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Dependence of cell-free-layer width on rheological parameters: Combining empirical data on flow
separation at microvascular bifurcations with geometrical considerations
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When blood flows through vessel networks, red blood cells (RBCs) are typically concentrated close to the
vessel center line, creating a lubrication layer near the vessel wall. As RBCs bind oxygen, the width of this
cell-free layer (CFL) impacts not only the blood rheology inside the vasculature, but also oxygen delivery to the
tissues they perfuse and, hence, their function. Existing attempts to relate the width of the CFL to the rheological
properties of the blood and the geometrical properties of the vessel are based on an analysis of the forces acting
on RBCs suspended in the blood. However, the complexity of interactions in the blood makes this a challenging
task. Here, we propose an alternative, two-step approach to derive such a functional relationship. First, we extend
widely accepted empirical fits describing the minimum flow fraction needed for RBCs to enter a daughter vessel
downstream of a microvascular bifurcation so that it depends not only on the diameter and discharge haematocrit
of the parent vessel, but also on its average shear rate. Second, we propose a simple geometrical model for
the minimum flow fraction based on the cross-sectional blood flow profile within the parent vessel upstream
of the bifurcation—considering uniform, parabolic, and blunt velocity profiles—and derive the leading-order
approximation to this model for small CFL widths. By equating the functional relationships obtained using these
two approaches, we derive expressions relating the CFL width to the vessel diameter, discharge haematocrit, and
mean shear rate. The resulting expressions are in good agreement with available in vivo data and represent a
promising basis for future research.
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I. INTRODUCTION

Healthy functioning of living tissues depends in many
ways on an adequate supply of oxygen [1,2]. Moreover,
an increased understanding of the mechanisms underlying
oxygen delivery to living tissues is a prerequisite for suc-
cessful anticancer treatment, as the efficacy of radiotherapy
and chemotherapy is known to be highly sensitive to local
oxygen levels [3–7]. To accurately predict tissue oxygenation,
a detailed knowledge of red-blood-cell (RBC) distribution in
the vascular network contained in the tissue is required. This
distribution depends on the way in which RBCs partition at
diverging bifurcations which, in turn, depends on various ge-
ometrical and rheological parameters. Moreover, even within
the cross section of a single vessel, RBCs preferentially travel
near the center line, creating a layer near the vessel wall lack-
ing RBCs. This cell-free layer (CFL) acts as a lubrication layer
and its width (sometimes also referred to as thickness) directly
correlates with the flow resistance [8]. RBCs carry oxygen
and, thus, act as a buffer modulating the balance between
cell-bound and unbound (free, plasma) oxygen, with only the
latter being available for extravasation and diffusion into the
tissue in which the vessels are located.

The CFL originates from complex interactions involving
the cellular constituents of the blood, plasma fluid, and vessel
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wall. As summarized in [9], RBCs migrate towards the center
line due to their interactions with the vessel wall (and, more
importantly, the endothelial cell layer) under shear flow, and
the curvature of the flow profile. They also move down density
gradients, towards the vessel wall, due to intercellular interac-
tions (collisions). Other effects, such as cell aggregation, are
also likely to have a significant impact on the CFL width [8].

As observed in vivo [10,11] and studied extensively
in silico using the dissipative particle dynamics (DPD)
method [8,12–14], the width W of a fully established CFL
depends on a range of parameters, including the vessel dis-
charge haematocrit (the volume fraction of RBCs in blood)
HD, the vessel diameter D, and the average shear rate ¯̇γ .
DPD simulations typically show that W increases as ¯̇γ and
D increase, and HD decreases (see Fig. 6 in Appendix A).
Recently, immersed boundary lattice Boltzmann simulations
of RBCs suspended in plasma were extended to account for
platelet dynamics [15,16] as well as the transport of solid
particles in blood flow [17,18]. However, these simulations
tend to be computationally expensive due to the complexity
of the interactions they model. As such, they are often limited
to studies of simple networks with few vessels. Moreover,
explicit closed-form expressions relating the CFL width to
rheological parameters are rare as there is no simple way to
arrive at such reduced-order models from the detailed simu-
lations. Such expressions are needed in order to improve the
accuracy of the existing two-phase models of blood flow in
a single vessel (e.g., [19]) that often assume the CFL width
to be constant [20] and in order to facilitate modeling and
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simulation of larger networks. Efforts to derive such expres-
sions typically balance the forces that push RBCs away from
and towards the vessel wall. For example, in [8], the lift force
driving RBCs away from the vessel wall is balanced by an
effective pressure representing intercellular interactions.

Motivation

Blood rheology is extremely complex, and it is thus a chal-
lenge to appropriately account for all participating forces and
derive a reliable functional relationship for the dependence of
CFL width on rheological parameters. For instance, Fig. 6(b)
demonstrates that even though the model for CFL width devel-
oped therein showed good agreement with DPD simulations
using vessel diameters of 20 μm after fitting two parameters,
the agreement using 40 μm for vessel diameters was much
poorer. Moreover, detailed DPD simulations at the scale of
an entire microvasculature are, to date, still computationally
intractable. Thus, it is desirable to have a reliable yet simple
functional relationship relating CFL width to key rheological
parameters. In this paper, we derive such a relationship using
a different approach: we combine insight gained from existing
in vivo data which show how RBCs partition at diverging
microvascular bifurcations with simple geometrical consid-
erations. In this way, we build an important bridge between
two well-studied subfields of vascular rheology—empirical
models of RBC splitting at microvascular bifurcations and
DPD simulations of RBCs suspended in plasma.

