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S1 Parameter sensitivity

Upon understanding the criteria for which healthy and infectious steady-states can be achieved in the MVSIC
model, it is natural to ask what differences in a patient’s underlying physiology result in different qualitative
responses to viral infection. For instance, if a person’s immune cells are slower to recruit pro-inflammatory
mediators to the infected epithelial cells, will this result in a mild or severe case of inflammation later? To
understand what, if any, qualitative features change when altering a certain parameter grouping, we perform a
sensitivity analysis of the parameters appearing in the MVSIC model.

One method of performing a sensitivity analysis is to determine which parameters in a model have the
greatest influence on a particular model output. With an output selected, we can then determine the extent
to which uncertainty in model parameters contributes to the variability of model outputs [1]. Various types of
sensitivity analyses can be utilised [2]; we consider the extended Fourier amplitude sensitivity analysis (eFAST),
which is a method based on variance decomposition techniques (c.f. [3, 4]). Input parameters are varied resulting
in a variation in model output, where the variation is quantified using the metric s2 =

∑N
i=1(yi − ȳ)2/(N − 1),

where N is the total number of model simulations, yi the ith model output, and ȳ the sample mean. The
algorithm partitions the output variance, determining what proportion of the variance can be attributed to the
variation of each parameter. Partitioning of variance works by varying each parameter at a particular frequency
using a sinusoidal function. Fourier analysis is used to measure the strength of each parameter’s frequency
in the model output, which provides a quantification of the model’s sensitivity to the parameter. The total
number of model simulations N , is given by N = NS × NR × k, where Ns is the total number of samples per
search curve, k the number of varied parameters, and NR the resampling size. In this study we use NS = 257,
NR = 4, and k = 16. As parameters are varied simultaneously over a pre-defined parameter space, this method
is a global sensitivity analysis. In our analysis, the parameter space relates to five times smaller and five times
larger than the Mild/Healthy state parameters shown in Table 2, thereby incorporating all three qualitative
states previously discussed.

Various outputs of the MVSIC model can be chosen, depending on what variable and feature is considered
the most important. For instance, we can determine which parameters affect the minimum value of S, denoted
as Smin, as this key quantity is strongly linked to the presence or absence of a hyperinflammatory state. An-
other suitable model output is a quantity linked to the fluctuating levels of pro-inflammatory cytokines, since
disruptions in the immune system from large fluctuations will cause additional strain on the immune response.
By defining

CT =
1

T

ˆ T

0

∣∣∣∣dCdt
∣∣∣∣ dt, (S1)

we obtain a suitable metric for describing the average fluctuations in cytokine levels over the interval 0 ≤ t ≤ T .
A final metric that we will consider is related to the difference in maximum and minimum cytokine levels after
a certain amount of time has passed (e.g. t > 20); we denote this metric with ∆Ct>20. This metric is also
associated with fluctuating cytokine levels, but does not penalise stable co-existence equilibria (such as in the
asymptomatic state) as severely.

The eFAST analysis outputs both first-order and total-order sensitivity indices between 0 and 1, representing
the fraction of model output variance accounted for by the input variation of a given parameter. The first-order
sensitivity index of a parameter evaluates the fractional contribution of a single parameter on the output variance,
while the total-order index also takes into account the interaction between the parameter in consideration and
other model parameters. In Figure S1, we observe the relative sensitivity of the MVSIC model parameters with
the three aforementioned model outputs. Parameters with a total-order sensitivity index less than or equal to
that of the dummy parameter, shown in the right column of Figure S1, should be considered not significantly
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Figure S1: Sensitivity of MVSIC model parameters on various outputs. Model parameters that alter
a particular output more are larger in eFAST sensitivity magnitude. Parameters whose total-order sensitivity
values are below the dummy parameter (black dashed line) are considered to be insignificant. Three model
outputs are shown: (top) the minimum value of S, denoted as Smin; (middle) the cumulative amount of pro-
inflammatory mediator fluctuations, denoted as CT and defined in (S1); (bottom) the difference in maximum
and minimum pro-inflammatory mediator levels for t > 20, denoted as ∆Ct>20.
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different from zero.
When using the Smin model output, we see that the parameters associated with the existence of the infectious

