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Abstract
Cancer is a heterogeneous disease and tumours of the same type can differ greatly at the
genetic and phenotypic levels. Understanding how these differences impact sensitivity
to treatment is an essential step towards patient-specific treatment design. In this paper,
we investigate how two different mechanisms for growth control may affect tumour
cell responses to fractionated radiotherapy (RT) by extending an existing ordinary
differential equation model of tumour growth. In the absence of treatment, this model
distinguishes between growth arrest due to nutrient insufficiency and competition for
space and exhibits three growth regimes: nutrient limited, space limited (SL) and
bistable (BS), where both mechanisms for growth arrest coexist. We study the effect
of RT for tumours in each regime, finding that tumours in the SL regime typically
respond best to RT, while tumours in the BS regime typically respond worst to RT. For
tumours in each regime, we also identify the biological processes that may explain
positive and negative treatment outcomes and the dosing regimen which maximises
the reduction in tumour burden.
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1 Introduction

Understanding the biological mechanisms underpinning cancer and developing effec-
tive therapeutic protocols to improve patient prognosis are fundamental aims of cancer
research. Existing treatment modalities, such as radiotherapy (RT) and chemotherapy
(CT), are applied via highly-regulated dosing protocols (National Cancer Institute
2019, 2022) to avoid damaging healthy tissue, while maximising treatment effect.
Nonetheless, the efficacy of both RT and CT is limited by their intolerable side-effects.
Further, inter-tumour heterogeneity can significantly influence sensitivity to treatment.
Investigating how different growth mechanisms may affect response to treatment is,
therefore, an important step towards overcoming barriers to treatment efficacy. In
this paper, we investigate how two distinct growth-rate limiting mechanisms, namely
growth arrest in response to nutrient insufficiency and to competition for space, impact
tumour response to RT.
A dynamic model of tumour growth that distinguishes between mechanisms of
tumour control. Regardless of their biological complexity, existing models of solid
tumour growth typically describe a single mechanism bywhich a tumourmay reach an
equilibrium. For example, the models developed by Enderling et al. (2006), Hahnfeldt
et al. (1999), Liu et al. (2021), Milzman et al. (2021) and Zahid et al. (2021) predict
growth arrest due to a cessation of proliferation (with no explicit cell death), while
those proposed by Drasdo and Höhme (2005), Greenspan (1972), Hillen et al. (2013)
and Lewin et al. (2020) predict growth arrest due to the balance of cell proliferation
and cell death.

In previouswork (Colson et al. 2022), we developed amodel of solid tumour growth
that simultaneously describes growth arrest due to nutrient inhibition, when the net
rates of cell proliferation and death are equal (and strictly positive), and growth arrest
due to contact inhibition, when the net rate of cell proliferation becomes zero, with
no cell death. We assumed that the system is well-mixed and neglected angiogenesis
and vascular remodelling. In particular, we viewed the vascular volume as a parameter
which influences nutrient and space availability and, therefore, the tumour’s carrying
capacity. As such, the model does not capture the co-evolution of the vasculature with
tumour cells that is observed in vivo and that can allow nutrient limited tumours to
continue to grow (see Discussion). Nor does it describe how secondary tumours are
established, i.e., metastasis.

The model comprises two time-dependent ordinary differential equations (ODEs)
for the tumour volume, T (t), and the oxygen concentration, c(t), and can be written
as follows:

dT

dt
= q∗

2 cT (Smax − (T + V0))
︸ ︷︷ ︸

rate of
tumour cell proliferation

− [

δ∗
1 (c∗min − c)

]

H(c∗min − c)T
︸ ︷︷ ︸

rate of
cell death due to nutrient starvation

, (1)

dc

dt
= g∗(c∗max − c)V0

︸ ︷︷ ︸

rate of
nutrient delivery

− q∗
1 cT

︸ ︷︷ ︸

baseline rate of
nutrient consumption

− q∗
3 cT (Smax − (T + V0))

︸ ︷︷ ︸

additional rate of
nutrient consumption for proliferation

,(2)
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where

H(x) =
{

1, if x ≥ 0,

0, if x < 0.
(3)

Denoting the total available space by Smax (m3) and the vascular volume by V0 (m3),
the rate of tumour cell proliferation is assumed to be proportional to the available free
space, Smax − T − V0, and to the oxygen concentration, c, with proportionality con-
stant q∗

2 (kg−1min−1). If c drops below a threshold value, c∗
min (kgm−3), then cells

die at a rate proportional to the difference between c and c∗
min , with proportionality

constant δ∗
1 (m3kg−1min−1). Further, oxygen is supplied to the tumour at a rate pro-

portional to V0 and the difference between the oxygen concentration in the vasculature,
c∗
max (kgm−3), and in the tumour. The parameter g∗ (m−3min−1) is the rate of oxygen
exchange per unit volume area of blood vessel. Finally, oxygen is consumed by tumour
cells for maintenance at a rate proportional to c, with rate constant q∗

1 (m−3min−1),
and for proliferation at a rate proportional to the proliferation rate, with conversion
factor k > 0 defined such that q∗

3 = q∗
2/k (m−6min−1).

Since themodel (1), (2) distinguishes between twomechanisms for growth-control,
it can be used to investigate how they impact tumour response to treatment. Therefore,
in this work, we extend Eqs. (1), (2) to account for the biological effects of RT.
Radiobiology.RT is used to treat more than 50% of cancer patients (Maier et al. 2016).
It involves the delivery of energy rays, via small doses called fractions, at regular time
intervals and over a fixed period of time, to a region of the body comprising both
cancerous and healthy tissue. Radiation protocols are, therefore, designed to balance
treatment efficacy and undesirable side-effects in normal tissues.While a conventional
fractionation schedule consists of 2Gy doses delivered Monday to Friday for up to 7
weeks (Ahmed et al. 2014), the dose, dosing frequency and treatment duration can be
varied to deliver a fixed total dose. The latter is often termed the Maximum Tolerated
Dose, i.e., the highest dose which does not cause adverse side-effects (Gad 2014).

Radiation induces direct and indirect cytotoxic effects by causing DNA damage to
cancer cells that is fatal if left unrepaired.Direct effects arise from interactions between
ionising particles and DNA and indirect ones from interactions between ionising par-
ticles and water, which create reactive oxygen species that subsequently react with
DNA. Indirect effects are the most common, which is why hypoxic, i.e., poorly oxy-
genated, tumours are often radio-resistant (Graham and Unger 2018). Intratumoural
oxygen levels are a key factor influencing tumour radio-sensitivity, and another key
factor are tumour cell proliferation rates, as cells that are in the G2 or mitosis phases
of the cell cycle are the most sensitive to RT.

RT can also affect the tumour vasculature, with increases in angiogenesis observed
at low doses (Marques et al. 2020) and vascular damage and necrosis observed at high
doses (Stolz et al. 2022; Venkatesulu et al. 2018). In this work, we neglect the effect of
RT on vasculature in order to focus on evaluating how nutrient- and contact-inhibited
growth control affect the sensitivity of tumour cells to treatment with RT.
Mathematical modelling of tumour response to radiotherapy. A number of math-
ematical models have been proposed to describe tumour response to RT. Key aims
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of these modelling efforts include studying specific RT protocols (Enderling et al.
2010; Jeong et al. 2017; Lewin et al. 2018; Prokopiou et al. 2015; Rockne et al. 2009),
designing patient-specific RT dosing schedules (Alfonso et al. 2014; Belfatto et al.
2018) and investigating the influence of inter- and/or intra- tumour heterogeneity on
tumour sensitivity to RT (Alfonso and Berk 2019; Celora et al. 2023; Powathil et al.
2012; Enderling et al. 2009; Watanabe et al. 2016).