At diverging microvascular bifurcations, RBCs do not split
in proportion to the respective flow rates of the two daughter
vessels; typically, the daughter vessel with the higher flow rate
receives disproportionately more RBCs. This phenomenon
has been termed haematocrit splitting (HS) and is caused by
interactions between multiple physical factors (including the
presence of a CFL).

A number of mathematical models for HS have been
proposed [21–27]. Pries and co-workers [21–23] developed
what is arguably the most widely used phenomenological
model for HS and fitted the parameters of their model to
experimental data collected from arteriolar bifurcations in rat
mesentery. One of the key parameters in their HS model is
X0, the minimum fractional flow rate required for RBCs to
enter either daughter branch (i.e., if the fractional flow rate in
one of the branches is less than X0, then no RBCs enter this
branch). The minimum fractional flow rate X0 depends on the
cross-sectional flow profiles of the RBCs and plasma flow in
the (parent) vessel just upstream of the diverging bifurcation
(see Fig. 1). The vessel cross section can be partitioned into
two subregions by a separating curve (whose shape depends
on many factors), so that all blood passing through the first
subregion flows into the first branch and that passing through
the second subregion flows into the second daughter branch.
Thus, the minimum fractional flow rate corresponds to the
threshold case where the CFL fully contains one of these
subregions [see Fig. 2(a)].

In [22], the authors proposed an empirical expression for
X0 of the form

X0 = 0.4

D
, (1)

FIG. 1. The minimum fractional flow rate X0 needed for RBCs to
enter a daughter vessel depends on the flow and haematocrit profile in
the vessel upstream of a diverging bifurcation. Key: the dashed green
curves mark the edges of CFLs; the yellow parallelogram depicts a
vessel cross section upstream of the bifurcation; the dark blue curves
describe how the (plasma) flow separates at the bifurcation.

where D denotes the parent vessel diameter. A subsequent
refinement of this empirical fit was proposed in [23]; the mod-
ified fit accounts for the dependence of X0 on the parent vessel
discharge haematocrit HD (for more details, see Appendix B)
and takes the form

X0 = 0.964(1 − HD)/D. (2)

Throughout this work, we will make use of the following
simplifying assumptions (SAs):

SA.1: The flow in the parent vessel is fully established.
SA.2: The CFL width is independent of space and time.
SA.3: The vessel cross section is circular.
SA.4: The separating curve is a straight line segment.
SA.5: RBCs are uniformly distributed outside the CFL.
SA.6: The center of mass of every RBC follows the flow

lines.
SA.7: The diameter of RBCs is negligible in comparison

with the vessel diameter.
SA.8: The CFL width is much smaller than the vessel

diameter.
We note that SA.1 implies that any effects of CFL distur-

bance and recovery associated with perturbations of the flow
at upstream bifurcations can be neglected [27], while SA.2
implies that spatiotemporal variations in the RBC and plasma
profiles can be neglected and that the CFL width should be
interpreted as an averaged value.

Under these assumptions, X0 will depend on the CFL width
W and the diameter D of the parent vessel. Using simple
geometrical arguments, we will derive such relationships for
different flow profiles in the vessel cross section. By compar-
ing the resulting relationships with the empirical fits defined
by Eqs. (1) and (2), we will derive models that relate the CFL
width W to key rheological parameters.

The remainder of the paper is organized as follows. In
Sec. II A, we first extend the empirical fits given by Eqs. (1)
and (2) to account for the dependence of X0, via W , on the
average shear rate ¯̇γ as observed in DPD simulations from [8].
In Sec. II B, we then derive functional relationships relating
the minimum fractional flow rate X0 to W and D based purely
on geometrical ideas of flow and RBC separation. Comparing
these geometrical models with the extended empirical fits
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FIG. 2. Flow-separation considerations within the vessel cross
section yield relationships between the CFL width W and the min-
imum flow fraction X0 (for a given parent vessel diameter) that
depend on the functional form used to describe the velocity profile
within a vessel cross section upstream from the bifurcation. Panel
(b) shows X0 as a function of W for D = 33 μm. The red dashed
curve represents the approximation (7) for small W/D, assuming a
uniform velocity profile, and is in good agreement with the exact
formula (6) (solid blue curve) for this range of values of W .

obtained in Sec. II A, we obtain implicit equations for how W
depends on HD, D, and ¯̇γ . Making use of Taylor expansions
for the case W/D � 1, we can then invert the leading-order
approximations to these equations, conclude explicit formulas
for W , and compare the predictions of these formulas against
some of the simulations from our previous work [27] (using a
lattice Boltzmann method). We validate these models against
in vivo CFL width measurements in Sec. III before conclud-
ing with a summary of the main results and a discussion of
possible directions for future investigations in Sec. IV.

