0, i.e.

vj is empty, then only ιi).
10: counta “ counta ` 1.
11: A “ A

Ť

tιiu.
12: if Ejptq “ 1 then
13: countr “ countr ` 1.
14: A “ A

Ť

tιju.
15: end if
16: Perform the migration event.
17: t “ t` τ .
18: if t ą ∆stillk then
19: counts “ counts ` pmax cell ´ Size pUniquepAqqq, where max cell “

ÿ

iPI

Eiptq.

20: A “ H.
21: k “ k ` 1.
22: end if
23: end while
24: end for
25: The output is given by three counters for each type of cell movement: counta, countr and counts, which

we use to make histograms of the directionality statistic (as in Fig 10E of the main text).
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In Algorithm 3, the routine Uniquep¨q returns an array of unique cell labels in a given set; the routine
Sizep¨q returns the cardinal of a given set.

Tip cell proportion This metric, Rtipsptq, is defined as the ratio of cells with tip cell phenotype to the
total number of cells in the system at a predetermined time, t. To compute its average over a number
of realisations, we define a partitioning of the simulation time interval, Ttips “ T p∆tipsq, where ∆tips is a
uniform partitioning step.

We recall that we use the parameter characterising the baseline gene expression of Delta, bD, as a threshold
to define a cell’s phenotype (see Eq (3) in the main text). Thus, Rtipsptq in a single realisation is computed
as follows

Rtipsptq “
Number of tip cells

Total number of cells “

ÿ

iPI: DiptqěbD

Eiptq

ÿ

iPI
Eiptq

. (9)

The pseudocode for computing the tip cell proportion statistic, Rtipsptq, is shown in Algorithm 4.

Algorithm 4. Pseudocode algorithm for computing the tip cell proportion statistic.
1: Specify the partitioning of the time interval, Ttips.
2: Nullify the realisation counter, r “ 0.
3: while r ă NR do
4: r “ r ` 1.
5: Nullify the simulation time, t “ 0.
6: Set k “ 0.
7: while t ă Tmax do
8: Obtain time step, τ , for the next migration event (see Algorithm 1).
9: if t ă tk ă t` τ then

10: Compute Rr
tipsptkq as in Eq (9).

11: k “ k ` 1.
12: end if
13: end while
14: end while

15: Average the statistic over the performed realisations, Rtipsptkq “
1
NR

NR
ÿ

r“0

Rr
tipsptkq,

for each k “ 0, . . . ,K.

6 Mixing measure
A general definition of the mixing measure, Mptq, is given by Eqs (22)-(23) of the main text (see also

Fig 6 of the main text for an illustration). In order to fully determineMptq, we need to specify the distance
function, dp¨, ¨, ¨q. Since ECs migrate within empty sleeves of vascular guidance tunnels created due to
ECM proteolysis [10], we convert the simulated network into a directed graph based on the configuration of
the ECM-free tunnels (defines the set of graph vertices) and the ECM fibril orientation (defines the set of
edges). Pairwise distances between cells are thus computed as the shortest possible paths within the graph.
Specifically, we use the classical Dijkstra algorithm with Manhattan distance function [23]. Likewise, the
maximum distance, dmax, used as a normalisation constant in Eq (22) of the main text, is the maximum
Dijkstra distance in the generated graph.
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We now proceed to provide a more detailed description of the numerical procedure used to convert a
simulated vascular network into a graph, compute distances between the vertices of this graph, define a
set of indices, Icluster, and compute the temporal evolution of the mixing measure in a single numerical
realization.

Generating a graph from a simulated network
The algorithm for converting a simulated vascular network into a directed graph, GpN , Eq, is based on the

following.