While the purpose of these modelling approaches may differ, they are all based on
the common assumption that RT inflicts instantaneous cell death on tumour cells and
the cell kill is modelled using the Linear-Quadratic (LQ) model (McMahon 2018).
The LQ model states that the fraction, SLQ , of (tumour) cells that survive exposure to
a dose D (Gy) of radiation is given by

SLQ(D) = exp
(

−
(

αD + βD2
))

, (4)

where α ≥ 0 and β ≥ 0 are tissue-specific radio-sensitivity parameters. These param-
eters are typically derived from cell survival data collected at a small number of
time points in in vitro two-dimensional (2D) monolayer or three-dimensional (3D)
spheroid experiments. As such, they provide information about the long-term propor-
tion of cell death rather than how the cell death rate changes over time. In contrast, a
time-dependent description of RT cell kill can account for different types of damage
(direct vs. indirect), damage repair and cell death following insufficient repair (Curtis
1986; Goodhead 1985; Neira et al. 2020; Tobias 1985). Such a description facilitates
the study of the evolution of tumour composition during treatment, as we may keep
track of changes in healthy, damaged and dead tumour cell populations. In this paper,
we follow Neira et al. (2020) and adopt a time-dependent description of RT.
Paper structure. This paper is structured as follows. In Sect. 2, we extend the tumour
growth model defined by Eqs. (1), (2) to account for the biological effects of RT.
We summarise the key features of the model dynamics in the absence of treatment in
Sect. 3. Then,we investigate the response of tumours characterised bydifferent growth-
limiting mechanisms in Sect. 4, initially performing a numerical study of tumour
response during RT and, subsequently, looking at post-treatment growth dynamics
via a steady state analysis and complementary numerical study. The paper concludes
in Sect. 5, where we discuss our findings and outline possible avenues for future work.

2 Model Development

2.1 TheMathematical Model

In this section, we incorporate tumour response to RT into the growth model (1), (2).
We follow the approach outlined in Neira et al. (2020) and adopt a time-dependent
description of radiotherapy. In more detail, we introduce the dependent variables TS
and TR to denote tumour cells that have been, respectively, sub-lethally and lethally
damaged by RT. We suppose that the tumour is exposed to a total dose D (Gy) of RT
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at a constant rate R over the time period tR ≤ t ≤ tR + δR (min) so that

R(t) =
{

D/δR, if tR ≤ t ≤ tR + δR,

0, otherwise.
(5)

Let � = T + TS + TR + V0 be the total tumour volume. We propose the following
system of time-dependent ODEs to describe tumour growth and response to RT (see
also the schematic in Fig. 1):

dT

dt
= q∗

2 cT (Smax − �) − δ∗
1 (c

∗
min − c)H(c∗

min − c)T

− λ∗cRT
︸ ︷︷ ︸

rate of direct
lethal damage

− ν∗cRT
︸ ︷︷ ︸

rate of
sub-lethal damage

+ μ∗TS
︸ ︷︷ ︸

rate of
repair

, (6)

dTS
dt

= q∗
2,ScTS(Smax − �) − δ∗

1,S(c
∗
min − c)H(c∗

min − c)TS

+ν∗cRT − μ∗TS − ξ∗TS
︸︷︷︸

rate of
post-RT death
due to MC

− λ∗
ScRTS

︸ ︷︷ ︸

rate of indirect
lethal damage

, (7)

dTR
dt

= λ∗cRT + (ξ∗ + λ∗
ScR)TS − η∗

RTR
︸ ︷︷ ︸

rate of
clearance

, (8)

dc

dt
= g∗(c∗

max − c)V0 − q∗
1 cT − q∗

3 cT (Smax − �)−q∗
1,ScTS − q∗

3,ScTS(Smax − �), (9)

where H is the Heaviside function defined in (3).
We assume that undamaged tumour cells, T , proliferate, die due to nutrient insuffi-

ciency and consume oxygen for proliferation andmaintenance as in Eqs. (1), (2). They
suffer sub-lethal and lethal damage during irradiation at rates proportional to the oxy-
gen concentration, c, and the RT dose rate, R, with proportionality constants ν∗ > 0
and λ∗ > 0, respectively. We further suppose that sub-lethal damage is either repaired
at a constant rate μ∗ > 0, or leads to tumour cell death via two distinct pathways.
First, sub-lethal damage may become lethal as it accumulates at a rate proportional to
the oxygen concentration, c, and the RT dose rate, R, with proportionality constant
λ∗
S > 0. Second, sub-lethally damaged cells, TS , may also undergomitotic catastrophe

(MC) if they attempt to divide with mis- or un-repaired DNA damage; we assume this
occurs at a constant rate ξ∗ > 0.

Sub-lethally damaged cells, TS , also consume oxygen for maintenance and prolif-
eration, proliferate and die due to nutrient insufficiency similarly to undamaged cells,
T , although at different rates. More specifically, they proliferate at a rate proportional
to the oxygen concentration, c, and the available space, with proportionality constant
q∗
2,S = θ2q∗

2 > 0, with θ2 ∈ (0, 1). The latter ensures that damaged cells proliferate
more slowly than undamaged cells as they expend more energy repairing RT damage

123



   74 Page 6 of 33 C. Colson et al.

Fig. 1 Schematic showing the interactions between undamaged, damaged and dead tumour cells, T , TS ,
TR , respectively, in response to RT and the proliferation of T and TS cells as described in the model
defined by Eqs. (5)–(9). R denotes the RT dose rate defined by (5) and c denotes the intratumoural oxygen
concentration (Colour figure online)

than proliferating. Accordingly, sub-lethally damaged cells consume oxygen formain-
tenance at a rate proportional to c, with rate constant q∗

1,S = θ1q∗
1 > 0, where θ1 > 1

as these cells require more energy to repair RT damage. They also consume oxygen
for proliferation at a rate proportional to the proliferation rate, with conversion factor

k > 0 such that q∗
3,S = q∗

2,S
k . Here, we assume the same conversion factor for T and TS

cells, for simplicity. Since q∗
2,S = θ2q∗

2 and q∗
3 = q∗

2
k , we also have q∗

3,S = θ2q∗
3 , i.e.,

damaged cells consume less oxygen for proliferation than undamaged cells. Lastly, as
for T cells, TS cells die from nutrient insufficiency when c < c∗

min , at a rate propor-
tional to the difference between c and c∗

min , with proportionality constant δ∗
1,S > 0.

Lethally-damaged cells, TR , are considered to be dead: their damage cannot be
repaired, they do not consume oxygen or proliferate, but they occupy space and are
degraded at a constant rate η∗

R > 0.
One final and important assumption we make is that radiation only affects tumour

cells, i.e., we neglect any effects RT may have on tumour angiogenesis, vascular
remodelling and injury. This simplifying assumption enables us to focus on elucidating
how mechanisms of growth arrest influence one particular type of tumour response to
RT, i.e., the cellular response.

2.2 Non-dimensionalisation

We non-dimensionalise Eqs. (5)–(9) by introducing the following scalings:

̂T = T

Smax
, ̂TS = TS

Smax
, ̂TR = TR

Smax
, ̂V0 = V0

Smax
,

ĉ = c

c∗
max

, ̂R = R

Rmax
, t̂ = t

τ
.