II. DERIVATION OF A HYBRID MODEL
FOR THE CFL WIDTH

In this section, we develop simple models that relate the
CFL width W to the vessel discharge haematocrit HD, vessel
diameter D, and average shear rate ¯̇γ , where ¯̇γ = v̄/D and v̄

is the average flow velocity. To achieve this, we first extend
existing empirical fits [21–23] so that X0, the minimum flow
fraction needed for RBCs to enter one of the daughter vessels
at a diverging bifurcation, depends not only on the discharge
haematocrit HD and diameter D of the parent vessel, but also
on the average shear rate ¯̇γ (Sec. II A). We then use geomet-
rical arguments to relate the minimum flow fraction X0 to the
CFL width W for three different flow profiles in the parent
vessel (uniform, parabolic, and blunt velocity profiles; see
Sec. II B). By equating these expressions with the extended
empirical fits from Sec. II A, we arrive at implicit expressions
for W which depend on key rheological parameters. Under
the additional assumption that W � D, these expressions
simplify to give explicit formulas for W that are correct to
leading order. For consistency with [21–23], in what follows,
all length scales have been nondimensionalized so that their
values signify their dimensional values expressed in microns.

A. Dependence of the minimum flow fraction on the parent
vessel diameter, haematocrit, and shear rate

Experimental studies [21–23] introduced the two afore-
mentioned functional forms given by Eqs. (1) and (2) relating
the minimum flow fraction X0 to the diameter D and discharge
haematocrit HD of the upstream parent vessel, in a physically
plausible way: X0 is inversely proportional to D and decreases
(linearly) with increasing HD (for details, see Appendix B).
In practice, however, two vessels with similar values of HD

and D may experience different pressure gradients and, hence,
different flow rates, velocity profiles, and shear rates. Given
that (a fully established) CFL width depends strongly on the
shear rate [8], we postulate that the minimum flow fraction X0

should also depend on ¯̇γ .

1. Extension of Equation (2)

We extend the empirical fit defined by Eq. (2) by replacing
the constant factor 0.964 with a function f = f ( ¯̇γ ) of the
average shear rate ¯̇γ , interpreting this particular factor as a
value averaged across a potential range of shear rates expe-
rienced in vascular networks from [21] (noting that [21] did
not investigate how X0 depends on ¯̇γ ). As discussed in [8], W
is an increasing function of ¯̇γ , which attains a finite value as
¯̇γ → ∞ [see Figs. 6(b) and 6(c)]. Based on this observation,
we propose the following functional form for f ( ¯̇γ ):

f ( ¯̇γ ) = C1 × (1 − e−C2 ¯̇γ ), (3)

where the constants C1 and C2 are chosen so that the model
is consistent with the existing literature. The dimensionless
parameter C1 represents the maximum value of the function
f , which is realized in the limit as ¯̇γ → ∞ and estimated
below. The dimensional parameter C2 (in seconds) modulates
the impact of the shear rate ¯̇γ on the minimum flow fraction
X0 and, in turn, the CFL width W . It is estimated in Sec. II B.
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Unfortunately, we could not find any quantitative informa-
tion on local shear rates, flow rates, and velocities in [21],
which contains the experimental work that gave rise to Eq. (2).
In order to estimate values of the mean shear rate, we ex-
ploited simulation results from [22] in which a model of blood
flow through microvascular networks was developed and pa-
rameterized using data from [21]. The resulting predictions
of the average flow velocity were in good agreement with
experiments from a separate study [28]. Taking typical values
of the flow velocity v ≈ 1 mm s−1 and vessel diameter D ≈
10 μm from [28], we estimate ¯̇γ = v/D ≈ 100 s−1. From
Fig. 6(b), we note that for such values of ¯̇γ , the CFL width
is close to its maximum value [corresponding to ¯̇γ → ∞ and,
thus, f ≈ C1 in (3)]. For simplicity, and consistency with the
constant factor of 0.964 that appears in Eq. (2), we set C1 = 1
as the default value throughout this work and study the impact
of uncertainty in this parameter in Sec. III (see Fig. 5).

In summary, we extend Eq. (2) to the following empirical
fit, which incorporates the dependence of X0 on the average
shear rate:

X0( ¯̇γ , HD, D) = C1(1 − e−C2 ¯̇γ )(1 − HD)

D
. (4)

2. Extension of Equation (1)

In a similar manner, we propose the following extension of
Eq. (1), replacing the factor 0.4 with g( ¯̇γ ) = C3 × (1 − e−C4 ¯̇γ )
(with C3 = 0.4 being the default value) so that

X0( ¯̇γ , D) = C3 × (1 − e−C4 ¯̇γ )

D
. (5)

As above, we postpone determination of the constant C4 (in
seconds) to the next section. We note that in practice, even
when ¯̇γ = 0 (i.e., no flow), a CFL with W > 0 exists due to
repulsive forces between RBCs and the tube wall, as discussed
in [8]. However, the effects underlying this phenomenon sig-
nificantly affect the CFL width only at very low shear rates [8]
and will therefore be neglected here.