I. After reaching the final simulation time, Tmax, in a single realization, we consider the final state of
the distribution of ECM concentration, c. Based on this quantity, we determine the voxels that were
explored by cell migration (thus generating the vascular guidance tunnels). Initially cipt “ 0q “ cmax
for i P IzIinit (see S3 Table). Since during cell migration the ECM is degraded (see Eqs (18)-(19) in
the main text), voxels vi, which have been visited by a cell are such that cipt “ Tmaxq ă cmax. This
allows us to define the so-called explored network, N , as a subset of voxel indices such that

N “ ti P I such that ci ă cmaxu . (10)

The voxels with indices in N constitute the set of vertices in the graph, GpN , Eq, to be constructed.
Instead of using 2D indices, for simplicity, we label them in an arbitrary order.

II. To determine the set of edges, E , we look at the configuration of the
ECM fibril orientation, l (orientation landscape (OL) variable). Ver-
tices corresponding to the voxels vi and vj , i, j P N are connected if the
OL of voxel of origin, li “ tls̄i us̄PS , possesses a component s P S greater
than the initialisation value, ∆init. Here s is a unit vector connecting
the centres of vi and vj (see SM-Fig 7). The rationale for this rule is
that this condition implies that the direction s has been explored by a
migration event from voxel vi to vj during simulation (see Eq (16) in
the main text). Mathematically, it reads

(i) there is an edge eij , i, j P N if lsi ą ∆init s “ h´1pqj ´ qiq P S.

In the example shown in SM-Fig 8, condition (i) is satisfied for the
pairs of vertices with indices 1 Ñ 2 and 3 Ñ 4.

III. In most simulated networks, we find sprouts of width of more than one
cell (for example, as shown in SM-Fig 8A). To avoid infinite distances

SM-Fig 7.
Illustration of the
direction vector, s.
s “ h´1pqdest´ qoriginq,
where qk P R2 denotes
a vector of coordinates
of the centre of a voxel
with index k and h is
the voxel width.

between first-neighbour voxels which belong to the same sprout and do not point towards each other
but rather are aligned in the same direction, we connect these vertices if the corresponding voxels
exhibit the same explored direction, s̄. This reads as follows

(ii) there is an edge eij , i, j P N if there exists s̄ P S such that ls̄i ą ∆init and ls̄j ą ∆init.

In SM-Fig 8A, voxels (vertices) 1 and 3 are neighbouring, but do not point towards each other. Nonethe-
less, in a generated graph (SM-Fig 8B) they are connected, since they both have explored the rightward
OL direction (s̄ “ r). The same argument holds for the pairs of vertices 2 Ø 4, 1 Ø 4, 2 Ñ 1 and
4 Ñ 3.

IV. We assume that all edges of the graph have the same weight equal to unity.
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SM-Fig 8. (A) A simple example of a simulated network with | N |“ 4. The green colour corresponds to
tip cell phenotype, red colour to stalk phenotype. Since there are cells in these voxels, the ECM
concentration is less than cmax. Thus, these voxels form the explored network, N (numbering is done in an
arbitrary fashion). Explored OL variable directions are indicated by arrows. (B) The graph corresponding
to the simulated network from (A).

We thus formulate a general algorithm, Algorithm 5, for converting a simulated vascular network into a
graph.

Algorithm 5. Pseudocode algorithm to generate a graph from a simulated network.
1: function Network To Graph ( c, cmax, l, ∆init, I, S)
2: Create set of graph vertices N Ð ti P I such that ci ă cmaxu Ź I.
3: Create an empty set of edges E Ð t u

4: for i P N do
5: for s P S do
6: j P I such that qj “ qi ` hs Ź SM-Fig 7
7: if such j does not exist or j R N then
8: continue
9: end if

10: if there exists s̄ P S such that either
“

ls̄i ą ∆init & s̄ “ s
‰

or
”

ls̄i ą ∆init & ls̄j ą ∆init

ı

then
11: Add an edge from vertex i to j, ei,j , to the set of edges E Ź II., III., SM-Fig 8
12: end if
13: end for
14: end for
15: Create a graph GpN , Eq with all edge costs equal to 1 Ź IV.
16: return GpN , Eq
17: end function

We illustrate Algorithm 5 step by step with a simple example based on the small simulated vascular
network in SM-Fig 9. The final configuration of the explored network is shown in SM-Fig 9A (explored
vascular guidance tunnels with collagen concentration less than 1.0). The OL configuration is shown by
arrows on this plot. The voxels corresponding to the explored network, N , are then labelled by numbers in
SM-Fig 9B. They form the set of vertices of the graph. Applying Algorithm 5 to it, the simulated network
is transformed into a graph (see SM-Fig 9C and 9D, all edges are bidirectional).