The timescale of interest is the timescale for the duration of RT (τ = 1min). We
choose this timescale since we seek to describe the damage and repair associated with
RT. The maximum dose rate is also fixed to be Rmax = 1Gy/min (Konopacka et al.
2016). Then, given that q∗

1,S = θ1q∗
1 , q

∗
2,S = θ2q∗

2 and q∗
3,S = θ2q∗

3 and dropping hats
for notational convenience, we obtain the following dimensionless system:
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dT

dt
= q2cT (1 − �) − (δ1(cmin − c)H(cmin − c) + λcR + νcR)T + μTS, (10)

dTS
dt

= θ2q2cTS(1 − �) − (δ1,S(cmin − c)H(cmin − c) + λScR + μ + ξ)TS + νcRT , (11)

dTR
dt

= λcRT + (ξ + λScR)TS − ηRTR, (12)

dc

dt
= g(1 − c)V0 − q1(T + θ1TS)c − q3 (T + θ2TS) c(1 − �), (13)

where we have introduced the following dimensionless parameter groupings:

q1 = q∗
1 Smaxτ , q3 = q∗

3 S
2
maxτ , q2 = q∗

2 S
2
maxc

∗
maxτ , k = c∗

max

Smax
k∗,

cmin = c∗
min

c∗
max

, δ1 = δ∗
1c

∗
maxτ , δ1,S = δ∗

1,Sc
∗
maxτ , g = g∗Smaxτ ,

λ = λ∗c∗
max Rmaxτ , λS = λ∗

Sc
∗
max Rmaxτ , ν = ν∗c∗

max Rmaxτ ,

μ = μ∗τ , ξ = ξ∗τ , ηR = η∗
Rτ .

(14)

2.3 Defining the Dimensionless Model Parameters

This paper focusses on studying the impact of two distinct growth arrest mechanisms
on the qualitative tumour response to RT. We, therefore, fix parameters related to
tumour cell responses to RT at the values stated in Table 1. The values of ν, λ, λS , μ
and ηR are based on values found in the literature (Neira et al. 2020; Steel et al. 1987)
and we assume λ = λS , for simplicity. We also set ξ = 5 × 10−4 so that cells that
undergo mitotic catastrophe have a half-life of approximately 24h. Here, we implicitly
assume that the average duration of the cell cycle in healthy cells (Bernard and Herzel
2006) and cancer cells are approximately the same. The parameters that define the RT
dosing schedules (e.g., the dose rate, R) are summarised in Sect. 4.1.

Further, we define tumour growth parameters as in our previous work (Colson et al.
2022). In particular, we fix the values of cmin , g and k based on parameter values found
in the literature and preliminary numerical simulations. For q1, q3 and V0, we consider
a biologically realistic range of possible values, motivated by arguments outlined in
Colson et al. (2022), as these parameters have a strong influence on the qualitative
behaviour of themodel in the absence of treatment (see Sect. 3).Wemake the additional
simplifying assumption that, as for the undamaged cells, δ1,S = q2,S . Finally, we
set θ1 = 10 and θ2 = 0.1 to represent a 10-fold increase in oxygen consumption
for maintenance and a 10-fold decrease in oxygen consumption for proliferation in
damaged cells.

3 Review of the KeyModel Dynamics in the Absence of Treatment

In this section, we summarise the model behaviour in the absence of treatment. Setting
R ≡ 0 in Eqs. (10)–(13), we recover the dimensionless form of Eqs. (1), (2). In Colson
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Fig. 2 For q1 ∈ {0.1, 0.5, 1}, we show the regions of (V0, q3)-space in which only the stable NL steady
state exists (blue), only the stable SL steady state exists (red) and both the stable NL and SL steady states
co-exist (purple). The solid and dashed red lines represent the boundaries between the three regions. For
q1 = 0.5, the points A1–C1 correspond to (V0, q3) ∈ {(0.0005, 5), (0.0015, 5), (0.003, 5)}, respectively,
and A2–C2 to (V0, q3) ∈ {(0.0005, 0.5), (0.0015, 0.5), (0.003, 0.5)}, respectively. Tumours defined by
parameter sets A1–C1 have values of q3 which are sufficiently larger than q1 so that there is bi-stability,
while, for A2–C2, bistability does not occur (Colour figure online)

et al. (2022), we showed that thismodel admits two non-trivial, stable steady states (see
Appendix A): (i) a nutrient limited (NL) steady state, attained when cell proliferation
balances cell death due to nutrient starvation; (ii) a space limited (SL) steady state,
attained when cell proliferation ceases due to lack of space, with no cell death.

For these solutions to be physically realistic and lie in the appropriate nutrient
regime, they must satisfy 0 ≤ T ≤ 1 − V0 and either 0 ≤ c < cmin (for the NL
steady state) or c ≥ cmin (for the SL steady state). Imposing these conditions, we find
that admissible NL and SL steady state solutions lie in different regions of parameter
space. These regions are defined by the values of q1, q3 and V0, with no qualitative
changes when cmin and g vary (Colson et al. 2022). Figure2 depicts these regions in
(q3, V0)-space for three values of q1 and fixed values of cmin = 0.01 and g = 5.

Given q1, there exists a threshold value of V0, which we denote by VN , which is
independent of q3, such that only NL steady states exist for 0 < V0 ≤ VN . Tumours in
this region of parameter space (e.g., A1 and A2) are said to be in a NL growth regime.
Further, given q1, and for q3 sufficiently large relative to q1, there exists another
threshold value of V0, which we denote by VS , such that only SL steady states exist
for V0 ≥ VS > VN . Tumours in this region (e.g., C1, B2 and C2) are said to be in a SL
growth regime. Further, where VN < V0 < VS , the NL and SL steady states co-exist.
A tumour in this region (e.g., B1) may evolve to either steady state, depending on its
initial conditions. We consider such tumours to be in a bistable (BS) growth regime.
Finally, for q3 � q1, we have that, for V0 > VN , a unique steady state exists and it is
of SL type.

Figure 3 shows the time evolution of the tumour cell volume, T , and the intra-
tumoural oxygen concentration, c, and the corresponding bifurcation diagrams for
tumours A1–C1 and A2–C2. In all cases, theNL steady state values for T and c (T ∗ and
c∗, respectively) are smaller than the SL ones. This is consistent with the assumption
that, in the absence of angiogenesis, well-oxygenated tumours attain larger volumes
than poorly-oxygenated tumours. Further, tumours in a BS regime evolve to their NL
steady state for initial conditions satisfying 0 < T (0) � T ∗, which we use to simulate
tumour growth. As the values of T ∗ and c∗ for NL tumours increase with V0, tumours
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Fig. 3 With R ≡ 0, we numerically solve Eqs. (10)–(13) for t ∈ (0, 2×105] subject to the initial conditions
(T (0), TS(0), TR(0), c(0)) = (0.05, 0, 0, 1) and plot the evolution of the tumour volume and oxygen
concentration in time. In (a), (q1, q3, V0) correspond to points A1–C1 in Fig. 2 and, in (b), they correspond
to points A2–C2. The remaining model parameters are fixed at the default values in Table 1.The bifurcation
diagrams show how the steady state values for T and c change as V0 varies for (q1, q3) corresponding to
A1–C1 in (a) and for (q1, q3) corresponding to A2–C2 in (b). In both cases, the NL steady state increases
with V0 and is smaller than the SL steady state, which decreases with V0. The tumour in a BS regime (B1)
grows to its NL steady state (Colour figure online)

in a BS regime will grow to larger volumes than tumours in a NL regime (and smaller
volumes than tumours in a SL regime). We also note that, in BS regimes, there is a
large jump in T ∗ and c∗ at VS , the threshold value of V0 separating the BS and SL
regimes. In contrast, in monostable regimes, T ∗ and c∗ depend continuously on V0.