B. Relating the CFL width and the minimum flow fraction

In this section, we consider a (three-dimensional) parent
vessel of diameter D, which splits into two daughter vessels,
and focus on the two-dimensional cross section of this vessel
upstream from, and in close proximity to, the bifurcation. We
partition the cross section into two subdomains, with blood
from the first (second) subdomain entering the first (second)
daughter vessel. We use geometrical arguments to establish a
functional relationship between the minimum flow fraction X0

and the corresponding undisturbed CFL width W . We start by
studying a highly idealized case for which the velocity profile
is uniform across the vessel cross section. We then analyze the
more realistic case of a parabolic velocity profile, resulting
from the Poiseuille law governing Stokes flow in cylindri-
cal channels. Finally, we consider a blunt velocity profile,
representing the most realistic description of velocity profile
observed in microvasculature (see [29], for instance). Where
necessary, we use superscripts U , P, and B to distinguish
between the three cases and emphasize the assumptions asso-
ciated with the uniform, parabolic, and blunt velocity profiles,
respectively. The superscripts LB and IV indicate whether

relevant CFL widths were obtained from lattice Boltzmann
simulations [27] or in vivo data [10,11], respectively.

1. Uniform velocity profile

By definition, the minimum flow fraction X0 can be equated
with the black (cell-free) area A in Fig. 2(a), divided by the
area of the whole cross section, π (D/2)2. Throughout this
work, we will assume that errors resulting from the nonzero
size of RBCs are negligible (see SA.7). Using Pythagoras’
theorem, it is straightforward to show that the black area can
be calculated as

A = arccos

(
1 − 2W

D

)(
D

2

)2

−
(

D

2
− W

)√
W (D − W ),

and, hence, that

X0 =
arccos

(
1 − 2W

D

) − 2
(
1 − 2W

D

)√
W
D − (

W
D

)2

π
. (6)

Inverting this relationship to obtain an explicit expression for
W = W (X0) is not straightforward, even for fixed values of
D. However, as the area of the black region in Fig. 2(a) is an
increasing function of W , we note that X0 is also an increasing
function of W . Thus, given a fixed value of the diameter
D, we can plot (6) and, for any value of X0, read off the
corresponding value of W [see Fig. 2(b), where D = 33 μm,
for consistency with the results from lattice Boltzmann simu-
lations presented in [27], which are compared with our results
below]. Under SA.8, we can obtain an approximate function
for X0 = X0(W ) which (assuming constant D) can be inverted
to obtain W = W (X0). Defining δ = W/D to be the CFL width
nondimensionalized with respect to the vessel diameter, we
expand (6) in terms of δ � 1 to obtain

XU
0 = 16

3π
δ

3
2 + O

(
δ

5
2
) ≈ 16

3π

(
W U

D

) 3
2

, (7)

recalling that the superscript U indicates that we are assuming
that the velocity profile is uniform. This approximate expres-
sion is valid for CFL widths that are small compared to vessel
diameter [compare the dashed red line and the solid black
lines in Fig. 2(b)] and can be inverted to give

W U ≈ D

(
3πXU

0

16

) 2
3

. (8)

In order to estimate C2 in Eq. (4) for a uniform velocity profile,
we use the results from [8] for the lowest available value
of ¯̇γ [reproduced in Fig. 6(a)]. We observe that the value
of an established CFL width for ¯̇γ = 9 s−1 (approximately
1.3 μm in this case) is about 0.65 times the value for infinite
¯̇γ (estimated to be 2 μm from the same figure). Using Eqs. (4)
and (7), we deduce

1 − e−9CU
2 = XU

0 ( ¯̇γ = 9 s−1)

XU
0 ( ¯̇γ = ∞)

= 0.65
3
2 ≈ 0.52 ⇒ CU

2 ≈ 0.08s. (9)

Using a similar argument, we can derive a similar estimate for
C4 in Eq. (5). Comparing the minimum flow fraction XU

0 (for
a fully established CFL) obtained using the above geometrical
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FIG. 3. Fully established CFL width (W ) as a function of vessel
diameter (D) for a range of values of the tube haematocrit. (a) Results
for HT = 0.08 (black) and 0.16 (green); (b) those for HT = 0.30
(red) and 0.45 (blue). Data points represent in vivo measurements
from [10], solid lines correspond to predictions from the parabolic
model (17), dotted lines to the blunt-profile model (20), and dashed
lines to the uniform-profile model (12). The parabolic model gives
the most accurate predictions for low-haematocrit values (although
for very low haematocrit—0.08—and large vessel diameters, the
approximation breaks down). For higher-haematocrit values, the ac-
curacy of the uniform-profile model increases.

arguments in the small-width limit [i.e., Eq. (7)] with the
extended empirical fit defined by Eq. (4), we have

C1(1 − e−0.08 ¯̇γ )(1 − HD)

D
= 16

3π

(
W U

D

) 3
2

(10)

or, equivalently,

W U =
(

3πC1(1 − e−0.08 ¯̇γ )(1 − HD)D
1
2

16

) 2
3

. (11)

Recalling that in the empirical fits from [21–23], D is (for-
mally) dimensionless and vessel diameters are defined in
microns, we note that for (10) and (11) to hold, W U must be

TABLE I. Key parameters used in the lattice Boltzmann simula-
tions from [27] for the vessel downstream of the first bifurcation for
which the CFL recovery was studied (vessel numbered as 1 in the
reference).