Distances in a graph
The output of Algorithm 5 is an unweighted directed graph GpN , Eq. We can use it to compute a matrix

of shortest distances in a graph for each pair of vertices (i.e. explored voxels) in N . To do so, we use the
classical Dijkstra algorithm [23]. This algorithm takes as input a directional graph with non-negative edge
weights (for example, the one shown in SM-Fig 9D) and computes a matrix of shortest paths between each
pair of vertices, using edge costs. The distance of a path is calculated simply by adding up the weights of
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SM-Fig 9. An example of converting a simulated network into a graph. (A) The final
configuration of the ECM concentration, c. Here cmax “ 1.0, thus the explored network, N , corresponds to
all voxels vi with ci ă 1.0. The colour bar indicates collagen concentration. Arrows correspond to the
explored OL configuration (ECM fibril alignment). (B) Labelling (in an arbitrary fashion) the explored
network, N (see Eq (10)). Voxels, indices of which belong to it, are coloured in yellow. (C) Applying
Algorithm 5 to generate a directed graph from the network. Edges between vertices are shown in red (all
bidirectional). (D) The final graph (all edges are bidirectional, arrows are omitted for simplicity) that is
provided as an input to the Dijkstra algorithm to compute shortest paths between graph vertices. All edges
have equal weights of 1.
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all edges constituting the path. Continuing with the example from SM-Fig 9, the matrix of shortest path
distances for the graph from SM-Fig 9D is shown in SM-Table 3. The quantity dmax in Eq (23) in the main
text is then the maximum value in this matrix.