In summary, in the absence of treatment (i.e., R ≡ 0), Eqs. (10)–(13) describe
three possible scenarios for tumour growth: (i) nutrient limited growth, where the
tumour grows to a NL steady state at which proliferation balances cell death due
to nutrient insufficiency; (ii) space limited growth, where the tumour grows to a SL
steady state at which proliferation ceases due to space constraints; (iii) bistable growth,
where a tumour grows to a NL steady state given physically realistic initial conditions
(0 < T (0) � T ∗). In vivo, we expect that tumours growing in poorly-perfused regions
(e.g., breast, bone) and/or that elicit a weaker angiogenic response would be in the
NL regime, while tumours growing in well-perfused regions (e.g., lung, liver, brain)
and/or that elicit a stronger angiogenic response would be in the SL regime. Tumours
growing in well-perfused regions that are highly proliferative and, therefore, more
likely to outgrow their nutrient supply, would be in the BS regime. In Sect. 4, we
investigate how tumours in these three growth regimes respond to RT.

4 Investigating Tumour Response to Radiotherapy

4.1 Methods

Our aim is to understand the qualitative response of tumours in nutrient limited (NL),
space limited (SL) and bistable (BS) regimes to a range of fractionated radiotherapy

123



Investigating the Influence of Growth Arrest Mechanisms... Page 11 of 33    74 

(RT) treatments. As a first step, we create three virtual tumour populations as follows.
We first fix all tumour growth model parameters, except q1, q3 and V0, at the default
values stated in Table 1. We then also fix V0 = 0.0005, V0 = 0.005 and V0 = 0.00275
for tumours in the virtual NL, SL and BS regimes, respectively. Allowing q1 and q3
to vary, we generate three virtual tumour populations of size N = 250 by randomly
selecting N (q1, q3) pairs, corresponding to the NL, SL and BS regimes, respectively.
Each pair is formed by sampling pairs of values of q1 and q3 from uniform distributions
whose lower and upper bounds depend on the growth regime (NL, SL or BS), the value
of V0 and, for sampling q3 in the BS and SL regimes, the value of q1 (see Appendix
B).

We then define the RT protocols of interest. We vary the dose amount D ∈
�0, 5� (Gy) and the number of doses per week N f rac = {1, 3, 5}. We assume that
each dose is administered in δR = 10min and, therefore, we vary the dimensionless
dose rate, R := D

δR Rmax
∈ {0.1, 0.2, 0.3, 0.4, 0.5}. We also suppose that all fractions

are applied at the same time of day and the first weekly fraction is applied onMondays,
with subsequent fractions applied at equally spaced time intervals during Monday to
Friday (e.g., 3 doses per week corresponds to doses on Monday, Wednesday and Fri-
day). Further, the duration of each fractionation schedule is determined so that the
total dose administered is 80Gy (or the closest multiple of D to 80Gy).

For each set of tumours and each RT protocol, we solve Eqs. (10)–(13) numerically
for t ∈ (0, t∗], t∗ > 0, using ODE45, a single step MATLAB built-in solver for
non-stiff ODEs that is based on an explicit Runge–Kutta (4,5) formula, the Dormand-
Prince pair (Dormand and Prince 1980). (The code is available at: https://github.
com/chloeacolson/InvestigatingTumourResponsesRadiotherapy.) For simplicity, we
impose the initial conditions

(T , TS, TR, c) = (T ∗, 0, 0, c∗), (15)

where T ∗ and c∗ are, respectively, the steady state tumour volume and oxygen concen-
tration in the absence of treatment. All RT parameters are fixed at the default values
listed in Table 1.

For each simulation, we record T̄ , T̄S and T̄R , the mean undamaged, damaged
and dead cell volumes in the last week of treatment, respectively. We also define the
percent change in (mean) viable and total cell volumes between the start and the end
of treatment as follows

�viable := 100 × (T̄ + T̄S) − T0
T0

and �total := 100 × �̄ − �0

�0
, (16)

where

�0 = T0 + V0, � = T + TS + TR + V0.

Wealso quantify the end-of-treatment tumour composition (relative to the total tumour
volume at the start of treatment) as follows

%T := 100 × T̄

�0
, %TS := 100 × T̄S

�0
, %TR := 100 × T̄R

�0
and
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%V0 := 100 × V0
�0

. (17)

We note that the variables defined in (17) can be used to describe �total = (%T +
%TS +%TR +%V0)−100. Henceforth, for brevity, we refer to the relative changes in
tumour cell volumes, as defined in (16) and (17), as changes in tumour cell volumes.
Finally, we record c̄, the mean oxygen concentration in the last week of treatment, and
the post-treatment steady state values of all the dependent variables.

4.2 Characterising Tumour Response to Fractionated RT

In this section, we investigate the response of tumours in the NL, SL and BS virtual
populations to fractionated RT. For each regime, we initially study tumour response
to a conventional fractionation schedule consisting of 5× 2 Gy fractions per week for
8 weeks. In particular, we determine the average response and explore how certain
values of q1, q3 and V0 generate extremal behaviour. We also study the impact of
the dose and dosing frequency on tumour response. We consider monostable regimes
before looking at the bistable regime.

4.2.1 Tumours in Monostable Regimes: The NL and SL Virtual Tumour Populations

Typical responses to a conventional fractionation schedule.Fig. 4 shows the response
of two NL and SL tumours to RT, both of which experience a decrease in viable
tumour cell volume, T + TS , during treatment. Since, in both cases, the dependent
variables evolve to time periodic solutions within 5 weeks of treatment, we deduce
that there is amaximal reduction in the viable cell volume that can be achievedwith this
fractionation schedule. This maximum reduction, which we quantify using �viable,
is significantly larger for the SL tumour at approximately 37.6% than for the NL
tumour at approximately 4.36%. RT is more effective for the SL tumour as it is better
oxygenated than the NL tumour and, hence, it experiences a higher rate of RT cell kill
and greater accumulation of dead material, TR , than the NL tumour.

Figure 4 also shows that, for both tumours, the oxygen concentration and the viable
tumour cell volume decrease when RT is applied. This is because T and TS cells
consume oxygen at different rates: we recall that the oxygen consumption rates of
sub-lethally damaged cells satisfy q1,S = 10q1 and q3,S = 0.1q3. Therefore, changes
in tumour composition during treatment will alter the overall oxygen consumption
rate of viable tumour cells, leading to transient, or persistent, increases or decreases
in the oxygen concentration depending on the values of q1 and q3.