Parameter Description Value

D vessel diameter 33 (μm)
v̄ average velocity 300 (μm/s)
HD haematocrit 20%

defined in the same way. Equation (11) can also be written as

W U = K1(1 − e−0.08 ¯̇γ )
2
3 (1 − HD)

2
3 D

1
3 , (12)

where K1 = (3πC1/16)2/3 ≈ 0.7. We note that if we equate
Eq. (7) with Eq. (5) instead of (4), then we obtain an expres-
sion for the CFL width which is independent of the discharge
haematocrit, contradicting all available evidence (a similar
result holds for the parabolic velocity profile). Therefore,
henceforth, we consider only the extended empirical fit de-
fined by Eq. (4).

We next compare (12) with the CFL width observed in
lattice Boltzmann simulations from [27] where the (fully es-
tablished) CFL width was estimated to be W LB ≈ 1.9 μm (see
Figs. 3(f) and 3(g) in [27]). From Table I, it is straightforward
to estimate the average shear rate in the simulations from [27],
¯̇γ = v̄/D ≈ 9 s−1. Using values from Table I, Eq. (12) yields
W U ≈ 1.24 μm, which contrasts with a value W LB ≈ 1.9 μm
obtained from the lattice Boltzmann simulations [27]. In
practice, the assumption of a uniform velocity profile may
not be valid for blood rheology, as the velocity v should
vanish on the vessel wall (r = D/2, where r denotes the polar
radius). Under the assumption of a single-phase viscous fluid
flowing through a cylindrical channel, we obtain the standard
parabolic velocity profile. The presence of a second phase—
RBCs—causes the profile to be blunter than the parabolic
one and, thus, one might anticipate good agreement with the
uniform-profile model only for high haematocrit levels (see
Fig. 7). Due to the combination of low discharge haematocrit
and (relatively) large vessel diameter used in [27], we expect
the value of the CFL width to be close to that predicted for a
parabolic velocity profile. The aforementioned blunt velocity
profiles can be viewed as intermediate between the uniform
and the parabolic velocity profiles (see [12], for instance).
Therefore, the CFL width (both in silico and in vivo) is ex-
pected to be intermediate between that for the uniform and
parabolic velocity profiles. Finally, since the velocity should
vanish on the vessel wall, if we assume a uniform velocity
profile, then we overestimate the flux of blood that passes
through the CFL. Equating the resulting expression for the
minimum flow fraction XU

0 with the empirical fit from [23]
thus yields a model that systematically underestimates the
CFL width.

2. Parabolic velocity profile

Under the assumption of (one-phase, i.e., plasma) steady
laminar flow in a cylindrical vessel, the velocity profile
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vP = vP(r) satisfies

vP(r) = 32Q

πD4

[(
D

2

)2

− r2

]
, (13)

where Q denotes the volumetric (blood) flow rate (for details,
see [29]). The minimum flow fraction X P

0 equals the flow rate
through the black (cell-free) area A from Fig. 2(a), divided by
Q, i.e.,

X P
0 =

{∫ D/2

D/2−W

[∫ π−arcsin ( D/2−W
r )

arcsin ( D/2−W
r )

dϕ

]
rvP(r)dr

}/
Q = 32

πD4

∫ D/2

D/2−W

(
D2

4
r − r3

)[
π − 2 arcsin

(
D/2 − W

r

)]
dr

= 16

3πD4

{
−3D3

8

√
(D − W )W − D2

4

√
(D − W )W 3 + 3D

√
(D − W )W 5 − 2

√
(D − W )W 7

}
+ 1

π
arccos

(
1 − 2W

D

)
.

This, again, is difficult to invert but, under SA.8 and assuming
δ � 1, we can rewrite it and perform a Taylor series expansion
to obtain the following, leading-order approximation:

X P
0 = 256

15π
δ

5
2 + O

(
δ

7
2
) ≈ 256

15π

(
W P

D

) 5
2

. (14)

The above expression can be inverted to give

W P = D

(
15πX P

0

256

) 2
5

. (15)

Using (14), we follow the line of reasoning from the previous
section to estimate CP

2 as

1 − e−9CP
2 = X P

0 ( ¯̇γ = 9 s−1)

X P
0 ( ¯̇γ = ∞)

= 0.65
5
2 ≈ 0.34 ⇒ CP

2 ≈ 0.05s. (16)

We can now equate (14) with the empirical result (4) and
obtain

W P = D
3
5

[
C1(1 − e−0.05 ¯̇γ ) × 15π (1 − HD)

256

] 2
5

= K2(1 − e−0.05 ¯̇γ )
2
5 (1 − HD)

2
5 D

3
5 , (17)

where K2 = (15πC1/256)
2
5 ≈ 0.51. Thus, we have obtained

a functional relationship between CFL width W P and dis-
charge haematocrit HD (dependent on vessel diameter D) that
should provide a good approximation for a fully established
CFL whenever the velocity profile is close to parabolic and
W P � D. Using the parameter values from [27] (as discussed
in the previous section), we conclude that W P ≈ 2.2.

As expected, the value of the CFL width predicted by
the lattice Boltzmann simulation (1.9 μm) is intermediate

between those for the uniform (1.24 μm) and parabolic
(2.2 μm) velocity profiles. Further, for shear rates with val-
ues as low as those used in the lattice Boltzmann simulation
from [27] ( ¯̇γ ≈ 9 s−1), it has been shown that RBC aggrega-
tion has a significant effect on the (established) CFL width
and inclusion of these effects in DPD simulations leads to a
significantly thicker CFL [see Fig. 6(c)] [8]. As these effects
are not included in [27], it is possible that in vivo values of
the CFL width will be close to the value estimated for the
parabolic velocity profile.