0 1 6 5 1 1 4 3 2 2 2 4 3 3 4 4 5 5 5 6 7 6 6 7

1 0 7 6 2 1 5 4 3 3 2 5 4 3 5 4 5 6 5 6 7 7 6 7

6 7 0 1 5 6 2 3 4 6 6 5 7 7 8 8 9 9 9 10 11 10 10 11

5 6 1 0 4 5 1 2 3 5 5 3 6 6 7 7 8 8 8 9 10 9 9 10

1 2 5 4 0 1 3 2 1 1 1 3 2 2 3 3 4 4 4 5 6 5 5 6

1 1 6 5 1 0 4 3 2 2 1 4 3 2 4 3 4 5 4 5 6 6 5 6

4 5 2 1 3 4 0 1 2 4 4 2 5 5 6 6 7 7 7 8 9 8 8 9

3 4 3 2 2 3 1 0 1 3 3 1 4 4 5 5 6 6 6 7 8 7 7 8

2 3 4 3 1 2 2 1 0 2 2 2 3 3 4 4 5 5 5 6 7 6 6 7

2 3 6 5 1 2 4 3 2 0 1 4 1 1 2 2 3 3 3 4 5 4 4 5

2 2 6 5 1 1 4 3 2 1 0 4 2 1 3 2 3 4 3 4 5 5 4 5

4 5 5 3 3 4 2 1 2 4 4 0 5 5 6 6 7 7 7 8 9 8 8 9

3 4 7 6 2 3 5 4 3 1 2 5 0 1 1 1 2 2 2 3 4 3 3 4

3 3 7 6 2 2 5 4 3 1 1 5 1 0 2 1 2 3 2 3 4 4 3 4

4 5 8 7 3 4 6 5 4 2 3 6 1 2 0 1 2 1 1 3 4 2 2 3

4 4 8 7 3 3 6 5 4 2 2 6 1 1 1 0 1 2 1 2 3 3 2 3

5 5 9 8 4 4 7 6 5 3 3 7 2 2 2 1 0 3 1 1 2 4 3 4

5 6 9 8 4 5 7 6 5 3 4 7 2 3 1 2 3 0 1 4 5 1 1 2

5 5 9 8 4 4 7 6 5 3 3 7 2 2 1 1 1 1 0 3 4 2 1 2

6 6 10 9 5 5 8 7 6 4 4 8 3 3 3 2 1 4 3 0 1 5 4 5

7 7 11 10 6 6 9 8 7 5 5 9 4 4 4 3 2 5 4 1 0 6 5 6

6 7 10 9 5 6 8 7 6 4 5 8 3 4 2 3 4 1 2 5 6 0 1 1

6 6 10 9 5 5 8 7 6 4 4 8 3 3 2 2 3 1 1 4 5 1 0 1

7 7 11 10 6 6 9 8 7 5 5 9 4 4 3 3 4 2 2 5 6 1 1 0

SM-Table 3. The matrix of lengths of shortest paths between each pair of vertices in the graph shown in
SM-Fig 9D. Zero entries on the main diagonal indicate that there are no self-loops in the graph.

Using Algorithm 5 to generate a graph from the simulated network and the Dijkstra algorithm as a distance
function between its vertices, we complete the definition of the mixing measure, Mptq, Eq (22) of the main
text.

Defining the time moments to compute the mixing statistic
To obtain the time evolution of the mixing measure averaged over a number of realisations, we need to

partition the time interval of our simulations and compute Mp¨q for each time instant belonging to the
partition over all performed stochastic realisations. Two important issues need to be addressed:
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I. Mptq is calculated as a normalised difference between the distance among cells in the cluster at some
time, t, and the distance between the same cells at later time pt` tmq. Thus, if Tmax is the final
simulation time, then the last time moment for computing the mixing quantity is pTmax ´ tmq.

II. Our simulations are stochastic. Consequently, time steps of events are not known a priori but rather
sampled during each individual realisation. If we decide to partition the simulation time in some
predetermined way for all realisations, T “

!

τk “ ∆mixk, k “ 1,K, K “

Y

Tmax´tm
∆mix

])

(where ∆mix is
a uniform partitioning step), then we will not be able to calculate the mixing quantity at exactly that
time instant. The time steps of the stochastic simulations are usually much smaller than the chosen
partitioning time step ∆mix. Therefore, if the current simulation time is t ă τk ă Tmax ´ tm and
next event will happen at time τk ă t̄ ă Tmax ´ tm, then we compute the mixing measure at the time
moment t̄, i.e. as soon as the next partitioning time has been passed.

Defining the voxel cluster
The setup of the numerical simulations is such that we assume there is a set of voxel indices, IV P ,

corresponding to a vascular plexus from which the cells are migrating (see S1 Appendix). A Dirichlet
boundary condition of a constant cell number is maintained at these voxels, i.e. if a cell migrates from one
of these voxels, a new one immediately appears. Thus, choosing IV P Ă Icluster guarantees that there are
always cells present in these voxels, and the mixing measure makes sense at all times. However, Icluster can
be any set of indices of the lattice. Choosing a random position for the voxel cluster might lead to a situation
when there are no cells present at the cluster location and we cannot compute the mixing quantity. We set
C “| Icluster |, predetermined cluster size. In the main text, Icluster “ Iinit (Setup 1 from S4 Table) was
used, thus C “ 4.

Whenever we decide to compute the mixing measure, we look at the labels of the cells located in the voxels
in Icluster. Then we track position of these cells and compute the mixing quantity using Eqs (22)-(23) in the
main text. Icluster is fixed over all performed realisations, whereas labels of cells positioned in it for each
desirable time moment change.

