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Spatial structure impacts adaptive therapy by

shaping intra-tumoral competition
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Abstract

Background Adaptive therapy aims to tackle cancer drug resistance by leveraging resource
competition between drug-sensitive and resistant cells. Here, we present a theoretical study
of intra-tumoral competition during adaptive therapy, to investigate under which circum-
stances it will be superior to aggressive treatment.

Methods We develop and analyse a simple, 2-D, on-lattice, agent-based tumour model in
which cells are classified as fully drug-sensitive or resistant. Subsequently, we compare this
model to its corresponding non-spatial ordinary differential equation model, and fit it to
longitudinal prostate-specific antigen data from 65 prostate cancer patients undergoing
intermittent androgen deprivation therapy following biochemical recurrence.

Results Leveraging the individual-based nature of our model, we explicitly demonstrate
competitive suppression of resistance during adaptive therapy, and examine how different
factors, such as the initial resistance fraction or resistance costs, alter competition. This not
only corroborates our theoretical understanding of adaptive therapy, but also reveals that
competition of resistant cells with each other may play a more important role in adaptive
therapy in solid tumours than was previously thought. To conclude, we present two case
studies, which demonstrate the implications of our work for: (i) mathematical modelling of
adaptive therapy, and (ii) the intra-tumoral dynamics in prostate cancer patients during
intermittent androgen deprivation treatment, a precursor of adaptive therapy.

Conclusion Our work shows that the tumour’s spatial architecture is an important factor in
adaptive therapy and provides insights into how adaptive therapy leverages both inter- and
intra-specific competition to control resistance.

1 Mark Robertson-Tessi® |,

Plain language summary

Cancer therapy traditionally focuses
on maximising tumour cell kill with
the aim of achieving a cure, but such
aggressive treatment can open up
space for drug-resistant cells to grow.
In contrast, adaptive therapy aims to
leverage competition between drug-
sensitive and resistant cells by
adjusting treatment to maintain the
tumour at a tolerable size, whilst
preserving drug-sensitive cells. This
approach is being tested in trials but
is not yet widely used as deeper
understanding of cell-cell competition
is required. Here, we used a mathe-
matical model to investigate how
strongly, and with whom, resistant
cells compete during continuous and
adaptive therapy, and applied our
insights to hormone therapy in pros-
tate cancer where adaptive therapy
has recently been successfully trialed.
Our results provide new insights into
how adaptive therapy works and
show that, by shaping cell competi-
tion, the tumour's spatial architecture
is important in determining therapy
response.
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an insects become resistant to sprays?”—this is the
question entomologist Axel Melander raised in an
article of the same title in 19141. At a site in Clark-
ston, WA, Melander had observed that over 90% of an insect pest
called the “San Jose scale” was surviving despite being sprayed
with sulphur-lime insecticidel. If we were to ask the same ques-
tion in cancer treatment today we would be met with an equally
resounding “yes”: while for most cancers it is possible to achieve
an initial, possibly significant, burden reduction, many patients
recur with drug-resistant disease, or even progress while still
under treatment. Drug resistance can develop in a number of
ways, including genetic mutations that alter drug binding,
changes in gene expression, which activate alternative signalling
pathways, or environmentally mediated resistance?~*. In the
clinic, the main strategy for managing cancer drug resistance is to
switch treatment with the aim of finding an agent to which the
tumour is still susceptible>*. Similarly, Melander suggested it
might be possible to tackle sulphur-lime resistance by switching
to oil-based sprays!. However, he also foresaw the possibility of,
and the challenges arising from, multi-drug resistancel. As an
alternative, Melander proposed that it might be possible to
maintain insecticide sensitivity through less aggressive spraying as
this would promote inter-breeding of sensitive and resistant
populations and, thus, dilute the resistant genotype!. Allocation
of spray-free “refuge” patches in the neighbourhood of plots in
which an insecticide is used is one modality of modern pest
management and is even required by law for the use of certain
agents in the US (e.g., Bt-crops®). Similarly, research into anti-
biotic resistance has investigated strategic modulation and com-
bination of treatments to suppress, and ideally reverse, resistance
evolution (see Baym et al.® for a comprehensive review). For
example, Abel zur Wiesch et al.” found in a meta-analysis that
“adjusted cycling” of drugs, where treatments were switched
when resistance was detected, reduced the evolution of antibiotic
resistance in hospital wards. Moreover, Hansen et al. have shown
that by maintaining drug-sensitive bacteria they can slow the
emergence of resistant cells in a bioreactor.

Recently, the concept that treatment de-escalation can delay the
emergence of resistance has found application also in oncology.
Standard-of-care cancer treatment regimens aim to maximise cell
kill through application of the maximum tolerated dose (MTD), in
order to achieve a cure. In contrast, an emerging approach called
adaptive therapy proposes to focus not on burden reduction, but on
burden control in settings, such as advanced, metastatic disease, in
which cures are unlikely?-12. Eradication strategies free surviving
cells from intra-tumoral resource competition, which would
otherwise inhibit resistance growth. Adaptive therapy aims to
leverage this competition by maintaining drug-sensitive cells in
order to avoid, or at least delay, the emergence of resistance®!1. A
number of pre-clinical studies have demonstrated the feasibility of
this approach in ovarian!9, breast!3, colorectal!4, and skin!® cancer.
While large-scale, randomised clinical trials are outstanding, a pilot
trial of adaptive therapy in metastatic castration-resistant prostate
cancer achieved not only an at least 10 month increase in median
time to progression (TTP), but also a 53% reduction in cumulative
drug usage in comparison to a contemporaneous control cohort!®.
Further clinical trials in castration-sensitive prostate cancer and
melanoma are ongoing (clinicaltrials.gov identifiers NCT03511196
and NCT03543969, respectively).

In addition to testing its feasibility, there has been significant
interest in characterising the underpinning eco-evolutionary
principles of adaptive therapy through mathematical modelling.
We identify three key results. The first insight was derived from
approaches which represent the tumour as a mixture of drug-
sensitive and resistant cells modelled as a system of two or
more ordinary differential equations (ODEs) with competition

described by the Lotka-Volterra model from ecology!0:141517-20
or by a matrix game?l. These analyses have demonstrated
that less aggressive treatment allows for longer tumour control
under a range of assumptions on the tumour growth law
(exponential: 14171921, ogistic:101517.19;  Gompertzian:17-19;
dynamic carrying capacity:1429), and the origin of resistance (pre-
existing:101417-19.21; acquired!>18:19:22; cancer stem-cell-based:20).
Furthermore, this work predicts that adaptive therapy will be most
effective in cases where cures are unlikely due to pre-existing
resistance and where at the same time conditions (resistance
fraction, proximity to carrying capacity) are such that inter-specific
competition with drug-sensitive cells is strong (see ref. 1° for a
comprehensive and formal summary of these results). The second
key result is that while these conclusions broadly transfer to more
complex, spatially explicit tumour models, the strength of spatial
constraints on resistant cell growth is important!423. Bacevic
et al.'4 showed in a two-dimensional (2-D), on-lattice, agent-based
model (ABM) of a tumour spheroid that longer control is achieved
if resistance arises in the centre of the tumour compared to when it
arises on the edge. Gallaher et al.23 corroborated this result in a 2-
D, off-lattice setting with resistance modelled as a continuum, and
further demonstrated that tumour control was adversely affected by
high cell motility and cell plasticity. Thirdly, models focussed on
metastatic prostate cancer have illustrated how these concepts may
be realised in a specific disease pathology!®?0 and how we may
enhance tumour control by using a multi-drug approach20-2425,

But, what does the competitive landscape of a resistant cell
actually look like? With whom do resistant cells compete and at
what rate? Even though competition is a key ingredient of
adaptive therapy, to the best of our knowledge, no study to-date
has explicitly quantified it. Moreover, non-spatial work typically
models competition phenomenologically, using Lotka—Volterra
dynamics (or a Gompertzian analogue!319). However, this
assumes perfect mixing of cells, and is likely an inaccurate
description of the dynamics in solid tumours. We, and
others26-2%, have recently shown that spatial constraints may
alter the nature of tumour evolution away from what may be
expected from non-spatial models, an observation which has
also been made in the antibiotic resistance community3%-31,
Better understanding the impact of space on the ecology and
evolution during treatment is therefore important, and may
help to more accurately identify for whom and how to adapt
treatment in oncology, and beyond.