3. Blunt velocity profiles

In the core region, the presence of RBCs increases the
viscosity of the blood, leading to blunt (flattened) velocity
profiles. At low (tube) haematocrit levels, the profiles remain
approximately parabolic, but they become increasingly blunt
with increasing haematocrit (see Fig. 7). Moreover, flattening
in the core region is more pronounced for thinner vessels (see,
also, [14]). For a vessel of length L experiencing a pressure
difference �p between its two ends, one often rearranges the
Poiseuille law (see [9]) to define the apparent viscosity of
blood as

μapp = π

128

�pD4

LQ
.

As RBCs migrate away from the vessel wall, the apparent
viscosity depends on the vessel diameter and the discharge
haematocrit in a nontrivial manner, which is now known
as the Fåhraeus-Lindqvist effect [30]. We further define the
relative apparent viscosity as μrel(D, HD) = μapp(D, HD)/μp,
where μp is the plasma viscosity. In this work, we employ
empirical relationships for μrel(D, HD) deduced from in vivo
data in [31]. Following [9], we then deduce that the blunt
velocity profile vB(r) takes the form

vB(r) = 32Q

πD4
μrel(D, HD)

{(
D
2

)2 − (
D
2 − W

)2 + μp

μc

[(
D
2 − W

)2 − r2
]

for r � D/2 − W(
D
2

)2 − r2 for r � D/2 − W,
(18)

where μc is the viscosity of the core region. Using the arguments from the previous section, it is straightforward to derive the
following approximation for the minimum flow fraction:

X B
0 ≈ μrel(D, HD)

256

15π

(
W B

D

) 5
2

. (19)
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We remark that this approximation for X B
0 does not depend on μc because we only integrate the velocity field over the CFL

(r � D/2 − W ). Equating Eqs. (4) and (19), we conclude

W B = K2(1 − e−0.05 ¯̇γ )
2
5

(1 − HD)
2
5 D

3
5

μ
2/5
rel (D, HD)

, (20)

where the definition of the constant K2 is identical to that from
the previous section.

To summarize this section, in Table II, we list the formulas
for the CFL width W for the three models together with the
corresponding assumptions on the flow velocity profile.

III. COMPARISON WITH IN VIVO DATA

Here, we compare the predictions of our models with
the existing in vivo experiments on (fully established)
CFL width from Refs. [10,11]. In these studies, the shear
rates experienced by the vessels are high enough to justify
neglecting the term e−C2 ¯̇γ in Eq. (4). We converted tube
haematocrits from these works to discharge haematocrits
using formulas from [32], thus accounting for the so-called
Fåhraeus effect [33].

In [10], the authors studied the dependence of the CFL
width W on vessel diameter D for a range of values of the tube
haematocrit (HT = 0.08, 0.16, 0.30, and 0.45). The results are
presented in Fig. 3 and, up to a small error, are within the
ranges delimited by the uniform (from below) and parabolic
(from above) models, except for very low-haematocrit val-
ues. As expected, the parabolic and uniform models provide
better fits to the low-haematocrit and high-haematocrit data,
respectively. The blunt-profile model predictions are typically
intermediate between those for the uniform and parabolic
models, and seem to capture the trends well, especially for
HT = 0.30. However, for other values of the tube haematocrit,
the discrepancies are significant. We will discuss possible
sources of these (and other) errors in the next section. Next,
we reconstruct the results from [10] displaying the depen-
dence of W on HT for comparison with our models; see
Fig. 4. We again confirm that the parabolic model represents a
good approximation for low-haematocrit values, the uniform
model for high-haematocrit values, and the experimental data
typically lie within the ranges delineated by the parabolic
and uniform models, except for (extremely) low-haematocrit
values. Most importantly, we note that the blunt-velocity pro-
file model captures the dependence of the CFL width on
haematocrit more accurately than either the parabolic or the
uniform-profile model. In Fig. 5, we compare our model
predictions with more recent in vivo data, obtained for tube
haematocrit values of HT ≈ 0.42 [11]. If we neglect very
thin vessels, then the experimental data fall within the ranges
predicted by the parabolic- and uniform-profile models. More-
over, the blunt-velocity profile model accurately predicts the

TABLE II. Functional relationships for the CFL width W for
uniform, parabolic, and blunt velocity profiles.

Flow profile Formula for W Validity

uniform K1[(1 − e−0.08 ¯̇γ )(1 − HD )]
2
3 D

1
3 high HD

parabolic K2[(1 − e−0.05 ¯̇γ )(1 − HD )]
2
5 D

3
5 low HD

blunt K2

[
(1−e−0.05 ¯̇γ )(1−HD )

μrel (D,HD )

] 2
5
D

3
5 any HD

dependence of the CFL width (W ) on the vessel diameter (D)
and again proves to be superior to the other models. Recalling
that we neglect the term e−C2 ¯̇γ in this section, this model only
contains one free parameter K2 = (15πC1/256)2/5 [see (20)]
where we estimated C1 ≈ 1 in Sec. II A, which gave K2 ≈
0.51. By plotting the predictions of the blunt-velocity profile
model for varying K2, we find that the model prediction us-
ing twice the default value overestimates in a proportionate
manner, while the prediction using half the default value un-
derestimates the in vivo data (see Fig. 5). The model is thus
sensitive to this parameter and our estimate for C1 leads to
results which are in good agreement with the in vivo data.