Mixing measure
In Algorithm 6 we lay out the general procedure for computing Mptq for a single realization. The mixing

statistic is computed as a mean value of the mixing quantities for each moment of the time partition, T ,
over all performed realisations.
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Algorithm 6. Pseudocode algorithm for computing the mixing measure in a single stochastic
realization of the model.

1: Define predetermined partitioning of the time interval T “ tτkuK1 .
2: Create two empty arrays of size K ˆC to record cell indices, Aid, (see SM-Fig 10A) and their final

positions, P , (see SM-Fig 10B) for each time moment of the partition T .
3: Start stochastic simulation of the multiscale model. Let t denote the current simulation time.
4: Whenever simulation time t ą τk for some k that has not been computed yet, record in Aid cell

indices positioned at voxels with indexes Icluster, track positions of these cells and record their
locations in the lattice at time rt` tms and save them in the array P (in the corresponding kth

row).
5: When t ě Tmax terminate the simulation.
6: Convert the final simulated network into a graph using Algorithm 5.
7: Compute the initial distance between cells in the cluster, dinit, that is the same for all k (since

cells are taken from the same lattice locations, Icluster), using the generated graph and vertices
corresponding to Icluster voxels.

8: For each k in 1,K, compute the sum of the pair-wise distances in the graph between cells with
indices from the kth row of Aid taking their recorded final locations from the kth row of the array
P . Denote this quantity as dk.

9: Find the distance of the longest path in the graph, dmax, as the maximum entry in the matrix of
Dijkstra shortest paths.

10: Compute the mixing quantity for each k in 1,K using Eq (22) of the main text which, in the
notation of this algorithm, corresponds to mk “

dk´dinit
C dmax

.
11: Record in the output file the mixing quantities, mk, for all k “ 1,K.

SM-Fig 10. Array structures used in Algorithm 6. (A) A schematic of the structure of the array of cell
indices, Aid. (B) A schematic of the structure of the array of final cell positions, P .

7 Quantification of simulated vascular networks
To quantify in a rigorous way the branching structure of simulated vascular networks, we developed an

algorithm to extract:

• vascular network area;
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• number of branching points per 100 µm2 area of vascular network;
• number of vessel segments;
• length of vessel segments.

We define a vessel segment as either a part of vascular network between two branching points or free
sprouts, i.e. between a branching point and the leading edge of this sprout.

The orientation landscape variable and graph representation of the simulated network used to compute
the mixing measure give us a direct way to perform vascular network quantification. Briefly, starting with
the graph representation given by Algorithm 5 (see SM-Fig 11B), we reduce sprouts of width of more than
one voxel to single-voxel sprouts. This gives us the ‘skeleton’ of the vascular network (see SM-Fig 11C).
From this representation, it is straightforward to identify branching points as all vertices of degree greater
than 2 and vessel segments are obtained by splitting the skeleton graph at the vertices of branching points
(see SM-Fig 11D). We lay out the general procedure for extracting these statistics in Algorithm 7.

Algorithm 7. Pseudocode algorithm for extracting network quantification statistics in a single
stochastic realization of the model.

1: Get graph representation of the vascular network, GpN , Eq, from Algorithm 5.
2: Define a graph of the network skeleton, GspNs, Esq “ GpN , Eq.
3: Network area, A, is equal to the number of vertices in the graph Gs, | Ns |, multiplied by the area of a

single voxel (0.5
?