The goal of this paper is to study competitive suppression of
resistant cells during adaptive therapy and how this is modulated
by space. To do so, we developed a simple, 2-D, on-lattice, ABM
in which the tumour is assumed to be composed of two cell
types: drug-sensitive and resistant cells. The individual-based,
spatially explicit nature of our model allowed us to directly
quantify competition for space. Leveraging this, we show, for the
first time, the competitive suppression of resistant cells during
adaptive therapy, and we discuss how the initial proximity to
carrying capacity, the initial resistance fraction, the presence of
resistance costs, and the rate of cell turnover alter competition.
This analysis not only provides useful validation of current
theory, but also highlights a seldomly discussed factor: namely,
that resistant cells compete not only with sensitive cells, but also
with each other. We show that this observation is important in
solid tumours, where mixing of cells is limited, because it implies
that the spatial distribution of resistant cells strongly impacts
treatment response under adaptive therapy. Subsequently, we
discuss the implications of our new insights for the modelling of
adaptive therapy using ODE models, by comparing our ABM to
its equivalent mean-field ODE approximation, which we studied
recently32, To conclude, we present an analysis in which we
fitted our ABM to publicly available, longitudinal data from 65
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Fig. 1 The agent-based tumour model. a The tumour is modelled as a mixture of drug-sensitive (S) and resistant cells (R), where each cell occupies a
square on a 2-D equi-spaced lattice. Cells divide and die at constant rates rs and rg, and ds and dg, respectively. Daughter cells are placed into empty
squares in a cell's von Neumann neighbourhood. Drug (D) will kill dividing sensitive cells at a probability dp. b Flow diagram of the simulation algorithm
(teng: €nd time of the simulation; dt: simulation time step). For parameter values, see Table 1.

prostate cancer patients undergoing intermittent androgen
deprivation therapy. A striking feature of these data is that
patients cycle between on- and off-treatment phases at different
frequencies. Based on our model fits, we propose that the var-
iations in cycling speed reflect differences in the spatial orga-
nisation of these tumours, with implications for the balance of
intra- and inter-specific competition between sensitive and
resistant cells within. Overall, our work helps to provide a more
detailed understanding of spatial competition between sensitive
and resistant cells during adaptive therapy and shows that the
spatial architecture of the tumour can strongly affect treatment
outcomes. While we focus here on cancer, we believe that
because of the parallels with strategies explored in other areas,
such as antibiotic resistance, our insights may be also of interest
to the wider scientific community.

Methods

The mathematical model. Random geno- and phenotypic var-
iation produces tumour cells, which show a degree of drug-
resistance even prior to drug exposure. This may manifest as an
increased ability to persist and adapt to adverse conditions such
as drug exposure, or, though perhaps more rarely, it may take the
form of fully developed resistance®*. Selective expansion and
further adaptation of this population is thought to be the cause of
treatment failure in patients33-34,

To study the evolutionary dynamics in response to treatment
we consider a 2-D, on-lattice, ABM representative of a small
region of tumour tissue or a metastatic site. For simplicity we
assume that we can divide cells into drug-sensitive or fully drug-
resistant subpopulations (Fig. 1a). We choose an on-lattice, agent-
based representation as it allows us to explore the role of space
and cell-scale stochasticity in a tractable, yet generalisable, way.
Each cell occupies a single site in an Ix [ square lattice with no-
flux boundary conditions, and behaves according to the following
rules (Fig. 1):

e [Initially, there are a total of N, cancer cells in the tissue of
which a fraction f; is resistant. Generally, we will assume
that the cells are spread randomly throughout the tissue,
except in section “The spatial distribution of resistance
impacts adaptive therapy by shaping intra-tumoral com-
petition” where we will explore a clustered and a disk-like
configuration to dissect the role of the initial conditions
more explicitly.

e Sensitive and resistant cells attempt to divide at constant
rates rg and rp (in units: d—1), respectively. If there is at
least one empty site in the cell’s von Neumann neighbour-
hood (consisting of the four lattice neighbours, east, west,
north, and south, of the cell), then the cell will divide and
the daughter will be placed randomly in one of the empty
sites in the neighbourhood.

e Cells die at a constant rate 7 (in units: d—1). For notational
convenience, we will express this rate relative to the
sensitive cell proliferation rate, so that dr = §1/rs. Note that
this definition of turnover compares the cell death rate to
the cells’ intrinsic proliferation rate, and is thus not the
same as the sometimes measured “cell loss” rate (refs. 35:36;
see also ref. 32 for a further comparison of the two). In
addition, we will make the simplifying assumption that that
both sensitive and resistant cells die at the same rate,
ds = d R — dT'

e Movement of cells is neglected.

e The domain is sufficiently small so that drug concentration
D(t) € [0, Dyy,,] is assumed to be spatially homogeneous
throughout the tissue, where D, is the MTD.

e A sensitive cell which is currently undergoing mitosis—that
is, it has attempted division and has space available in its
neighbourhood—is killed by drug with probability dpD(t),
where 0<dpDy, <1.

e Dead cells are immediately removed from the domain.

We denote the number of cells in each population at time ¢ by S(¢)
and R(), and the total number by N(t) = S(t) + R(t), respectively
(Table 1).

We consider two treatment schedules:

e Continuous therapy at MTD: D(t) = Dy, V t.

e Adaptive therapy as implemented in the Zhang et al.l®
prostate cancer clinical trial: Treatment is withdrawn once
a 50% decrease from the initial tumour size is achieved, and
is reinstated if the original tumour size (Np) is reached:

D(t) = { Dyfaxs untll.N(t) <50%N, W
0, until N(f) = N,.

This results in cycles of on- and off-treatment periods, which
maintain the tumour burden at at least 50% its original level for
as long as possible, and thereby seek to slow the expansion of
resistance.
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Table 1 Summary of mathematical model variables and parameters.

Parameter Description Value Comment

| Grid size (Total number of sites: [ x /) 100

dt Simulation time step 1d

St Number of sensitive cells 0-12

R() Number of resistant cells 0-12

N( Total tumour cell number 0-12

rs Sensitive cell proliferation rate 0.027d~'  Adopted from ref. 16.

Cr Resistance cost (resistant proliferation rate: rr=(1—cgr) 0-50% Lower limit:adopted from ref. 23;
rs) Upper limit: assumption of no cost

dr Cell death rate (relative to rs) 0-50% Lower limit: assumption of no turnover;

Upper limit: see discussion in ref. 32,

dp Drug-induced cell kill probability of sensitive cells at 0.75 Adopted from ref. 24; verified to provide a good fit to prostate
D(t) = Dyay cancer in ref. 32,

ng = % Initial cell density (as a percentage of total carrying 25-75% Values within this range reported by ref. 77.
capacity)

fr:= Z—‘; Initial resistant cell fraction (as a percentage of initial cell 0.1-10% Values within this range reported by ref. 78,
density)

fs:= ,‘3—2 Initial sensitive cell fraction (as a percentage of initial cell 90-99.9% Determined by 1— fz.
density)

Progression was determined as a 20% increase from the pre-
treatment baseline. However, occasionally it could happen that
during adaptive therapy the tumour burden briefly exceeded this
target at the end of the first or second off-cycle, due to rapid
regrowth of the sensitive cells. As the tumour in these cases was
immediately brought back under control upon treatment re-
administration, and the focus of our study was progression driven
by drug-resistant cells, we neglected these events and only
considered a tumour to have progressed if at least 150 days had
passed since the start of treatment. This criterion was applied to
both adaptive and continuous therapy.

A flow-chart of our model is shown in Fig. 1b, and further
implementation details are given in Supplementary Methods 1.
We checked convergence (not shown), and performed a
consistency analysis3”>38, This showed that a sample size, n,
upward of 250 provides a representative sample size for our
stochastic simulation algorithm (see Supplementary Fig. 1 and
Supplementary Methods 2 for details). The model is implemented
in Java 1.8. using the Hybrid Automata Library®®. Data analysis
was carried out in Python 3.6, using Pandas 0.23.4, Matplotlib
2.2.3, Seaborn 0.9.0, and openCV 3.4.9. The time-evolution of the
resistant cells’ neighbourhood composition was visualised using
EvoFreq?0 in R 4.0.2. All code is available on GitHub at https://
github.com/MathOnco/strobl2021_space_modulates_
competition_AT (see also ref. 41).

Comparison with the non-spatial model. To understand the
impact of space we compared the ABM to the following ODE
model, which we have studied previously in ref. 32

s S+R\ (. 2d, ~
a_rs(l e )(1 5 D(t))S 88, (@

Max

dR R
—=rR<1—S%)R—8TR, 3)

dt

N(t) = S(t) + R(1), 4)

where K is the carrying capacity, and the initial conditions are
given by S(0) =Sy, R(0) =Ry, and Ny =Sy + Ry, respectively.
We set K=12 and used the same parameter values as for the
agent-based simulation otherwise (Table 1). The equations were
solved using the RK45 (used when comparing the ABM and

ODE model in section “How competition is modelled matters”)
or DOP853 (used for faster computational performance when
fitting the patient data in section “The cycling frequency of
patients undergoing intermittent androgen deprivation therapy
may reflect different spatial distributions of resistance”) explicit
Runge-Kutta schemes provided in Scipy (for further details
see ref. 32).

Model parameters. We parametrised our model using values
from the literature for prostate cancer (Table 1). We want to
stress, however, that the aim of our work was to develop qua-
litative understanding, not to make quantitative predictions
directed at prostate cancer. As such, our predictions should be
interpreted not in a quantitative (“treatment X will achieve a
TTP of Y months”), but in a qualitative fashion (“treatment X
will achieve a longer TTP than treatment Y because of
mechanism Z”).