The tube haematocrit value from [11] is closest to the value
0.45 from [10]. We note that while the data from [11] are
almost midway between the predictions for the uniform- and
parabolic-profile models, the data from [10] lie below the pre-
dictions of the uniform-profile model. This discrepancy may
be due to differences in the shear rates used in [10] and [11].
Indeed, if the shear rates in [10] are lower than those in [11],
then the model predictions for [10] would lie slightly below
those shown in Fig. 3.

IV. DISCUSSION

We have derived models for the dependence of the fully
established CFL width (W ) on vessel diameter (D), discharge
haematocrit (HD), and the average shear rate ( ¯̇γ ). To achieve
this, we first extended the existing empirical fit for the mini-
mum flow fraction from [23] to account for the average shear
rate and then compared this expression with new expressions
for this fraction, derived under the simplifying assumptions
SA.1–SA.8 and based on simple flow-separation ideas, for

0 0.1 0.2 0.3 0.4
1

2

3

4

5

6
W (µm)

HT

WP

WB

WU

FIG. 4. Fully established CFL width (W ) as a function of vessel
haematocrit (HT ) for fixed values of the vessel diameter D. Data
points represent in vivo averages from [10], the solid lines correspond
to predictions from the parabolic model (17), dotted lines correspond
to the blunt-profile model (20), and dashed lines to the uniform
model (12), using D = 30 μm (blue curves) and D = 40 μm (red
curves).
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FIG. 5. Fully established CFL width (W ) as a function of vessel
diameter for tube haematocrit HT = 0.42. Data points represent in
vivo measurements from [11], the solid blue line gives predictions
for the parabolic model (17), the dotted blue line for the blunt-profile
model (20), and the dashed blue line for the uniform model (12).
As anticipated, the data lie between the predictions of the parabolic
and the uniform model, except those for very thin vessels. Overall,
the blunt-velocity profile model most closely captures the behavior.
By plotting the predictions of this model for twice (dotted red line)
and half (dotted green line) the default value of K2 (0.51), we show
that the model is sensitive to K2 = (15πC1/256)2/5 and confirm the
validity of our estimate for C1 from Sec. II A.

uniform, parabolic, and blunt-velocity profiles upstream of the
relevant bifurcation. As expected, predictions of the parabolic-
profile model are in good agreement with the in vivo data in
the low-haematocrit range, while the uniform-profile model
captures the high-haematocrit data well. The blunt-profile
model most accurately predicts the CFL width across a
range of values of the vessel diameter and (especially) dis-
charge haematocrits. Moreover, the scatter of existing in vivo
data—as discussed in [12] and [13]—could be due to vessels
experiencing different average shear rates, which means that
our simple models might provide reliable predictions for in
vivo behavior. More, and better controlled, experimental data
are needed to more accurately assess the range of validity for
the three models, especially with regards to the dependence
on the mean shear rate. Our work also serves as a bridge
between the two subfields of blood rheology research—the
HS models and the DPD studies of phase separation within
a single vessel—thus providing further consistency checks
across state-of-the-art scientific theories.

Even with the blunt-profile model providing the most accu-
rate knowledge of cross-sectional velocity profile, we see that
discrepancies with the in vivo data can be significant. Such
errors may be attributed to a combination of measurement
errors and modeling simplifications.

A. Measurement errors

A key factor when considering measurement errors is
the dynamic nature of blood rheology: the CFL width ex-
hibits significant spatiotemporal variations (such variations
are neglected in this work; see SA.2), which makes a precise
definition of CFL width challenging and the corresponding
measurements noisy. Moreover, predictions of DPD simula-
tions from [12] and [13] were shown to differ from the in vivo

data; a possible reason for this discrepancy is the presence of
an endothelial surface layer (ESL). This layer has been shown
to have a major impact on blood rheology. While the in vivo
data in [11] accounted for the ESL thickness, it is unclear
whether this was done in [10]. Given the estimated thickness
of this layer (0.4–0.5 μm [12]), the data from [10] could
significantly underestimate the CFL width. Our models should
account for the ESL, albeit implicitly, as the fit for X0 from (2)
was obtained by fitting to in vivo data. Finally, we note that the
spatial resolution in [11] was reported to be around 0.4 μm,
which only adds to the uncertainty in the measurements.

B. Range of validity of modeling simplifications
and future model development

To conclude, we revisit some of the key modeling assump-
tions used in this work and discuss the extent to which they
may contribute to discrepancies between the experiments and
the models. We also consider the parameter ranges for which
these approximations are valid and outline possible ways to
reduce errors associated with these simplifications.