steady-state, characterised by the inequality shown in (S8), are the most significant parameters. This is to be
expected: parameter regimes in the healthy/mild qualitative states are less likely to experience a steep drop in
S(t). Furthermore, we note that the parameters α, γ3, and λ1 are insignificant parameters with respect to the
Smin output, as they have the same total-order sensitivity magnitude as the dummy parameter.

As the model parameters κ and γ4 can be effectively modified by the absence or presence of the intervention
parameters ε and φ, we conclude that the intervention strategies associated with reducing viral transmission and
pro-inflammatory cytokine levels are indeed significant and plausible in this model. Naturally, the intervention
parameter grouping associated with reducing viral transmission, κ(1−ε), is one of the most significant parameter
groupings present in the model, as the presence of viral loads are the catalyst for a potential hyperinflammatory
state. However, it should be also noted that the intervention parameter grouping associated with reducing
pro-inflammatory cytokine levels, γ4(1 + φ), is as significant of a parameter grouping as the initial viral load,
V0, in the Smin output. In other words, altering the initial viral load in the MVSIC model has about the same
amount of influence as altering the pro-inflammatory cytokine clearance rate via intervention.
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S2 Derivation of unique infectious steady-state

As discussed in Section 2.3, the infectious steady-state (S∗, I∗, V ∗,M∗, C∗) of the MVSIC model has strictly
positive components and satisfies the following system of nonlinear equations:

κ(1− ε)[1− κ(1− ε)V ∗][ζ − γ1(λ1M
∗ + 1)] = γ1γ2(λ1M

∗ + 1)(λ2M
∗ + 1), (S2)

C∗ = M∗ − ρV ∗[1− κ(1− ε)V ∗]
γ3(α+ V ∗)

, (S3)

γ4(1 + φ)C∗ − µM∗
(

V ∗m

ωm + V ∗m

)
= [1− κ(1− ε)V ∗]

[
1 +

σκ(1− ε)V ∗

γ1(λ1M∗ + 1)

](
V ∗n

βn + V ∗n

)
. (S4)

We can solve (S2) for M∗ and determine that

M∗(V ∗) = A(V ∗)
[√

1 + B(V ∗)− 1
]
, (S5)

where

A(V ∗) =
1

2λ1λ2

[
λ1 + λ2 +

λ1κ(1− ε)[1− κ(1− ε)V ∗]
γ2

]
, (S6)

B(V ∗) =
(ζ − γ1)κ(1− ε)[1− κ(1− ε)V ∗]− γ1γ2

γ1γ2λ1λ2A(V ∗)2
. (S7)

To ensure that M∗ > 0, the infectious steady-state can only exist when B(V ∗) > 0 for any V ∗ > 0, implying
that

γ1 <
ζκ(1− ε)

γ2 + κ(1− ε)
. (S8)

To determine what value of V ∗ corresponds to the infectious steady-state, we substitute (S2), (S3) and (S5)
into (S4) and obtain

M∗
[
γ4(1 + φ)− µ

(
V ∗m

ωm + V ∗m

)]
= [1− κ(1− ε)V ∗]

[(
1 +

σκ(1− ε)V ∗

γ1(λ1M∗ + 1)

)(
V ∗n

βn + V ∗n

)
+
ργ4(1 + φ)V ∗

γ3(α+ V ∗)

]
.