Analysis of patient data. In order to examine whether our model
could explain differences in the cycling speed of patients under-
going intermittent androgen deprivation therapy, we fitted it to
the publicly available, longitudinal response data from the Phase
II trial by Bruchovsky et al#2. The data were downloaded
from http://www.nicholasbruchovsky.com/clinicalResearch.html
in July 2020. So as to avoid potentially confounding effects
from a change in the number of lesions, patients who developed a
metastasis were excluded from analysis. Furthermore, we decided
to exclude two further patients (Patients 2 & 104) from our
analysis because their prostate-specific antigen (PSA) dynamics
were inconsistent with the reported treatment schedules. These
patients display oscillating PSA values indicative of treatment
cycling but there are no reported changes in treatment, suggesting
there may have been a mistake in the data reporting in these cases
(see also Supplementary Fig. 2). This yielded data from a total of
65 patients. The model was fitted to the normalised PSA mea-
surements by minimising the root mean-squared error between
the data and the predictions (normalisation relative to PSA level
at start of treatment). Given the stochastic nature of the ABM,
each candidate fit was assembled from 25 independent stochastic
replicates. Optimisation was carried out using the basin-hopping
algorithm in Scipy*? employing default search parameters and a
maximum of either 50 (when fitting 2 parameters) or 75
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optimisation steps (when fitting 4 parameters). To escape
potential local minima, optimisation was repeated 10 times for
each patient from different, randomly chosen initial conditions,
with only the best fit according to the Akaike Information Cri-
terion (AIC) taken forward for analysis. We fitted the model in
three different ways: (i) each of ny, fz, cg, and dy was allowed to be
a patient-specific parameter (which we term “Model 17), (ii) only
ny and fr were allowed to be patient-specific with ¢z and d fixed
at the mean values obtained in (i) (cg = 0.78, dr = 0.14; Model 2),
and (iii) cg and d were allowed to be patient-specific with ny and
fr fixed at the mean values obtained in (i) (1p = 0.59, fr = 0.04;
Model 3). For 8 patients, Model 1 failed to recapitulate the cycling
nature of the patients’ trajectories, yielding simple straight lines
instead (e.g., Patient 52 in Supplementary Fig. 2). Owing to this
discrepancy it was unclear that the associated parameter values
would be representative of the tumour biology, and so we
excluded these patients when computing the mean of the para-
meters taken forward to Models 2 and 3. For the same reasons, we
excluded these 8 patients and one additional patient (Patient 13)
when assessing the correlation between cycling speed, and the
cost and turnover estimates of Model 3. This analysis was thus
based on the data from 56 patients in total. Excluded patients are
marked by a grey background in Supplementary Figs. 2 & 3,
respectively. Classification of patients into “progressing” and
“non-progressing” was taken from the annotation provided in the
data, where progression is defined as a series of three sequential
increases of serum PSA > 4.0 ug/L despite castrate levels of serum
testosterone. Overviews of all fits of Models 1 and 3 are shown in
Supplementary Figs. 2 & 3, respectively. Fitting was done using
the Imfit package in Python** (version 1.0.1.). As this was a
retrospective analysis of a study that was previously approved by
the institutional review boards/independent ethics committees of
each participating site, and whose data were available in the
public domain, no further ethical approval or informed consent
was required.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results

The aim of adaptive therapy is to delay disease progression by
leveraging intra-tumoral competition. However, how frequently is
a resistant cell actually inhibited from division, and by what? And
how does this compare to continuous treatment? To address these
questions, we studied matched simulations in which the same
tumour (identical parameters and random number seed) was
treated once with continuous treatment and once adaptively,
using the 50% rule employed in the clinical trial by Zhang et al.!®
(Equation (1)). To quantify the benefit of each protocol we
adopted the progression criterion used in a number of previous
studies (e.g., refs. 1923:32), which is based on a modified version of
the RECIST criteria®®, and which determines progression as a
20% increase in tumour cell number relative to the start of
treatment.

Demonstration of competitive suppression of resistance during
adaptive therapy. To gain intuition, we first considered a simple
example. We seeded cells randomly to fill 75% of the domain and
assumed that 0.1% of these cells were resistant prior to treatment.
For simplicity, we assumed that there was no cell death, and no
resistance costs. Despite this lack of resistant costs and turnover,
we find that adaptive therapy provides the superior resistance
control, extending TTP by about 15.3 months (95% CI: [14.81m,
15.86m], Fig. 2a). Examination of the spatial dynamics in the

simulation clearly illustrates how resistant colonies are, at least
temporarily, kept in check by neighbouring sensitive cell patches
(Fig. 2b and Supplementary Movie 1). At the same time we note
that due to the stochastic nature of the simulations, resulting, for
example, in different initial spatial distributions of the cells, there
is variation in how many adaptive therapy cycles are completed
and how long progression can be delayed, despite using identical
parameters (Supplementary Fig. 4). This indicates that stochastic
effects may also play a role in determining outcome, an obser-
vation we will return to later in this paper.

While competition is thought to be the driving mechanism
behind adaptive therapy, it is challenging to assert its role in real
tumours. This is because it is difficult to rule out the possibility
that the benefit of adaptive therapy may be due to other
confounding factors, such as the effect of treatment de-escalation
on tumour vasculature or the immune response!34%47, However,
in our computational model we can directly monitor the
interaction between cells, as well as rule out such confounding
factors. We seized this opportunity to explicitly measure how
often a resistant cell is blocked from division in our simulations
(by any cell). Our results reveal a rapid and noticeable
intensification of growth inhibition whenever treatment is
withdrawn during adaptive therapy (“spikes” in Fig. 2¢; left
panel). This results in a level of growth inhibition, which is
consistently higher than that during continuous therapy until late
in the course of treatment, and demonstrates how adaptive
therapy leverages inter-specific competition.

Not only inter- but also intra-specific competition is a factor in
adaptive therapy. That being said, Fig. 2c also shows that the
competitive suppression of resistance generally increases over time,
and, importantly, that this holds true not only under adaptive, but
also under continuous, therapy. To investigate why this is the case,
we analysed which cells are responsible for the suppression, by
computing the average composition of a resistant cell’s neigh-
bourhood in the simulations. We find that the most frequent
competitor of a resistant cell under either protocol is not a sensitive
cell, but other resistant cells (Fig. 2d). In fact, Fig. 2d shows that
inter-specific competition with sensitive cells, which is responsible
for the large benefit of adaptive therapy, is experienced only by a
small proportion of resistant cells. This is because as the resistant
colonies become larger, most resistant cells become trapped in the
core and are blocked by other resistant cells at the edge of the
colony (Fig. 2b). During adaptive therapy sensitive cells block
growth at the edge of resistant colonies which, in turn, also inhibits
resistant cells in the centre (Fig. 2b). We conclude that in solid
tumours, in which there is only a limited degree of mixing of cells,
not only inter-specific but also intra-specific competition may play
an important role in adaptive therapy.

High tumour cell density and low initial resistance fraction
maximise competition from sensitive cells. Previous work by
our group and others!®1923:32:48 hag shown that the closer a
tumour is initially to its carrying capacity (n,), and the smaller the
initial resistance fraction (fz), the greater will be the gain in TTP
by adaptive therapy. A parameter sweep confirms that this is also
the case in the current model (Fig. 2e). To better understand why,
we studied how these two factors impact the competitive sup-
pression of resistant cells. We find that ny and fz have distinct
effects on the number and impact of each adaptive therapy cycle,
where we define a cycle as the time period between two sequential
crossings of the baseline tumour size, consisting of an on- and an
off-treatment period. Specifically, we observe that when we
reduce ny, treatment still goes through almost the same number
of adaptive therapy cycles, but the impact of each cycle on the
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Fig. 2 Adaptive therapy prolongs TTP by leveraging inter- and intra-tumoral competition. AT: adaptive therapy, CT: continuous therapy, TTP: time to
progression, ABM: agent-based model. a Example simulations of the treatment dynamics under continuous and adaptive therapy in our ABM

((no, fr) = (75%, 0.1%)). Shown are the mean and standard deviation (shading) of the tumour cell number (sensitive, resistant and total; n = 250
independent replicates). Black bars represent a typical treatment schedule (see also Supplementary Fig. 4). Horizontal dotted lines show the initial cell
number and the cell number at progression, respectively. Vertical lines and associated shading mark the mean, and the 1st and 3rd quartile of the
distribution of TTP. b Snapshots from one of the replicates in a illustrating how adaptive therapy delays competitive release of resistance. ¢ Adaptive
therapy (blue line) results in a higher proportion of blocked resistant cell divisions than continuous therapy (yellow line) in the initial stages of treatment in
the simulations in a (left panel). However, the ability of adaptive therapy to induce blocking depends on the initial tumour cell density (centre panel; (no, fr)
=(25%, 0.1%)) and the initial resistance fraction (right panel; (ng, fR)=(75%, 1%)). Lines and shading indicate mean and standard deviation, respectively.
d Average frequency of sensitive cells, resistant cells, or empty space in a resistant cell's neighbourhood in the simulations in a. This shows that there is not
only inter-, but also significant, intra-specific competition during adaptive therapy. Values are the mean in the von Neumann neighbourhood across all
resistant cells from 250 independent simulations. e Gain in TTP achieved by adaptive therapy relative to continuous therapy as a function of ng and fg
(n=1000 independent replicates per condition). Adaptive therapy yields the greatest benefit when tumours are close to their carrying capacity and
resistance is rare. The box, centre line, small white squares, and whiskers denote the inter-quartile range, median, mean, and 1.5x inter-quartile range,
respectively. Negative values denote cases in which continuous therapy achieves a longer TTP. Resistance costs and turnover are assumed to be O
throughout this figure.

reduction of the resistant cell growth rate is greatly diminished
(Fig. 2¢; middle panel). Owing to the low cell density there is
effectively no inter-specific competition (although there is still
noticeable intra-specific competition as can be seen by the general
upwards trend in Fig. 2c).