Figure 5 shows the distributions of �viable and �total , following a conventional
fractionation schedule, across the NL and SL virtual populations. We note that the
behaviour shown in Fig. 4 for specific NL and SL tumours is representative of the
average behaviour of each virtual population. In particular, tumours in the SL cohort
typically respond well to treatment, with median and (Q1, Q3) values of �viable

equal to −37.9 and (−30.7,−54.1), respectively, and �total < 0 across the virtual
population. Given the initial conditions (15), the latter follows because SL tumours
fully occupy the available space at the start of treatment. Tumours in the NL cohort
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Fig. 4 For a conventional fractionation schedule, we numerically solve Eqs. (10)–(13) for t ∈ (0, 8× 104]
subject to the initial conditions (15). In (a), we set (q1, q3, V0) = (0.832, 2.98, 0.0005), which corresponds
to a NL tumour. In (b), we set (q1, q3, V0) = (1.08, 8.83, 0.005), which corresponds to a SL tumour.
Although both tumours exhibit a decrease in viable cell volume, RT cell kill and accumulation of dead
material is more significant for the SL than the NL tumour for this choice of parameter values (Colour
figure online)

Fig. 5 For virtual cohorts of NL and SL tumours, the violin plots show the distributions of �viable and
�total . The viable cell volume of all NL and SL tumours decreases during RT, with SL tumours showing
significantly greater percentage changes. The total volume decreases for all SL tumours, while it increases
for most NL tumours.We identify several outliers, which exhibit significantly larger reductions in their
viable and total cell volumes (Colour figure online)

typically respond less well to treatment, with larger median and (Q1, Q3) values of
�viable equal to −4.57 and (−3.52,−6.53), respectively, and �total > 0, for at least
90% of tumours. When the net RT-induced cell death is minimal, NL tumours, which
do not occupy all available free space at the start of treatment, can grow larger due to
increases in the dead cell volume. We also note that the value of �total − �viable is
larger for SL tumours since they accumulate more dead material.

In both regimes, we observe outliers, which undergo much larger reductions in
T + TS and � than the average tumour. This suggests that certain parameter values
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Fig. 6 The scatter plots show the values of �viable and �total , following a conventional fractionation
schedule, for each (q1, q3) pair used to generate the set of virtual NL tumours. �viable and �total increase
with q3 and decrease with q1 (Colour figure online)

within the NL and SL regimes correspond to tumours which are more sensitive to RT
than the average NL and SL tumour.
The influence of the oxygen consumption rates, q1 and q3, on treatment outcome
following a conventional fractionation schedule. We now investigate the role of
q1 and q3 in tumour response to RT. The scatter plots in Fig. 6 show the values of
�viable and �total across the (q1, q3) pairs which define the NL virtual population.
The response of NL tumours is most sensitive to the value of q3, with smaller values
leading to greater reductions in viable and total cell volumes. Further, higher values
of q1 are also associated with larger reductions in viable and total cell volumes. To
understand these findings, we study the response to RT of four representative tumours
corresponding to (q1, q3) sets, A1, B1, C1 and D1 (see Fig. 6 and Table 2).

Comparing the response of tumours A1 and B1 to tumours C1 and D1 in Fig. 7a,
we see that a smaller value of q3 implies higher average oxygen levels and slower cell
proliferation (since q2 = 0.01q3). We conclude that two mechanisms could explain
the increased efficacy of RT for low values of q3: (i) higher rates of RT cell kill due to
increased oxygenation or (ii) limited regrowth between RT fractions due to decreased
proliferation.

While oxygen levels are higher in tumours A1 and B1 than tumours C1 and D1,
respectively, when RT is applied (see Fig. 7a), their values of %TR are slightly smaller
(16.65% (A1) vs. 18.42% (C1) and 13.79% (B1) vs. 16.29% (D1); see Fig. 7b). This
suggests that the net increase in oxygen levels when values of q3 are small does not
significantly impact the rates of cell kill due to RT. By contrast, Fig. 7a shows that the
relative increase in the viable cell volume of tumours A1 and B1 between fractions is
marginal, whereas the relative increase in the viable cell volume of tumours C1 and
D1 between fractions is sufficiently large for it to return to its initial volume over the
weekend break from RT. This indicates that the value of q3 impacts the reduction in
the tumour burden by modulating tumour regrowth between fractions (rather than by
increasing RT-induced cell death).

Figure 7b also shows that a larger value of q1 can slightly increase the magnitude
of the reductions in �viable and �total . Since high values of q1 lead to lower average
oxygen levels (Fig. 7a), RT cell kill rates are smaller, while the rate of cell death due to
hypoxia is larger than for low values of q1. The balance between these two processes
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Fig. 7 (a) For a conventional fractionation schedule,wenumerically solveEqs. (10)–(13) for t ∈ (0, 8×104]
subject to the initial conditions (15). In A1–D1, we fix V0 = 0.0005 and (q1, q3) as indicated by the points
A1, B1,C1 and D1 in Fig. 6, which correspond toNL tumours. (b) Bar graph showing themean composition
of tumours A1–D1 in the last week of a conventional fractionation schedule, where %T , %TS , %TR and
%V0 are defined in Eq. (17). Tumours with small values of q3 (A1, B1) undergo sustained reductions in
T +TS during treatment, leading to larger reductions in total volume. Tumours with large values of q3 (C1,
D1) experience transient reductions in T + TS as they regrow to their initial volume during the weekend
break from RT, and their total volume increases as they accumulate dead material. A high value of q1 (B1,
D1) leads to a modest improvement in the tumour response, but does not yield a large reduction in tumour
volume (Colour figure online)

Table 2 Parameter sets A1, B1,
C1 and D1 corresponding to the
representative NL tumours

Tumour q1 q3

A1 8.91 × 10−1 1.14 × 10−1

B1 7.78 4.01 × 10−2

C1 8.91 × 10−1 9.75

D1 7.60 9.94

determines whether cell death increases or decreases as q1 increases. For tumours C1
and D1, Fig. 7a shows that the reduction in T + TS following RT is greater and the
increase in TR is smaller for larger values of q1. This confirms that a larger reduction in
tumour burden can be achieved for large values of q1 despite a reduction in RT-induced
cell death: in such cases, increased cell death due to hypoxia drives the reduction in
tumour volume.

Overall, we have shown that both low values of q3 and high values of q1 characterise
the bestNL responders. Since Fig. 7a, b suggest that the value ofq1 has a less significant
influence on tumour reduction than q3, we conclude that growth limitation between
RT fractions, rather than high rates of cell death due to RT or oxygen insufficiency,
has the greatest influence on the efficacy of RT for NL tumours.
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Fig. 8 The scatter plots show the values of �viable and �total , following a conventional fractionation
schedule, for the (q1, q3) pairs used to generate the set of virtual SL tumours. Smaller values of �viable
are obtained for low values of q1 and/or q3, while smaller values of �total are obtained for low values of
q3 (Colour figure online)

Table 3 Parameter sets A2, B2,
C2 and D2 corresponding to the
representative SL tumours

Tumour q1 q3

A2 1.51 × 10−1 2.10 × 10−1

B2 2.14 1.43 × 10−1

C2 3.21 × 10−2 9.53

D2 2.14 7.61

Figure 8 shows the values of �viable and �total across the (q1, q3) pairs which
define the SL virtual population. The response of SL tumours is sensitive to the values
of both q1 and q3: greater reductions in viable cell volume are obtained for smaller
values of q1 and/or q3, while greater reductions in total cell volume are obtained for
smaller values of q3. To understand these results, we study the response to RT of
tumours corresponding to four representative (q1, q3) sets A2, B2, C2 and D2 (see
Fig. 8 and Table 3).