(S9)
Since M∗(V ∗) is monotone decreasing and positive, from (S5) we have that V/[λ1M∗(V ∗) + 1] is monotone
increasing. Consequently, we have that

F(V ) :=

M(V )

[
γ4(1 + φ)− µ

(
V m

ωm + V m

)]
(

1 +
σκ(1− ε)V

γ1(λ1M(V ) + 1)

)(
V n

βn + V n

)
+
ργ4(1 + φ)V

γ3(α+ V )

(S10)

is always monotone decreasing. Since we require F(V ∗) = S∗ = 1 − κ(1 − ε)V ∗ ≥ 0, we are only interested
in values of V ∗ where both M(V ∗) ≥ 0 and γ4(1 + φ) ≥ µ

(
V ∗m

ωm+V ∗m

)
. In other words, we only consider

V ∗ ∈ (0, Vmax], where

Vmax =


min

(
1

κ(1− ε)
− γ1γ2
κ2(1− ε)2(ζ − γ1)

, ω

[
γ4(1 + φ)

µ− γ4(1 + φ)

] 1
m

)
, µ > γ4(1 + φ),

1

κ(1− ε)
− γ1γ2
κ2(1− ε)2(ζ − γ1)

, µ ≤ γ4(1 + φ).

(S11)
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By construction, we note that when (S8) holds, 1 − κ(1 − ε)Vmax > 0. Therefore, the infectious steady-state
exists for all values of V ∗ > 0 that satisfy

F(V ∗) = 1− κ(1− ε)V ∗, V ∗ ∈ (0, Vmax]. (S12)

When V ∗ → 0+,F(V ∗) → +∞ and thus F(V ∗) > 1− κ(1− ε)V ∗ as V ∗ → 0+. When V ∗ attains its maximal
feasible value, Vmax, this corresponds to F(Vmax) = 0 and F(Vmax) < 1− κ(1− ε)Vmax when (S8) holds. From
the Intermediate Value Theorem, there must be at least one value V̂ ∈ (0, Vmax) such that F(V̂ ) = 1−κ(1−ε)V̂ .

To show that this infectious steady-state is unique, we suppose instead that there are exactly two values
Ṽ 6= V̂ , that satisfy (S12). Since F(V ∗)→ +∞ as V ∗ → 0+, while F(Vmax) = 0, this means that we must also
have F ′(Ṽ ) = −κ(1− ε). In other words, F ′(Ṽ ) must also be tangential to 1− κ(1− ε)Ṽ as well as satisfying
(S12) . Furthermore, we have that

F(Ṽ )− 1

Ṽ
= F ′(Ṽ ) = −κ(1− ε), (S13)

implying that for some Ṽ ∈ (0, Vmax),
Ṽ F ′(Ṽ )−F(Ṽ ) + 1 = 0. (S14)

However, it can be shown, using symbolic evaluation software or equivalents, that Ṽ F ′(Ṽ )−F(Ṽ )+1 is strictly
negative for Ṽ ∈ [0, Vmax], which yields a contradiction. As any larger number of infectious steady-states would
have to transition through the aforementioned ‘two-solution’ case in parameter space, we conclude that the
infectious steady-state is therefore unique.

6



References

[1] Zhang XY, Trame M, Lesko L, Schmidt S. Sobol Sensitivity Analysis: A Tool to Guide the Development
and Evaluation of Systems Pharmacology Models. CPT: Pharmacometrics & Systems Pharmacology. 2015
Feb;4(2):69–79.

[2] Marino S, Hogue IB, Ray CJ, Kirschner DE. A methodology for performing global uncertainty and sensitivity
analysis in systems biology. Journal of Theoretical Biology. 2008 Sep;254(1):178–196.

[3] Saltelli A, Tarantola S, Chan KPS. A Quantitative Model-Independent Method for Global Sensitivity
Analysis of Model Output. Technometrics. 1999 Feb;41(1):39–56.

[4] Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S. Variance based sensitivity analysis
of model output. Design and estimator for the total sensitivity index. Computer Physics Communications.
2010 Feb;181(2):259–270.

7


	Parameter sensitivity
	Derivation of unique infectious steady-state