Conversely, if we increase the initial resistance fraction, but
keep cell density high (1o = 75%), then treatment fails after only a

single cycle. However, this single cycle still induces blocking of
resistant cells and results in a benefit in TTP (Fig. 2c; right panel).
We also note that the competitive suppression of resistant cells
generally increases more rapidly in this case compared to when
there were fewer resistant cells present, reflecting stronger intra-
specific competition (compare right and left panels in Fig. 2c).
One implication of these observations is that tumours with a
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higher resistance fraction may require an even further de-
escalation of treatment to maintain sensitive cells for as long as
possible. Indeed, treatment of the same tumour with an adaptive
protocol in which drug is withdrawn at a 30% reduction in size,
instead of 50%, increases the time gained from 2.5 months to
6.5 months (Supplementary Fig. 5). We conclude that close
proximity to carrying capacity and small initial resistance
fractions are two factors that help to maximise the impact of
inter-specific competition.

Resistance costs slow progression but in the absence of turn-
over their impact on competitive suppression is small. Having
examined how the initial tumour composition impacts competi-
tion, we next investigated the influence of the cell kinetic para-
meters, specifically the resistant cell proliferation rate and the cell
turnover rate. The concept of a “cost of resistance”, a decreased
proliferation rate in a drug-free environment due to, for example,
increased energy consumption, has been an important argument
in the original development of adaptive therapy®~11. While such
fitness costs have been reported, for example, in breast cancer3,
others have found resistant cells pay no cost!?, or even grow faster
than sensitive cells®, as a result of which the role of resis-
tance costs in adaptive therapy has been a controversial topic.

Using a minimalistic, sensitive/resistant Lotka—Volterra ODE
model we recently showed that the rate of cell turnover is an
important factor to consider when evaluating the impact of
resistance costs>?. To corroborate this insight, and to better
understand how these factors influence competition, we carried
out simulations with or without costs or turnover (Fig. 3a). We
find that the addition of a resistance cost on its own slows down
progression of the tumour under both protocols (Fig. 3a), visible
as a reduction in the size of resistant colonies (Fig. 3b; see also
Supplementary Movie 2). However, an increased benefit of
adaptive therapy is seen only when the resistant fraction (f) is
small, and this increase is modest (Fig. 3a; right panel). Mapping
out the impact of resistance costs in more detail corroborates this
result (Fig. 3¢; left panel). Consistent with these observations, we
find that the profile of competitive suppression over time
changes relatively little when a resistant cost is added (Fig. 3d).
Suppression increases more slowly but continues to follow the
same trajectory, with only a small difference between the two
protocols.

Turnover amplifies the impact of competitive suppression.
Next, we repeated this analysis whilst assuming a cell turnover rate
of 30% relative to the proliferation rate, which is the value we pre-
viously estimated for prostate cancer32. For simplicity, we assumed
the same death rate for both sensitive and resistant cells and that
dead cells are immediately removed from the domain. We find that
the inclusion of cell death increases the average number of adaptive
therapy cycles, and with it the benefit of adaptive therapy (Fig. 3a).
Moreover, consistent with our prior ODE study>2, we observe that
turnover amplifies the effect of resistance costs (Fig. 3a, c).

To explain why turnover facilitates the control of the drug-
resistant population, we examined its impact on the competitive
suppression experienced by resistant cells. Interestingly, and
somewhat counter-intuitively, we find that turnover reduces
blocking of resistant cell divisions (Fig. 3d). This is because
turnover frees up space for cell division (see gaps at the centre of
colonies in Fig. 3b; see also Supplementary Movie 2).

So, why does the benefit of adaptive therapy increase? To
explain this, we leverage an argument first proposed by Hansen
et al.#8, which states that because we have complete control over
the sensitive population (we can reduce their size at will), TTP is
entirely driven by the net-growth rate of the resistant population,

i.e. the balance between birth and death (Fig. 3e). Computing the
net-growth rates in our simulations, we see that even though cell
proliferation is less restricted with turnover, the net-growth rate is
still reduced (Fig. 3f). This has two effects: Firstly, drug can be
withdrawn more often during the course of adaptive treatment,
and secondly, the impact of the blocking that does occur is
amplified (spikes during treatment withdrawal reach smaller net-
growth values). In summary, these results corroborate our
hypothesis that the rate of tumour cell death is an important
factor in adaptive therapy, and show how it modulates the impact
of competitive suppression.

The spatial distribution of resistance impacts adaptive therapy
by shaping intra-tumoral competition. In our analyses up to this
point we had assumed that resistant cells were seeded randomly in
the domain, so that the resistant population emerges from multiple,
independent colonies (or “nests”) simultaneously. This was so as to
mimic the diffuse structure of invasive cancers in which tumour
islets are interspersed by areas of tumour stroma, necrosis, or the
remnants of the normal tissue. However, given our insights on the
role of intra-specific competition, and the prior results by Bacevic
et al.!* and Gallaher et al?3 regarding the importance of spatial
constraints, we hypothesised that the initial spatial distribution of
resistance may be an important factor in adaptive therapy. To
investigate this we conducted a series of experiments in which we
seeded the same number of resistant cells, either as a single cluster,
or as a set of two clusters, at varying distances apart (Fig. 4a; top
row). We placed eight resistant cells as a 2 x4 rectangle in the
centre of the domain. Subsequently, we compared this scenario to
those in which we split this cluster into two nests of size 2 x 2,
which we placed at varying distances apart from each other. Sen-
sitive cells were seeded randomly in the domain to achieve a total
initial density of 1y = 50%.

Our results confirm that the speed of progression is determined,
not only by the initial number of resistant cells, but also by their
distribution. For example, even though all three simulations in
Fig. 4a started from eight resistant cells, the further apart the two
nests, the more resistant cells are present at 700 days. Computing
TTP confirms this (Fig. 4b). Moreover, with increasing separation
the benefit of adaptive therapy also declines (Fig. 4c).

This observation has an important implication. Based on the
hypothesis that adaptive therapy is driven by inter-specific
competition between sensitive and resistant cells, we would have
expected the opposite to hold true, as placing the nests apart
maximises the opportunity for interaction between the cell
populations (Fig. 4a). As such, these new findings corroborate the
notion that not only inter- but also intra-specific competition
plays a role in adaptive therapy. This is because competition with
sensitive cells is, in a sense, a double-edged sword. We can control
sensitive cells with treatment, and in the absence of treatment
they may even have a competitive advantage over resistant cells.
However, in the presence of treatment this advantage is lost, and
by clearing sensitive cells we, in fact, open up space allowing
resistant cells to expand. In contrast, when resistant cells grow
adjacent to other resistant cells, any successful division is a zero-
sum game, as it simply replaces a resistant cell, which was
previously in this position. As such, while there is more
interaction with sensitive cells when the resistant nests are seeded
apart, better control is achieved when they are clustered together
because it allows adaptive therapy to leverage both inter- as well
as intra-specific competition.

Another reason why adaptive therapy is less effective when
there are two separate nests, rather than one, is illustrated in
Fig. 4d. While the left of the two nests is initially constrained by
sensitive cells (f=250d), the right nest is not and is able to
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expand (¢ = 500d). This triggers more and more treatment, which
eventually results in the competitive release also of the left nest
(t=1000d).