1. Validity of neglecting RBC size (SA.7)

Consider a diverging bifurcation and a surface that
partitions the parent vessel into two subregions, so that flow
from one subregion enters one daughter vessel and flow from
the second subregion enters the other daughter vessel. Let us
assume further that one of the two daughter branches receives
no RBCs and let us denote the corresponding subregion as
subregion A. As a first approximation, RBCs in the parent
vessel follow the streamline going through their centers of
mass (SA.6). As a result, it is possible that a small part of
an RBC may lie in subregion A. In such cases, the minimum
flow fraction X0 might be slightly greater than that calculated
in this work. This might induce significant errors in the model
predictions, particularly if RBCs are comparable in size
with the vessel diameter (i.e., for very thin vessels). Future
model extensions could incorporate the RBC diameter as a
new parameter. However, Figs. 3 and 5 show that our model
continues to perform well for very thin vessels.

2. Validity of assuming W/D � 1 (SA.8)

Our models yield the largest errors when discharge haema-
tocrit levels are low and it is noteworthy that such (haemod-
iluted) vessels are abundant in tumor microenvironments. A
likely explanation for this is that under low-haematocrit con-
ditions, CFL width is large compared to the vessel diameter
(see Fig. 7). In such cases, errors arising from truncating the
Taylor series expansion may not be negligible. To correct for
this, we might retain higher-order terms in the Taylor series
expansions and, by following the same steps as before,
establish whether the resulting CFL widths are in better agree-
ment with the in vivo data under low-haematocrit conditions.
However, the retention of higher-order terms will make the
derivation of an explicit expression for the CFL width W
more challenging, as it would require solution of a polynomial
equation of degree 5 (uniform model) or higher (parabolic-
and blunt-profile models).

3. Validity of the empirical fits defined by Equations (1) and (2)

We note that Eqs. (1) and (2) are empirical fits and
not based on mechanistic considerations. In practice, the
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dependence of X0 on HD and D is likely to be more involved.
Furthermore, relationships (1) and (2) were obtained by
fitting to experimental data for vessels with diameters less
than 50 μm [21]. In vivo measurements of CFL thickness were
taken from vessels with diameters in similar ranges [10,11].
As we expect approximations (SA.8) (δ � 1) and (SA.7) (the
negligibility of RBC size) to hold for thicker vessels, it seems
worthwhile to compare our model with in vivo measurements
for microvessels larger than 50 μm in diameter. Unfortu-
nately, we were unable to find such data in the literature.

In summary, given its limitations and the need for fur-
ther experimental testing, the work presented in this article
represents an important first step to obtaining models of mi-
crovascular blood rheology that are simultaneously accurate
and simple enough to be easily upscaled to larger spatial
scales. Particularly for small vessels, the applicability of

purely mechanistic models is severely limited by the computa-
tional complexity of capillary beds and the inappropriateness
of standard continuum approaches [34]; in such situations,
reduced-order models, of the type presented here, represent
a promising alternative.
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APPENDIX A: RELEVANT FIGURES REPRODUCED
FROM THE LITERATURE

For completeness, we reproduce, from the literature, fig-
ures of relevance to the model development presented in the

(a) (b)

(c)

FIG. 6. Reproduction of key figures 3(a), 8(b), and 7(c) from [8] (with permission). (a) Starting from a dispersed cross-sectional
distribution of RBCs, the time evolution of CFL width [here denoted δ(t )] as dependent on the mean shear rate ¯̇γ was studied using DPD.
(b), (c) Then, the dependence of the converged (i.e., fully established) CFL width (here denoted δ f ) on the mean shear rate ¯̇γ , vessel diameter D,
and tube haematocrit Ht was examined. Note that the dashed lines in (c) show simulations that do not incorporate the effect of RBC aggregation
(whereas the solid lines do).
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FIG. 7. Typical velocity v as a function of radial distance from the vessel centerline r as dependent on tube haematocrit Ht and vessel
diameter D reproduced from [12] (Fig. 2 in the reference; with permission). The subfigure on the left uses D = 10 μm and that on the right
uses D = 40 μm.

main body of this paper. These figures relate to the DPD
simulations of CFL width from [8] (Fig. 6) and cross-sectional
velocity profiles from [12] (Fig. 7).

APPENDIX B: MODEL PARAMETRIZATIONS
FROM [22] AND [23]

Based on experimental observations, Pries et al. [22] pro-
posed the following haematocrit splitting model:

logit(FQE ) = A + B logit

(
FQB − X0

1 − 2X0

)
, (B1)

where FQE is the volume fraction of RBCs entering one
branch, FQB is the fraction of the total blood flow entering
that branch, X0 is the minimum flow fraction in either branch
for RBCs to enter that branch, and logit(x) = ln [x/(1 − x)].
The (1 − 2X0) term reflects the fact that the CFL exists for
both daughter vessels. The dimensionless parameters A, B,
and X0 in the model from [22] depend on the diameters D of
the parent and both children vessels (denoted by subscripts α

and β, respectively), and the discharge haematocrit HD in the

parent vessel, in the following way:

A = −6.96 ln

(
Dα

Dβ

)
/D, (B2)

B = 1 + 6.98

(
1 − HD

D

)
, (B3)

and

X0 = 0.4

D
. (B4)

To obtain a better approximation for extreme combinations
of parameter values, the dependences of A and X0 on model
parameters from [22] were later modified in [23] as follows:

A = −13.29[(D2
α/D2

β − 1)/(D2
α/D2

β + 1)](1 − HD)/D

and

X0 = 0.964(1 − HD)/D. (B5)

We use both Eqs. (B4) and (B5) in this work.
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