Figures 9a, b reveal that A2 and C2 accumulate a larger number of dead cells than
tumours B2 and D2. This difference in tumour composition is amplified during treat-
ment and the parameter which influences this distinction most is q1. Figure9a shows
that for low values of q1 (tumours A2 and C2), the intratumoural oxygen concentra-
tion, c, is at least 10-fold higher than for high values of q1 (tumours B2 and D2). In
particular, c � cmin throughout treatment when q1 is small, which means that there
is no cell death due to nutrient insufficiency and cell death is solely attributable to RT.
Therefore, the decrease in viable cell volume (and corresponding increase in dead cell
volume) in tumours A2 and C2 following each RT fraction is driven by cell kill due
to RT, which is enhanced by low values of q1.

For tumours B2 and D2, Fig. 9a also shows that, even though the oxygen concen-
tration transiently drops below cmin when each RT fraction is applied, there is a net
increase in c throughout treatment and, in particular, the weekly average oxygen con-
centration remains above cmin (result not shown). Therefore, we expect RT cell kill to
increase during the fractionation schedule and cell death due to hypoxia to decrease.
Since RT cell kill remains limited by low oxygen levels for both tumours, neither of the
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Fig. 9 (a) For a conventional fractionation schedule,wenumerically solveEqs. (10)–(13) for t ∈ (0, 8×104]
subject to the initial conditions (15). In A2–D2, we fix V0 = 0.005 and (q1, q3) as indicated by the points
A2, B2,C2 and D2 in Fig. 8, which correspond to SL tumours. (b) Bar graph showing themean composition
of tumours A2–D2 in the last week of a conventional fractionation schedule, where %T , %TS , %TR and
%V0 are defined in Eq. (17). We observe three qualitative behaviours: (i) low q1 (A2, C2) is associated
with high oxygen levels, high rates of RT cell kill and a large accumulation of dead cell material; (ii) high
q1 and low q3 (B2) implies a smaller reduction in viable volume due to smaller RT cell kill and a greater
reduction in total volume due to limited inter-fraction tumour growth and smaller dead cell accumulation;
(iii) high q1 and q3 (D2) leads to modest reductions in viable and total volumes due to low rates of RT cell
kill and high rates of cell proliferation. Overall, the values of q1 and q3 influence the tumour composition
and the total tumour volume, respectively (Colour figure online)

two proposed cell death mechanisms is responsible for the increased RT efficacy for
tumour B2 compared to tumour D2. However, Fig. 9a reveals that the relative increase
in T + TS between fractions is smaller for tumour B2, which is characterised by low
q3. We, therefore, conclude that the increased RT efficacy is driven by reduced tumour
regrowth between fractions (similarly to NL tumours with low q3).

Figure 9b further shows how low values of q3 enable greater reductions in total
tumour volume, �. Since, for tumours B2 and D2, the values of %TR are comparable
while the value of %T is smaller for tumour B2, the larger reduction in � observed
for tumour B2 is due to increased net cell death (as described above). In contrast,
for tumours A2 and C2, the values of %T are comparable while the value of %TR is
smaller for tumour A2. The larger reduction in� observed for tumour A2 is, therefore,
due to a smaller accumulation of dead material, which occurs when lower viable cell
volumes (caused by slower tumour regrowth between fractions) and/or lower oxygen
levels reduce RT-induced cell death.

Overall, we have shown that two mechanisms can contribute to the increased effi-
cacy of RT for certain tumours in a SL regime. These mechanisms are cell death due
to RT and limited tumour regrowth between RT doses. Their relative contributions
depend on the values of q1 and q3. More specifically, when q1 is small, RT cell kill
is the dominant mechanism contributing to increased net cell death and, when q3
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Fig. 10 For the virtual NL population, we show how the distributions of �viable and �total change as the
dose rate, R ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, and the number of fractions per week, N f rac ∈ {1, 3, 5}, vary. The
mean value of �viable decreases, while the mean values of �total and �total −�viable increase as R and
N f rac increase (Colour figure online)

is also small, limited regrowth between fractions ensures a larger reduction in total
tumour volume. When q1 is large and q3 is small, limited regrowth between fractions
determines the response to RT by ensuring larger reductions in viable and total cell
volumes.
The effect of the dosing schedule on typical tumour response.We now consider how,
for a fixed total dose, the dose rate, R, and the number of fractions per week, N f rac,
affect tumour response to RT. For the virtual cohorts of NL and SL tumours, Figs. 10
and 11, respectively, show the distributions of �viable and �total for fractionation
schedules with R ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and N f rac ∈ {1, 3, 5}. For NL tumours,
the mean reduction in viable volume and the difference between the viable and total
volumes increase with R and N f rac. However, the maximum reduction in viable and
total volumes typically decreaseswith R (for fixed N f rac), and themean andmaximum
increases in total volumes also increase with R and N f rac. Therefore, a higher dosing
frequency and/or dose may not lead to greater RT efficacy for tumours in the NL
regime. By contrast, for SL tumours, on average, the reduction in the viable and total
volumes and the difference between the viable and total volumes increase with R
and N f rac. The response of SL tumours is, thus, consistent with the current, standard
approach to RT protocol design, which aims to maximise RT cell kill by applying the
highest tolerable total dose, in sufficiently frequent fractions, to the tumour. This result
is also supported by other modelling approaches, e.g., Lewin et al. (2018) developed a
spatially resolvedmodel of avascular tumour growth andRT cell deathwhich predicted
that there is a minimum RT dose, for a fixed dosing frequency, and a minimum dosing
frequency, for a fixed RT dose, below which tumours grow during treatment.

4.2.2 Tumours in the Bistable Regime

Typical response to a conventional fractionation schedule. Figure12a shows the
average response of a tumour in a BS regime to a conventional fractionation schedule.
RThas a detrimental effect as tumour regrowth between fractions and over theweekend
outweighs RT-induced cell death. The dead cell volume also increases throughout
treatment, implying an increase in total volume. Figure12b further shows that, for the
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Fig. 11 For the virtual SL population, we show how the distributions of �viable and �total change as the
dose rate, R ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, and the number of fractions per week, N f rac ∈ {1, 3, 5}, vary. The
mean values of �viable and �total decrease, while the mean value of �total −�viable increases as R and
N f rac increase (Colour figure online)

Fig. 12 (a) For a conventional fractionation schedule, we numerically solve Eqs. (10)–(13) for t ∈ (0, 8×
104] subject to the initial conditions (15). We set (q1, q3, V0) = (0.787, 8.38, 0.00275). This tumour
represents the typical behaviour in a BS regime. (b) Violin plots representing the distributions of �viable
and �total . While the effect of RT is deleterious for most tumours, with several outliers experiencing
larger than average increases in viable and total volumes, there are tumours that exhibit larger than average
decreases in viable volume (Colour figure online)

BS virtual cohort, �viable > 0 for at least 80% of tumours and �total > 0 for all
tumours. This reveals that most tumours in the BS virtual cohort respond badly to RT.