Finally, we note that similar considerations also apply to the
sensitive cells. As we assume that drug affects only dividing
sensitive cells, the strength of intra-specific competition between
sensitive cells plays an important role in determining the speed at
which a tumour will go through a cycle of adaptive therapy. The
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impact of this can be seen, for example, when comparing
simulations with different levels of turnover (Fig. 3a), or when we
seed the cells as a cluster in the centre of the domain rather than
seeding them randomly (Supplementary Discussion 1 and
Supplementary Fig. 6). We will return to this point in section
“The cycling frequency of patients undergoing intermittent
androgen deprivation therapy may reflect different spatial
distributions of resistance”.
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Fig. 3 The impact of resistance costs and cellular turnover on competitive suppression and adaptive therapy. AT: adaptive therapy, CT: continuous
therapy, TTP: time to progression, TTPct: TTP under CT, TTPat: TTP under AT. a Simulations illustrating the role of resistance costs and turnover on the
treatment response to adaptive therapy (ng = 50%). Vertical lines and associated shading mark the mean, and the 1st and 3rd quartiles of the distribution
of TTP. b Snapshots at time t = 250d from one of the replicates in the right hand panel in a) ((no, fr) = (50%, 1%); see also Supplementary Movie 2). All
8 simulations were started from the same initial conditions and treated either continuously or adaptively. ¢ Relative benefit of adaptive therapy over
continuous therapy as a function of resistance cost, resistance fraction, and turnover (ng = 50%). This illustrates that turnover modulates adaptive therapy
and increases the impact of a resistance cost. Points show individual simulations and squares mark the mean (n =1000 independent replicates per
condition). d Impact of resistance costs and turnover on blocking of resistant cell division for the simulations in the right panel in a. e TTP is determined by
the per-capita net-growth rate of resistant cells, which depends on both the birth and death rate of cells. Importantly, if death rates are high, then even
moderate inhibition of cell proliferation by competition may result in large reductions in per-capita growth rate. f Per-capita growth rate of resistant cells as
a function of time, illustrating how turnover helps to amplify the effects of competition on the resistant population’s net-growth rate ((ng, fz) = (50%, 1%)).
Unless otherwise stated, lines and shading in this figure denote the mean and standard deviation of n =250 independent replicates, respectively.

The spatial distribution of resistance modulates the impact of
cost and turnover. Next, we studied how space modifies the
impact of resistance costs and turnover. We find that in the
presence of turnover the mean TTP and the benefit of adaptive
therapy also decrease with increasing nest separation (Fig. 4e). At
the same time, turnover can cause the random extinction of one
of the two nests, or both, which greatly extends TTP and results
in a high variability in outcomes, especially if the separation
between nests is large (insets in Fig. 4e). In addition, greater
spread of resistant cells reduces the benefit adaptive therapy can
derive from resistance cost and turnover (Fig. 4f), while clustering
the cells in the centre of the domain increases it (Supplementary
Fig. 6). We conclude that the spatial distribution of resistance
plays a significant role in the response to adaptive therapy, and its
potential benefit.

How competition is modelled matters. In the second part of this
paper we will discuss implications of our new insights for the
mathematical modelling of adaptive therapy, and for the treat-
ment dynamics, which we may observe in patients. Most math-
ematical models of adaptive therapy to-date have assumed perfect
mixing of cells, so that the growth inhibition due to competition
is given by the classical Lotka-Volterra competition model from
ecology. However, how appropriate is this approximation for
solid tumours, in which the rate of mixing is small, due to limited
migration and spatial constraints?

To address this question, we compared the ABM with its
corresponding Lotka—Volterra ODE model (Equations (2)-(4);
see also ref. 32 for an in-depth discussion of this model), assuming
the same (exponential) rates for cell division, death and drug kill
(Table 1 and Fig. 5a, b). This shows that while the dynamics agree
qualitatively, there are important quantitative differences. Firstly,
the ABM tends to predict longer TTP under both regimens
(Fig. 5a), and this discrepancy increases the higher the initial
density and the smaller the initial resistance fraction (Fig. 5b). At
the same time, the cycling frequency is higher in the ABM with
both short on- as well as off-times, resulting in a larger number of
cycles (Fig. 5a). Importantly, when we compare the relative
benefit of adaptive therapy predicted by the two models we find
that the ABM tends to forecast a smaller gain than the ODE
model, especially if turnover is included in the model (Fig. 5¢).

To understand why the discrepancy between the ABM and
ODE model arises, we examined the growth dynamics in both
models in more detail. We find that when the initial resistance
fraction is small, the resistant population in the ABM expands
more slowly than in the ODE model, but the converse holds true
when the initial resistance fraction is large (Supplementary Fig. 7).
To explain this, we simulated the resistant population in isolation,
starting from different initial cell numbers. Our results demon-
strate that different initial cell numbers generate distinct growth
kinetics (Fig. 5d). When initiated from two cells, the resistant

population expands as two colonies and grows much more slowly
than predicted by a logistic ODE model, as most cells are trapped
by their neighbours (Fig. 5d). As the number of cells, and so the
number of independent nests and the surface to volume ratio, is
increased, the growth of the population speeds up until it exceeds
that of logistic growth (Fig. 5d). This explains the differences in
Fig. 5b, and highlights again the importance of the initial spatial
distribution of resistance. Furthermore, it indicates that the
Lotka—Volterra model, which assumes logistic growth, will likely
be an inaccurate description of intra-tumoral competition in solid
tumours.

Similarly, we can explain the reduced impact of turnover on
TTP by differences in cell growth dynamics between the two
models. Recall that turnover has two effects: On the one hand, it
limits a cell’s lifespan and so the number of opportunities it has to
divide. The higher the turnover, the smaller is this number, and
the greater is the impact of a blocked division32. On the other
hand, death of a neighbour opens up space for cell division, which
partially off-sets the cell loss caused by turnover (Fig. 3d).
Importantly, in the ABM each cell can divide into four potential
sites, which allows for more divisions to take place at high cell
density than predicted by the ODE model, which is why the
impact of turnover is reduced (Supplementary Fig. 8).

Stochastic extinction and competition-induced morphology
changes can cause adaptive therapy to fail before continuous
therapy. Comparing the two models reveals a further important
difference: There is variation in the possible outcomes in the ABM,
so that despite identical parameters there can be noticeable dif-
ferences in the benefits derived from adaptive therapy (Fig. 5¢).
Moreover, some patients are, in fact, predicted to benefit more
from continuous than from adaptive therapy—an outcome not
possible in the ODE model (Fig. 5¢ and see also Fig. 2e; for a proof
of the latter see refs. 1932). To investigate how frequently, and why,
this occurs, we show a breakdown of the possible outcomes for two
different initial tumour compositions in Fig. 6a, b. We make two
important observations: Firstly, while one of the strongest argu-
ments against adaptive therapy is that it foregoes the chance of a
cure, this is not the main reason for inferior results in our simu-
lations. Instead, in the majority of cases with inferior outcome the
tumour still progresses, but is controlled for longer by continuous
therapy. Secondly, Fig. 6a, b show that variability in outcomes and
the likelihood of inferior results increases with cost and turnover
and decreases with the number of cells in the simulation. This
indicates that these failures are driven by stochastic effects, a
conclusion which is further supported by the fact that variability in
outcome decreases when we increase the simulation’s domain size
(Supplementary Fig. 9a). Together, we conclude that the circum-
stances under which adaptive therapy can achieve the most
favourable results on average may also be associated with a great
variability in outcomes.
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Fig. 4 The impact of the initial spatial distribution of resistance on adaptive therapy highlights the role of intra-specific competition. AT: adaptive
therapy, CT: continuous therapy, TTP: time to progression. a We seeded eight resistant cells either as a cluster in the centre, or as two nests at varying
distances apart (marked with orange rings in the top row). Shown are representative snapshots from simulations for three different initial levels of
separation ((ng, cg, d7) = (50%, 0%, 0%)). Observe how there is more scope for interaction between sensitive and resistant cells as nests are seeded
further apart, suggesting that these should be better controllable with adaptive therapy. b However, TTP of continuous and adaptive therapy decreases as
the separation between the nests increases (n =1000 replicates per conditions; parameters as in a). ¢ Similarly, the benefit of adaptive therapy decreases
the greater the separation between the nests (TTPgained = TTPaT - TTPcT, where TTPat and TTPct is the time to progression under adaptive and
continuous therapy, respectively; n =1000 replicates per conditions; parameters as in a). This indicates that not only intra- but also inter-specific
competition are important in adaptive therapy. d Representative snapshot from a simulation in a in which the nests are initially 16 lattice sites apart, which
illustrates one reason why control of multiple nests is more challenging. While the left nest can initially be controlled, the right nest escapes and, in turn,
triggers release of the left nest. @ TTP as a function of initial separation distance in the presence of turnover (dr = 30%; n =1000 replicates per condition).
Turnover can cause extinction of one of the two nests, which greatly increases TTP (see insets, which show simulation snapshots at t =1500d). f Effect
of the initial spatial distribution of resistance on the relationship between cost, turnover and gain of adaptive therapy (n =1000 replicates per condition).
“N/A" indicates that data were not shown because less than 1/4 of simulations had completed within 10 years (cured or progressed). Throughout the
figure, the box, centre line, and whiskers in box plots denote the inter-quartile range, median, and 1.5x inter-quartile range, respectively.
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((no, fr, cr) = (50%, 1%, 0%); n = 250 replicates for the ABM). b Comparison of the TTP under adaptive therapy in the ODE and ABM (cg = 0%). The
ABM predicts faster progression when initial resistant cell numbers are high, and slower progression when numbers are low (n =1000 replicates of the
ABM). Note that in the presence of turnover, tumours initialised at ng = 65% can not grow above the threshold defining progression and thus, no TTP can
be obtained. ¢ Comparison of the relative benefit of adaptive therapy ((TTPat- TTPc1)/TTPc) in the two models. The ODE model tends to predict larger
benefit than the ABM. Again, no TTP can be obtained for no = 65%. d Depending on the initial cell number (Ry) the resistant population will grow sub- or
super-logistically (logistic growth: black solid line). Resistant cells were seeded and grown in isolation and without drug (n=250). To allow direct
comparison with logistic growth, the ABM curves were shifted to start at the time at which the logistic model reached the corresponding starting number of

cells. Throughout this figure lines and shading denote the mean and standard deviation, respectively.