3h2, in case of hexagonal voxel of width h [µm]).
4: Create an empty set of pairs of vertices of Gs to be merged, Nmerge.
5: for i P N do
6: for s P S do
7: j P I such that qj “ qi ` hs Ź SM-Fig 7
8: if such j does not exist or j R N then
9: continue

10: end if
11: if there exists s̄ P S such that

“

ls̄i ą ∆init & ls̄j ą ∆init

‰

then
12: Add the pair of vertices pi, jq to the set Nmerge

13: end if
14: end for
15: end for
16: for pi, jq P Nmerge do
17: Merge vertex i with vertex j, i.e. delete from Es the edges ei,j and ej,i

and all edges of type ej,¨ (e¨,j) become ei,¨ (e¨,i).
18: end for
19: Delete all vertices of degree 0 from Ns.
20: Delete repeated edges in GspNs, Esq.
21: Identify branching points as the set of vertices of degree greater than 2,

Nbranch “ ti P Ns s.t. degpiq ą 2u. Ź SM-Fig 11C
22: Number of branching points per 100 µm2 of vascular network area, Nb “ |Nbranch|¨100µm2

A
.

23: The graph of vessel segments, Gvessels, is obtained from Gs by duplicating each vertex in Nbranch by its
degree and splitting the graph, Gs, at these points. Ź SM-Fig 11D

24: Number of vessel segments is given by the number of connected components in the graph Gvessels.
25: Vessel segment lengths are given by the number of edges in each connected component of Gvessels multiplied

by the voxel width, h [µm].
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SM-Fig 11. An example of branching structure quantification on a single simulated vascular
network. (A) The final configuration of the ECM concentration, c, of a simulated vascular network.
Arrows correspond to the explored OL configuration (ECM fibril alignment). (B) The graph representation
of the vascular network from (A) obtained by applying to it Algorithm 5. (C) Vascular network ‘skeleton’,
Gs, obtained by reducing multiple-voxel vessels to single-voxel sprouts (see Algorithm 7). Branching points
(defined as vertices of degree greater than 2) are highlighted by a different colour. (D) Splitting the
network ‘skeleton’ at the branching points to obtain vessel segments graph, Gvessels (see Algorithm 7).
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8 Sensitivity analysis
Since our subcellular scale model was based on the previous works [13, 14, 15, 16], we consider the

parameters of this scale to be fixed (see S1 Table). By contrast, our implementation of cell migration and
cell-ECM interactions is novel. Thus, we performed an extensive sensitivity analysis for the parameters
corresponding to the cellular and tissue scales of our model (listed in S2 Table).

We define the set of baseline parameter values as

p̄ “tK, km, kD, ηmax, sc, Dc, γmax, sm, Dm, pmax, sp, Dp, EF1, EF2, sF1, sF2, Rc, Dω, ηl, cmax, a,∆lu.

Brief interpretations of these parameters and references to the corresponding equations are given in SM-
Table 4. Baseline parameter values, calibrated by comparing our model to experimental data from [1, 2, 24],
are listed in S2 Table.

Parameters Interpretation Reference

K, km, kD cell exploratoriness Eq (14)

ηmax, sc, Dc ECM proteolysis Eqs (18)-(19)

γmax, sm, Dm BM assembly Eqs (20)-(21)

pmax, sp, Dp probability of cell overtaking Eqs (10)-(11)

EF1, EF2, sF1, sF1, sF2 cell-cell interaction Eq (9)

Rc cellular scale cell-cell interaction radius Table 1, EN

Dω diffusion coefficient Eq (7)

ηl ECM relaxation rate Eq (17)

cmax maximum ECM concentration Eq (8)

a polarity vector parameter Eq (13)

∆l orientation landscape update increment Eq (16)

SM-Table 4. Parameters of the cellular and tissue scales used for sensitivity analysis.
Equation references are for the main text.

We define pi as a vector of parameter values as in p̄ except for the parameter at position i which is
incremented (or decremented) as indicated. For each of these parameter sets, we perform 100 realisations of
our model using simulation Setup 1 from S4 Table. The parameters of the subcellular scale are fixed for all
experiments (see S1 Table). From these data we extract the following quantification metrics:

• anterograde cell proportion (directionality statistic);
• orientation;
• displacements;
• number of branching points per 100 µm2 of vascular network area;
• number of vessel segments;
• vessel segment lengths.
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In order to compare these metrics for modified parameter sets, pi, to the baseline parameters, p̄, we
compute:

• Kolmogorov-Smirnov statistic:
D˚ “ max

x
| F̂p̄pxq ´ F̂pipxq | .