The results in Fig. 12b also indicate that a few virtual tumours are more or less
sensitive to RT than the average tumour in the BS virtual population: while their total
volume increases during RT, their viable volume undergoes a 20 − 80% decrease or
40− 80% increase, respectively, by the end of treatment. We investigate the response
to RT of these outliers in more detail in the following section.
The influence of q1, q3 and V0 on treatment outcome following a conventional
fractionation schedule.As for tumours in monostable regimes, we study the influence
of q1 and q3 on tumour response to RT, but we also study the role played by the vascular
volume, V0. More specifically, we introduce a function Vd , which quantifies how close
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Fig. 13 Schematic bifurcation diagram showing how, for fixed values of q1 and q3, the steady state value
of the tumour cell volume, T ∗, changes with V0. The shaded purple region represents the bistable region,
where VN and VS are the threshold values of V0 below and above which only NL and SL steady states exist,
respectively. For tumours with VN < V ∗

0 < VS , we define Vd by (18) to quantify the relative proximity of
T ∗(V ∗

0 ) to the monostable NL and SL regions (Colour figure online)

a tumour in the BS regime lies to theNL and SL regimes (see the schematic in Fig. 13):

Vd(V0) = V0 − VN

VS − VN
, (18)

where VN and VS are the threshold values of V0 below and above which only NL and
SL steady states exist, respectively. Further,

{

Vd → 0 as V0 → VN ,

Vd → 1 as V0 → VS .
(19)

In particular, Vd � 0 for tumours which are close to the NL regime, whereas Vd � 1
for tumours which are close to the SL regime.

The scatter plots in Fig. 14 show the values of�viable and�total across the (q1, q3)
and (q1, Vd) pairs corresponding to the BS virtual population. We note that the values
of q3 and Vd are correlated: for fixed q1, the lowest value of Vd corresponds to the
highest value of q3 and vice versa. It is, therefore, sufficient to describe the response of
tumours in a BS regime with respect to the values of q1 and Vd . The largest reductions
in viable volume are obtained for lower values of q1 and Vd � 1, whereas the largest
increases in viable volume are obtained for higher values of q1 and intermediate values
of Vd . Those tumours with the smallest and largest values of �viable also undergo the
largest increases in total volume: for intermediate to high values of Vd ,�total decreases
as Vd and q1 increase.

We now select four representative (q1, q3, Vd) sets A3, B3, C3 and D3 (see Fig. 14
andTable 4) and study the corresponding tumours’ response toRT. Figures15a, b show
that tumours A3 and B3 decrease in viable volume, with A3 experiencing a larger than
average reduction, while C3 and D3 increase in viable volume, with C3 experiencing
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Fig. 14 The scatter plots show the values of �viable and �total , following a conventional fractionation
schedule, for the (q1, q3) and (q1, Vd ) pairs used to generate the set of virtual tumours in a BS regime. The
smallest values of �viable are associated with lower values of q1 and q3 and Vd � 1, while the largest
values of �viable are associated with higher values of q1, lower values of q3 and intermediate values of
Vd . �total is largest for the tumours with the smallest and largest values of �viable (Colour figure online)

Table 4 Parameter sets A3, B3,
C3 and D3 corresponding to the
representative tumours in the BS
cohort

Tumour q1 q3 Vd

A3 4.55 × 10−2 7.94 0.993

B3 1.06 4.92 0.991

C3 3.92 × 10−2 9.96 0.791

D3 1.36 9.93 0.00376

a larger than average increase. While tumours A3 and C3 have low q1, Vd ≈ 1 for A3
and Vd ≈ 0.8 for C3. Similarly, while tumours B3 and D3 have high q1, Vd ≈ 1 for
B3 and Vd ≈ 0 for D3. Given (19), this suggests that the behaviour of tumours in a BS
regime that lie sufficiently close to the SL or NL regions will be, respectively, similar
to that of SL or NL tumours with values of q1 and q3 of the same order of magnitude.

More specifically, tumours A3 and B3 respond to RT similarly to SL tumours C2
and D2, respectively (recall Fig. 9a, b), while tumour D3 responds similarly to NL
tumour D1 (recall Fig. 7a, b). For tumour A3, this response involves an initial large
increase in viable and total volume as the tumour evolves towards its SL steady state,
followed by a substantial increase in RT cell kill, the average oxygen concentration
and the dead cell volume. Despite the reduction in viable volume, the accumulation
of dead material implies a significant increase in total volume. The same qualitative
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Fig. 15 (a) For a conventional fractionation schedule, we numerically solve Eqs. (10)–(13) for t ∈ (0, 8×
104] subject to the initial conditions (15). In A3-D3, we fix V0 = 0.00275 and (q1, q3) as indicated by the
points A3, B3, C3 and D3 in Fig. 14. (b) Bar graph showing the mean composition of tumours A3-D3 in
the last week of a conventional fractionation schedule, where %T , %TS , %TR and %V0 are defined in Eq.
(17). A3 and B3 decrease in viable volume and increase in total volume, while C3 and D3 increase in both
viable and total volumes. Tumour A3, which has q1 and Vd ≈ 1, experiences larger than average decreases
and increases in viable and total volumes, respectively. By contrast, tumour C3, which has an intermediate
value of Vd , experiences larger than average increases in viable and total volumes (Colour figure online)

behaviour is observed for tumour B3, with less RT-induced cell death and deadmaterial
accumulation as the oxygen concentration remains significantly lower than for A3. As
a result, the increase in total volume is also smaller. For tumour D3, cell death due to
RT and hypoxia is outweighed by the tumour regrowth between fractions, leading to
small increases in viable and total volumes.

Further, while tumour C3 lies closest to the SL region (Vd ≈ 0.8), it does not
transition from the basin of attraction of its NL steady state to its SL steady state,
unlike tumours A3 and B3. In particular, the increase in the oxygen concentration for
C3 is not sufficiently rapid for the tumour to enter, during treatment, a SL regime
where, on average, c > cmin . Therefore, the increase in viable volume is constant,
but gradual, with a smaller accumulation of dead material. This explains why C3
undergoes a larger than average increase in viable volume, with a moderate increase
in total volume.

In summary, we have identified two extremal regions of parameter space in which
tumours in a BS regime undergo larger decreases or increases in viable volume (and
larger increases in total volume) than the typical tumour in this regime. Tumours
which are sufficiently near to the boundary of the BS and SL regimes and consume
little oxygen for maintenance experience larger than average decreases in viable cell
volume as RT cell death is enhanced by higher oxygen levels. By contrast, tumours
which are close to the boundary between the BS and SL regimes, but not sufficiently
close, undergo larger than average increases in viable volume, regardless of the value
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Fig. 16 For the virtual BS population, we show how the distributions of �viable and �total change as
the dose rate, R ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, and the number of fractions per week, N f rac ∈ {1, 3, 5}, vary.
The mean and maximum values of �viable increase, while its minimum value decreases, as R and N f rac
increase. The mean, minimum and maximum values of �total increase as R and N f rac increase. There is
an exception for N f rac = 5, where the maximum value of �viable and minimum value of �total decrease
with R ≥ 3 (Colour figure online)

of q1. This occurs as they attempt and fail to transition from their NL steady state to
their SL steady state and, thus, RT cell death remains limited by low oxygen levels
and outweighed by tumour regrowth between fractions.
The effect of the dosing schedule on typical tumour response. For the virtual pop-
ulation of tumours in a BS regime, we show in Fig. 16 how the dose rate, R, and the
number of fractions per week, N f rac, affect tumour response to RT when the total
dose is fixed. On average, a higher number of fractions per week (for fixed R) and a
higher dose rate (for fixed N f rac) lead to greater increases in the viable and total cell
populations. While these results contrast with those for tumours in SL regimes, we see
that the maximum reduction in viable volume increases with R and N f rac, similarly
to SL tumours. Overall, these results indicate that, in most cases, increasing the RT
dose and frequency may be deleterious (similarly to NL tumours).