While the stochastic nature of the failures makes it difficult to
pinpoint exactly why they occur, we identify two patterns, which
iterate the importance of the spatial architecture of the tumour.
Firstly, random cell death can make individual nests go extinct,
which subsequently results in slower progression (Fig. 6¢, d). This
effect is amplified the further the nests are located apart (recall
section “The spatial distribution of resistance impacts adaptive
therapy by shaping intra-tumoral competition”), which in the
case shown here results in a difference in TTP of over 1800 days
(the largest observed among the simulations in Fig. 6a).

However, as seen in Fig. 6a, inferior control under adaptive
therapy can occur also in the absence of turnover. To explain why,
we show in Fig. 6e, f the simulation in the absence of cost and
turnover ((cg, dr) = (0,0)) in which adaptive therapy performed
most poorly. Looking closely at the morphology of the expanding
resistant colonies under both treatment arms we observe that the
competitive inhibition by sensitive cells induces a more branching
growth pattern in the adaptively treated tumour (insets in Fig. 6f).

This has the effect that once the sensitive cells have been cleared by
drug, the larger surface to volume ratio allows these colonies to
expand more quickly, which is the reason for the earlier
progression under adaptive therapy. To provide more quantitative
evidence for this argument, we computed the convexity (“rugged-
ness”) of resistant nests at 250d after treatment initiation, which
confirms that more uneven looking nests are correlated with poorer
performance of adaptive therapy (Supplementary Fig. 9b). To sum
up, when cell numbers are large the results from the ODE model
about the non-inferiority of AT holds true, but if resistant cell
numbers are small, then the tumour’s spatial architecture can
amplify stochastic birth/death events and cause significant inter-
patient variability in outcome. This may need to be considered in
future experimental and trial design.

The cycling frequency of patients undergoing intermittent
androgen deprivation therapy may reflect different spatial

COMMUNICATIONS MEDICINE| (2022)2:46 | https://doi.org/10.1038/543856-022-00110-x | www.nature.com/commsmed 1


www.nature.com/commsmed
www.nature.com/commsmed

ARTICLE COMMUNICATIONS MEDICINE | https://doi.org/10.1038/543856-022-00110-

| Il AT>CT B AT=CT H AT<CT M Cure N/A|
0% Turnover 30% Turnover 0% Turnover 30% Turnover

‘ 10 2% 2.1%
11.8%
A
Cost
0 2%
10 4%
' 52.6%
1.7%

N(t) under CT = N(t) under AT mm S(t) mam R(t) ll Drug on TTPcr § H TTPAT

9.1%

30%

Cost 7.9%

O —

Continuous Thera t =500d t =1000d
REEEES
5 TTPr = 3563d
1 .;I EEEEEEEEEEEEEEEEEES
"o B B
:_'_, C: ;0.2
1 g EI 2
1 1 [} =
0.0
:'C O, O Adaptive Therapy
O O o
I S -_‘=I s
28 2™
(1
:LL .S: 202 ' (CEEEECEEEELEY
1 1 . I
i 2 1
(/)] TTPar = 1724d
Vemmm? 0.0 1

0 1000 2000 3000 4000

()

Continuous Therapy
:'---\
Q 0.4 _ 4
- TTPer=191d ..
1 [y T Y
:..9 @ 5 o2d ‘/
1 L = \
1 () (& *
1 3 >| =
I-c ml 8
Q0. 5
=2 3
B T ol 2 O LRI LT
1 O 0.2+ A\ I
I =~ I
Vamm=? 0.0 /‘ S e

0 200 400 600 800 1000
Time in Days

Fig. 6 While adaptive therapy is beneficial on average, stochastic and spatial effects can result in inferior outcomes in a subgroup of simulations in the
ABM. AT: adaptive therapy, CT: continuous therapy, TTP: time to progression, TTPc: TTP under CT, TTPat: TTP under AT, ABM: agent-based model.

a Distribution of outcomes for different values of cost and turnover for an initial tumour composition of (ng, fr) = (25%, 0.1%) (n =1000 replicates per
condition). This shows that while cures are rare, in a number of cases longer tumour control is achieved by continuous therapy. “N/A" denotes that the tumour
had neither progressed nor been cured within the 10 year simulation time frame. b Outcome distributions for the same conditions as a but with a higher initial
cell density ((ng, fr) = (50%, 0.1%); n = 1000 replicates per condition). Inferior results for adaptive therapy become rarer, indicating a stochastic origin of these
failures. ¢ Treatment trajectories for the case with the worst outcome for adaptive therapy in a ((ng, fr, cr dr) = (25%, 0.1%, 30%, 30%); n =1 replicate).

d Simulation snapshots corresponding to ¢, showing that continuous therapy in this case progresses more slowly because all but one resistant nest goes
extinct. e Treatment trajectories for the case with the worst outcome for adaptive therapy in a, but in the absence of turnover or cost

((no, fr Cr dp) = (25%, 0.1%, 0%, 0%); n =1 replicate). f Simulation snapshots corresponding to e, suggesting that in this case the branching pattern induced
by competition during adaptive therapy is the reason for faster progression (see also Supplementary Fig. 9b for further analysis).
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distributions of resistance. Having illustrated the theoretical
implications of our work, we will focus in the final part of this
paper on what these theoretical insights may teach us about intra-
tumoral competition in patients. Androgen deprivation therapy is
an integral part of prostate cancer treatment as many tumours are
initially dependent on androgen signalling for their growth®’. The
inevitable development of androgen-independence, as well as the
impact of treatment on quality of life, has motivated a number of
intermittent therapy trials in prostate cancer (e.g., refs. 42°1,52),
The trialled algorithms administer treatment until the levels of
PSA, a blood-based biomarker used for tracking tumour burden,
are reduced to normal levels. Subsequently, treatment is with-
drawn until PSA levels again exceed some upper limit, when
treatment is reinstated. Interestingly, it is observed that some
patients are cycling rapidly under treatment whereas others are
cycling more slowly (Fig. 7a), although the relationship between
cycling frequency and outcome is unclear®2,

Using the ODE model (Equations (2)-(4)) we previously
showed that we could explain the different cycling dynamics
across patients in the Phase II study by Bruchovsky et al.#2 by
different values of the rate of tumour turnover and the resistance
cost, suggestive of different underlying disease biology>2. In order
to test for possible differences in the tumours’ spatial architec-
tures, we fitted the ABM to these same data, which consist of
monthly PSA measurements of 65 patients undergoing inter-
mittent androgen deprivation treatment for recurrent, locally
advanced prostate cancer. We allowed the initial tumour
composition, as characterised by the proximity to carrying
capacity (ng) and the initial resistance fraction (fz), the level of
resistance costs (cg), and the rate of cell turnover (dy) to vary on a
patient-specific basis, whilst keeping all other parameters fixed
across the cohort at the values shown in Table 1. We also
explored varying the proliferation rate (rs) instead of turnover,
but this yielded poorer model fits (not shown) and so we will here
focus on the results when varying turnover. Given the stochastic
nature of our simulations we assembled the fit for each patient
from the mean of 25 independent stochastic replicates.

We find that, despite the simplicity of our model, it can
recapitulate the cycling dynamics for a majority of patients,
including both fast and slowly cycling patients (Fig. 7a; see also
Supplementary Fig. 2). Moreover, fast and slow cyclers are
associated with distinct spatial dynamics in our simulations
(Fig. 7b and Supplementary Movie 3). In fast cycling patients, the
model predicts a “carpet-like” structure with many small,
independent, sensitive and resistant nests (Patient 75). In
contrast, in slowly cycling patients growth is driven by only a
handful of large, “patch-like”, colonies (Patient 88). In order to
understand which parameters are key in driving this behaviour,
we fitted the model keeping either the initial conditions (n, and
fr) or the cell kinetic parameters (cg and dr) fixed across the
cohort. We find that allowing just cost and turnover to be patient-
specific can explain the data almost as well as the full 4-parameter
model (Supplementary Figs. 3 & 10). In contrast, the model
assuming that inter-patient variability is caused by different initial
conditions fits poorly (Supplementary Fig. 10).