Here F̂p̄pxq and F̂pipxq are empirical cumulative distribution functions corresponding to the chosen
metric for the sets of parameters p̄ and pi, respectively. D˚ P r0, 1s, where values close to 0 indicate
that the corresponding cumulative distributions are similar and values close to 1 indicate that F̂p̄pxq
and F̂pipxq differ significantly.

• Relative mean change:
µpi ´ µp̄
µp̄

,

where µpi and µp̄ are the mean values of the chosen metric for p̄ and pi, respectively.

• Relative change of standard deviation:
σpi ´ σp̄
σp̄

,

where σpi and σp̄ are the standard deviations of the chosen metric for p̄ and pi, respectively.

We performed experiments for ˘0.1%, ˘1%, ˘5%, ˘5%, ˘10%, ˘15% and ˘20% change in the parameter
values. The results for ˘10% change are shown in SM-Figs 12-14 for the Kolmogorov-Smirnov statistic,
relative change of mean and relative change of standard deviation, respectively. From these plots, it can
be seen that cell behaviour (such as anterograde cell proportion, orientation of cell trajectory and cell
displacements) and branching structure of the simulated networks (number of branching points, number
and length of vessel segments) are affected the most by variations in parameters Dc and Dm characterising
ECM proteolysis and BM deposition rates, respectively. Less significant change in the metrics is seen for cell
exploratoriness parameters, K and kD, and cell-cell adhesion parameters, EF1 and EF2. We also note that
individual cell behaviour is less affected than the overall vascular network structure.

The results of the sensitivity analysis for ˘10% for the final value of mixing measure (the last value in
the time evolution of the mixing measure extracted from the numerical simulations, Mpt´ tmq) are shown
in SM-Fig 15. This metric is more robust than the metrics considered in SM-Figs 12-14. Interestingly,
variations in majority of parameters (both positive and negative) induce a decrease in the final value of the
mixing measure.
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SM-Fig 12. Sensitivity analysis results for Kolmogorov-Smirnov distance for the following
metrics: (A) anterograde cell proportion, (B) orientation, (C) displacements, (D) number of branching
points per 100 µm2 of vascular network area, (E) number of vessel segments, (F) vessel segment lengths.
Simulations were performed using Setup 1 from S4 Table and the parameter values as listed in S2 Table
except for the parameter indicated at Ox-axis which was incremented (decremented) by 10%. For each set
of parameters 100 realisations were performed.
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SM-Fig 13. Sensitivity analysis results for relative mean change for the following metrics:
(A) anterograde cell proportion, (B) orientation, (C) displacements, (D) number of branching points per
100 µm2 of vascular network area, (E) number of vessel segments, (F) vessel segment lengths. Simulations
were performed using Setup 1 from S4 Table and the parameter values as listed in S2 Table except for the
parameter indicated at Ox-axis which was incremented (decremented) by 10%. For each set of parameters
100 realisations were performed.
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SM-Fig 14. Sensitivity analysis results for relative change of standard deviation for the
following metrics: (A) anterograde cell proportion, (B) orientation, (C) displacements, (D) number of
branching points per 100 µm2 of vascular network area, (E) number of vessel segments, (F) vessel segment
lengths. Simulations were performed using Setup 1 from S4 Table and the parameter values as listed in S2
Table except for the parameter indicated at Ox-axis which was incremented (decremented) by 10%. For
each set of parameters 100 realisations were performed.
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SM-Fig 15. Sensitivity analysis results for final value of mixing measure: (A)
Kolmogorov-Smirnov distance, (B) relative mean change, (C) relative change of standard deviation.
Simulations were performed using Setup 1 from S4 Table and the parameter values as listed in S2 Table
except for the parameter indicated at Ox-axis which was incremented (decremented) by 10%. For each set
of parameters 100 realisations were performed.
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