A key result we obtained when we analysed these data using the
ODE model was that the patients’ cycling speed was correlated
with the fitted values of resistance cost and turnover32. Fast
cycling patients were associated with high levels of cost and low
turnover, and conversely for slowly cycling patients, indicating
different underlying disease biologies. That being said, the non-
spatial nature of the ODE model made it difficult to interpret how
exactly these differences may manifest themselves in practice. To
investigate whether its spatially explicit nature could provide us
with additional biological insight, we repeated this analysis with
the ABM. In agreement with the ODE work, we find a negative

correlation between cost and turnover, both when fitting all four
parameters (Supplementary Fig. 11), and when fitting only cost
and turnover (Pearson’s correlation coefficient: rs5 = — 0.76,
p=14x10"1; Fig. 7c). Furthermore, also in the ABM fast
cyclers are associated with large values of cost and small values of
turnover, and vice versa for slow cyclers, supporting the
hypothesis of different underlying biologies (Fig. 7c). Impor-
tantly, we can now further characterise these biologies (Fig. 7d
and Supplementary Movie 4): In fast cyclers, where turnover is
low and cost is high, most resistant cells present at the start of
treatment will survive, but only expand very slowly, which yields
a diffuse, carpet-like appearance of these tumours. In contrast, in
slow cyclers, where turnover is high and cost low, many initially
present resistant colonies will go extinct, but those that do survive
will be able to expand more rapidly. This creates a more defined,
patch-like appearance. Repeating our analysis with cells seeded as
densely packed disks in the centre of the domain and allowed to
expand outwards corroborates these conclusions (Supplementary
Fig. 12).

Moreover, whilst there is qualitative agreement between the
ODE model and the ABM, we find that additional insight can be
gained from studying when, and why, they disagree. For most
patients the goodness-of-fit for both models is comparable (in 45/
65 patients the difference in #2 is less than 0.1; Supplementary
Fig. 13a), but the ODE model generally fits slightly better, in
particular for the peak PSA wvalues of fast cycling patients
(Supplementary Fig. 13b, ¢). This can be explained by the fact that
both models assume the same cell proliferation rate but differ in
their predictions of the fraction of cells that is actually dividing, so
that the population growth in the ABM is slower than that in the
ODE. However, simply increasing the proliferation rate does not
improve the ABM fits either as this results in a much higher rate
of drug kill than is seen in the data, due to the way in which
treatment feeds back on the tumour’s spatial structure, and due to
our assumption that the drug acts during cell division (not
shown). Together, this suggests that the regrowth dynamics in the
patients is more consistent with an exponential growth model
than with a 2-D surface growth model, or that the treatment may
also kill cells in a cycle-independent fashion.

A further interesting observation is that no patients are to be
found in the top left corner of the graph, and only one patient is
located in the bottom right corner (Fig. 7c). This can be explained
by the trial’s patient selection criteria. When cost and turnover
are small, response is weak so that patients in this parameter
regime would not have been able to produce the initial PSA
normalisation required for study inclusion. Conversely, patients
in whom both cost and turnover are high will show durable
responses and are, thus, unlikely to be refractory after initial
therapy (recall Fig. 3a for how cost and turnover impact
response). Moreover, previously, we observed that patients who
progressed on the trial were characterised not by a lack of cost or
turnover but by a smaller combination of the two32. Our current
analysis corroborates this context-dependence of the resistance
costs. Progressors (yellow circles) cluster along the upper
boundary of the line of fits (Fig. 7c). Accordingly, we detect no
statistically significant difference in the turnover estimate
(Mann-Whitney test, Uy;9=210, p=10.49), but a significant
difference in the sum of the two (cg + drs Mann-Whitney test,
Uy o=45, p=1.1x10"%). That being said, we do observe a
statistically significant difference in the estimated cost values
(Mann-Whitney test, Uy, o = 95, p = 4.8 x 10~3), which indicates
that the resistance cost may play more of a role in the spatial
ABM than it did in the non-spatial ODE model (for a more in-
depth comparison of the ABM and ODE model parameter
estimates, see Supplementary Fig. 13d).
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Fig. 7 Analysis of the cycling dynamics of 65 prostate cancer patients undergoing intermittent androgen deprivation therapy in the trial by
Bruchovsky et al.42, IMT: intermittent therapy, PSA: prostate-specific antigen, ABM: agent-based model. a Representative fits of the ABM to the PSA data
from a fast and a slow cycling patient (Patients 75 and 88, respectively). Note that N(t), S(t), and R(t) have been normalised relative to no. b Snapshots
from one of the simulations in a, showing distinct patterns of resistance growth in the two patients, where in Patient 75 resistance emerges from many
small colonies, whereas in Patient 88 it is driven by only a few, but rapidly expanding, nests. ¢ Negative correlation between the estimated values of cost
and turnover, revealed when fitting just cost and turnover on a patient-specific basis. Note that while Patients 75 and 88 are marked for reference, their fits
here are not those shown in a, which were fitted with ng, fz, cr, and dr being allowed to vary. For an overview of all fits for this 2-parameter model, see
Supplementary Fig. 3. d Treatment trajectories, simulation snapshots and neighbourhood composition, illustrating the dynamics for patients in different
areas of the parameter space in ¢ ranging from what we term “carpet”-like appearance (many small, resistant colonies) to “patch”-like appearance (few,
but large, resistant colonies; see also Supplementary Movie 4). Throughout the figure, lines and shading denote the mean and standard deviation of

n =250 independent replicates, respectively.

Finally, we sought to understand how the proposed differences
between the inferred spatial architectures of fast and slow cycling
patients may affect intra-tumoral competition. This shows that in
slowly cycling patients essentially all competition is intra-specific,
whereas in fast cyclers competition with sensitive cells plays more
of a role (Fig. 7d). Overall, this supports our hypothesis that
different cycling speeds reflect different underlying disease
biology3?, and suggests this may not only be driven by differences
in the cell kinetics but also may manifest itself in distinct tumour
architectures and competition landscapes.

Discussion
The aim of this study was to better understand competition for
space during adaptive therapy. To do so, we studied a simple 2-D,

on-lattice ABM in which tumour cells were classified as either
drug-sensitive or resistant. Leveraging the individual-based nat-
ure of our model we explicitly measured, for the first time, spatial
competition between cells during therapy. This allowed us to
visualise and quantify how treatment breaks during adaptive
therapy increase the competitive inhibition of resistant cells.
Furthermore, we capitalised on this to explore how different
model parameters, which have previously been shown to mod-
ulate the benefit of adaptive therapy, impact competitive sup-
pression. For example, we showed how reducing the initial cell
density diminishes suppression, whereas a higher initial resistance
fraction results in a similar level of inhibition per adaptive ther-
apy cycle, but fewer cycles.

Moreover, this analysis revealed that intra-specific competition
of resistant cells with each other is an important, but so far
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strategies.

overlooked, factor in adaptive therapy. As a resistant cell divides,
most of its daughters will end up being trapped in the central core
of the resistant colony, able to divide only upon the death of
another resistant cell (or upon migration out of the core). As
such, adaptive therapy is most effective when resistance is clus-
tered in a single location, and surrounded by sensitive cells,
because it can leverage inter-specific competition at the edge of
the resistant colony to maximise intra-specific competition
between resistant cells at the core (Fig. 8a).

An important implication of this observation is that it matters
how resistance is distributed across the tumour. If resistance
arises in a single location then it can be controlled more effec-
tively with adaptive therapy than if resistance is present at mul-
tiple sites, either within the same lesion, or at different metastatic
sites within the body. As such, we extend previous results by
Bacevic et al.14 and Gallaher et al.23. This theoretical finding also
agrees with recent experimental evidence from Colom et al.>3
where it was shown that clones with oncogenic potential can keep
each other in check through competition if they arise in close
vicinity, but will expand into neoplasms if located further apart
(or in isolation). Moreover, we show that the intra-tumoral
competition, and thus treatment dynamics, changes with the
tumour’s spatial organisation. As such, care will be required when
using non-spatial ODE models to make quantitative predictions
about the benefit of adaptive therapy. Specifically, when we
compare the results from the ABM with its corresponding non-
spatial ODE model, we observe that while adaptive therapy is
superior in both models, its relative benefit compared to con-
tinuous therapy is smaller in the ABM, and there is less gain from
the presence of resistance costs and turnover. This is because the
two models make different assumptions about spatial competi-
tion. In the ODE model, cells are assumed to be perfectly mixed,

so that all cells experience the same competitive growth inhibi-
tion, which is simply a linear function of the total cell density. In
contrast, the lack of migration in the ABM results in spatial
segregation of different colonies, so that the competitive inhibi-
tion experienced by a cell depends on the cell’s local neigh-
bourhood, and varies across the tumour. Consequently, sensitive
cells in the ODE model will always be able to competitively
suppress resistant cells, whereas in the ABM this is only possible
if the sensitive colony grows in close vicinity to the resistant
colony. This indicates that a detailed understanding of intra-
tumoral competition is required, in order to determine whether
or not a patient will receive a clinically meaningful gain from
adaptive therapy. This point is supported by recent work by
Viossat and Noble!®, and Farrokhian et al.>4, that found that
while different ODE models of adaptive therapy agree qualita-
tively, there are significant differences in their quantitative pre-
dictions depending on how competition is modelled.

But how may we infer the spatial distribution of resistance?
Tissue biopsies would provide the most direct and detailed
measurements, but are invasive and often impractical. As an
alternative, we propose that it may be possible to use mathema-
tical modelling to gather spatial insights from the patient’s
longitudinal response dynamics (Fig. 8b). When fitting our ABM
to PSA data from prostate cancer patients undergoing inter-
mittent androgen deprivation therapy we find that the speed at
which patients cycle between treatment on- and off-periods
correlates with distinct forms of spatial organisation of the
tumours in our simulations. Fast cyclers are associated with more
diffuse (“carpet”-like) tumours whereas slow cyclers are asso-
ciated with more compact (“patch”-like) tumours (Fig. 8b). In an
analysis of their trial data, Bruchovsky et al.*? reported a “sug-
gestive trend that a Gleason score < 6 may be associated with a
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slightly longer time off treatment in the initial 2 cycles”. Inter-
estingly, lower Gleason scores indicate a more defined, glandular
tissue architecture, which would be consistent with our model
predictions. That being said, since the ABM model does not fully
capture the PSA peaks in fast cycling patients, requires small
turnover values of less than 1% in more than 10% of patients, and
cannot fit some patients at all, this result should be taken with a
grain of salt. In particular, these observations suggest that the
growth dynamics in the patients appears to be faster than that in
the ABM. This may be because these tumours grow in 3-D, which
provides more space for interactions than the 2-D lattice in the
ABM. Nevertheless, our work shows how using a spatial model
may allow us to gain understanding of the tissue architecture and
competition landscape within a tumour - even if this comes at the
cost of slightly poorer fits in comparison to an ODE model. Going
forward, we plan to investigate this idea further with a more
prostate cancer-specific, 3-D model.

In addition, it may also be possible to gather some information
about the spatial distribution of resistance from the characteristics
of the resistant population. In particular, if resistance is driven by
a single clone, then it will likely be initially confined to a single, or
at most a small number of, sites within the tumour. In contrast, if
resistance is driven by multiple clones, as has, for example, been
observed in colorectal cancer, then it is likely to exist in multiple
locations simultaneously. Liquid biopsies are showing promise at
detecting and characterising the clonality of emerging drug
resistance and, as such, may provide a useful tool for informing
adaptive therapies33>°.,

While we cannot easily alter it, understanding the spatial dis-
tribution of resistance in a patient may be relevant in the design
of adaptive treatment schedules. Gallaher et al.2? found in an off-
lattice ABM that the rate of cell migration (and therefore of
spatial mixing) determined whether a modulation-based adaptive
algorithm (treatment is modulated in small increments, rather
than withdrawn), or a vacation-based algorithm (treatment is
either on or off) was more effective. In particular, spatially con-
fined tumours favoured modulation, whereas in invasive tumours
more benefit was derived from the vacation-based strategy?3.
Conversely, Benzekry and Hahnfeldt>® concluded from the study
of a combined ODE and partial differential equation model that
metronomic chemotherapy scheduling (low dose, high frequency)
may be more effective in controlling metastatic disease than
aggressive standard-of-care treatment (high dose, low frequency).
Investigating how to best adapt treatment when there are multiple
resistant nests, and/or metastasis, is an important direction of
future research.

A final observation we make is that there can be significant
variation in the benefit of adaptive therapy between stochastic
replicates of our simulations, despite identical model parameters.
In fact, in some cases longer tumour control is achieved by
continuous, and not adaptive, therapy. Variance depends on the
number of resistant cells initially present in the simulations, and
their distribution, which further highlights the importance of the
spatial distribution of drug resistance within the tumour. More-
over, even though resistance costs and turnover increase the
average benefit of adaptive therapy, they also increase variability
in outcomes. As a result, the greater the benefit of adaptive
therapy on average the more we may see variation between
individual patients, with some gaining much more time, and
some less, than expected. While our simulations are not suited to
make quantitative statements about the magnitude of this pro-
blem due to the unrealistically small cell numbers, Hansen et al.>
have recently raised similar concerns. Thus, we advocate further
study of the impact of inter-patient variability in adaptive therapy
using, for example, Phase i trials®®, in order to inform future
clinical trial design. Moreover, the idea that competition during

adaptive therapy may alter the tumour morphology warrants
further investigation, as Enriquez-Navas et al.!3 have found that
adaptive therapy changes tumour vascularity in vivo, and several
studies have linked tumour morphology to outcome (see
e.g., refs. 2900),

In aiming to keep our model tractable we have made a number
of simplifying assumptions. We assumed no movement and no
pushing of cells, which has been shown by Gallaher et al.23 and
Bacevic et al.l# to reduce the benefit of adaptive therapy, as it
allows resistant cells to squeeze through surrounding sensitive
cells. Moreover, for computational reasons, we restricted our
analysis to a 2-D setting, which is arguably more representative
of in vitro cell culture than a 3-D human tumour. We hypothesise
that the extra dimension will hinder tumour control as it will
allow resistant cells to more easily find space into which they can
divide. That being said, we have also neglected the role of non-
tumour tissue, which acts as an additional competitor for space
and resources in the tumour, and may help to control resistant
subpopulations?!. The recent paper by M A et al.%! takes a first
step in this direction, independently corroborating not only some
of our results but also exploring the impact of fibroblasts. We, and
others, have also investigated the important role of metabolism in
regulating tumour progression, immune dynamics and treatment
response®>~%4. The role of tumour intrinsic metabolism versus
extrinsic tissue microenvironment metabolism has also not
been considered here. However, their inclusion is more likely
to enhance the impact of adaptive therapy than diminish it
due to the potential for increasing the cost of resistance (e.g.,
refs. 3265-67),

A final, important caveat is that we have not explicitly mod-
elled the mechanism by which resistance arises. Depending on
whether it arises through mutation, phenotypic switching, or is
environmentally induced, this may drive different initial dis-
tributions of resistant cells, and will also result in different
dynamics during treatment due to de novo resistance acquisition
(see also refs. 19-22:23:48) Furthermore, our model cannot explain
how some of the initial tumour compositions we have analysed
would have arisen prior to treatment. For example, if resistance
costs and turnover are assumed to be high, then resistance
will disappear in our simulations if the tumour is left untreated
(not shown).

To conclude, we want to highlight parallels with work carried
out on antibiotic resistance, which suggest possible areas of
synergy and avenues for future research. Also in bacteria it has
been demonstrated that sensitive cells can slow the growth of
resistant cells, even in the spatially relatively unconstrained
environment of a bioreactor®%8. Similarly, Fusco et al.3 found in
2-D in vitro biofilms that they could delay the release of resistant
bacterial mutants via a reduction in the drug dose, which kept
them trapped in the centre of the colony for longer. As such, our
results may be relevant also for the treatment dynamics in bac-
terial biofilms and, in fact, the 2-D nature of these systems may
make these useful experimental model systems to test some of our
theoretical findings. At the same time, this research has revealed
that the packed environment of a biofilm may not necessarily
hinder, but can in fact aid, resistance evolution. “Gene surfing” at
the edge of the expanding colony can allow even late occuring
(potential resistance) mutations to play an important role in the
colony’s evolutionary trajectory3%, and mechanical interactions in
growing films can alleviate resistance costs because slower
growing cells can be pushed along by their neighbours?!. More-
over, where resistance is conveyed by enzymatic digestion of the
drug, cooperative interactions between sensitive and resistant
cells may evolve in which the precise spatial arrangement of the
cells in the biofilm plays an important role®®70. Such facilitation
has recently also been reported in cancer’’7? and strongly
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motivates extending our research to include cooperative inter-
actions, and to ask how they may be tackled using multi-drug
strategies?42>73-75,

To sum up, in this paper, we have consolidated and advanced
our understanding of how competition between tumour cells may
be leveraged by careful treatment modulation. We have shown
that the spatial organisation of resistant populations is an
important, and understudied, factor in cancer treatment. This
strengthens the argument for patient-specific, adaptive therapy
protocols that explicitly consider not only a tumour’s evolution
but also its ecology.

Data availability

No new experimental or clinical data were generated in this study. All source data for the
main figures within this study are available on Figshare”®, and the code to generate each
figure has been deposited on Zenodo at ref. 1. The patient data were downloaded from
the author’s webpage at http://www.nicholasbruchovsky.com/clinicalResearch.html in
July 2020.

Code availability

The code for the computational model and for all analyses presented in this paper is
publicly available at https://github.com/MathOnco/strobl2021_space_modulates_
competition_AT, and has been archived on Zenodo at ref. 41,
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