4.3 Post-treatment Tumour Growth Dynamics

In the previous section, we discussed the short-term response to RT of tumours in
different growth regimes, distinguishing between tumours in monostable (NL and SL)
and bistable regimes. We now investigate the long-term response to RT by studying
post-treatment tumour growth dynamics and, in particular, the tumour steady states
attained following treatment.

4.3.1 Steady State Analysis

We first perform a steady state analysis of the system (10)–(13) to understand the
potential long-term effects of RT. Upon completion of a radiation protocol, we have
R ≡ 0 thereafter. We, therefore, seek steady state solutions by setting R = 0 and
d
dt = 0 in Eqs. (10)–(13) and solving the following system

q2cT (1 − �) − δ1(cmin − c)H(cmin − c)T + μTS = 0, (20)

θ2q2cTS(1 − �) − (δ1,S(cmin − c)H(cmin − c) + μ + ξ)TS = 0, (21)
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ξTS − ηRTR = 0, (22)

g(1 − c)V0 − q1(T + θ1TS)c − q3 (T + θ2TS) c(1 − �) = 0. (23)

Denoting the steady state solutions by T ∗, T ∗
S , T

∗
R and c∗, respectively, Eq. (22)

implies that T ∗
S = ηR

ξ
T ∗
R . Therefore, we have either T

∗
S = T ∗

R = 0 or T ∗
S , T ∗

R > 0.
Suppose that T ∗

S , T ∗
R > 0. We can show, by contradiction, that there are no physically

realistic steady state solutions satisfying this condition by, first, proving that there are
no SL steady states with T ∗

S , T ∗
R > 0 and, then, proving that there are no NL steady

states with T ∗
S , T ∗

R > 0.
If c∗ ≥ cmin , then Eq. (20) gives

T ∗ = −μT ∗
S

q2c∗(1 − �∗)
< 0, (24)

since T ∗
S > 0 and �∗ < 1 by assumption and μ > 0 and q2 > 0 by definition. Since

T ∗ > 0 is required for a physically realistic solution, there are no SL steady states
with T ∗

S , T ∗
R > 0.

If 0 < c∗ < cmin , then Eq. (20) implies that

q2
δ1

(1 − �∗) − (cmin − c∗)
c∗ = − μT ∗

S

δ1c∗T ∗ < 0. (25)

Since q2 = δ1, we have

(1 − �∗) − (cmin − c∗)
c∗ = − μT ∗

S

δ1c∗T ∗ < 0. (26)

Then, Eq. (21) implies that

θ2q2
δ1,S

(1 − �∗) − (cmin − c∗)
c∗ = (μ + ξ)

δ1,Sc∗ > 0. (27)

Since θ2q2 = δ1,S , we have

(1 − �∗) − (cmin − c∗)
c∗ = (μ + ξ)

δ1,Sc∗ > 0. (28)

Comparing Eqs. (26) and (28), we obtain a contradiction. This implies that there
are no NL steady states with T ∗

S , T ∗
R > 0. We, therefore, conclude that NL and SL

steady state solutions of the system (10)–(13) must have T ∗
S = T ∗

R = 0. It is then
straightforward to show that the solutions of the system (20)–(23) with T ∗

S = T ∗
R = 0

are equal to the steady state solutions in the absence of treatment (Colson et al. 2022)
(see Appendix A).

We have shown that RT preserves the steady states and growth regimes observed in
the absence of treatment. We conclude that, given T (0) = T ∗, tumours in monostable
regimes at the start of treatment will return to their original tumour volume, �0 =
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Fig. 17 For a conventional fractionation schedule,we numerically solveEqs. (10)–(13) for t ∈ (0, 2.5×105]
subject to the initial conditions (15). In A3-D3, we fix V0 = 0.00275 and (q1, q3) as indicated by the points
A3, B3, C3 and D3 in Fig. 14, which correspond to tumours in a BS regime. Tumours C3 and D3 evolve
to their NL steady states following treatment, whereas tumours A3 and B3 switch to their SL steady states
(Colour figure online)

T ∗ + V0, and composition (T ∗
S = T ∗

R = 0) after RT. In contrast, tumours in a BS
regime either return to the original, NL steady state, or evolve to the SL steady state.

4.3.2 Elucidating Conditions for RT to Drive Steady State Switching of Tumours in
Bistable Regimes

The steady state analysis showed that tumours in a BS regimemay attain either a NL or
a SL steady state following treatment. In particular, such tumours may undergo large
increases in tumour volume in response toRT as they switch from aNL steady state to a
larger SL steady state. Recall the tumours A3-D3 that we defined in Sect. 4.2.2: Fig. 17
shows their response to RT both during, and following, a conventional fractionation
schedule.

Tumours C3 and D3 underwent increases in viable volume during treatment and
then returned to their NL steady states following treatment: the effect of RT was
not strong enough to cause a switch in steady state. By contrast, tumours A3 and B3
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Fig. 18 We numerically solve Eqs. (10)–(13) for t ∈ (0, 2.5 × 105] subject to the initial conditions (15).
We fix dose rates (a) R = 0.2 and (b), (c) R = 0.3 and simulate (a) daily fractions, Monday to Friday,
for 8 weeks, (b) daily fractions, Monday to Friday, for 5.2 weeks and (c) fractions on Monday, Wednesday
and Friday for 8.67 weeks. We fix V0 = 0.00275 and (q1, q3) as indicated by parameter set C3 in Table 4.
Comparing (a), (b) and (c), we observe that lower RT doses and less frequent dosing both prevent the
tumour C3 from evolving to the SL steady state following treatment (Colour figure online)

experienced reductions in viable volume during treatment and then evolved to their SL
steady states following treatment. The oxygen concentration in both of these tumours
increased beyond the hypoxic threshold, cmin , during (A3) or following (B3) RT and
remained above this threshold level thereafter. This enabled the viable cell population
to grow unchecked until the SL equilibrium was reached.

In contrast to tumoursC3 and D3,we recall that tumours A3 and B3 are characterised
by Vd ≈ 1, where Vd is defined in (18). They are also, respectively, characterised
by high and low values of q1, the oxygen consumption rate for maintenance. This
suggests that tumours which are near to the boundary between the BS and SL regions
in parameter space are most susceptible to undergoing a switch in steady state volume
in response to RT, irrespective of the value of q1. This observation holds across a range
of RT protocols (see Appendix C).

We now consider how the dosing schedule affects the long-term dynamics of
tumours in a BS regime. In Fig. 18a, b, we show the response of tumour C3 to two
fractionation protocols comprising either 2 or 3 Gy fractions applied 5 times per week
for 8 or 5.2 weeks, respectively. A switch in steady state is observed for 3 Gy frac-
tions. This suggests that the likelihood of a tumour switching steady state increases
with dose, a consistent trend in our numerical study (see Appendix C). Figure18c
additionally shows the response of tumour C3 to 3 Gy fractions applied 3 times per
week for 8.67 weeks. Comparing this figure to Fig. 18b highlights how a lower dosing
frequency can prevent the transition from a NL to a SL steady state for tumours in BS
regimes (see Appendix C).

These results suggest that a lower RT dose and dosing frequency may prevent
uncontrolled increases in tumour volume following RT for tumours in BS regimes. As
with our observations for short-term treatment responses, this challenges the assump-
tion that a higher dose, applied with a higher frequency, will lead to a greater reduction
in tumour volume.
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5 Discussion

Cancer is a heterogeneous disease. In particular, tumours can exhibit widely vary-
ing responses to treatments. As a result, the success of existing therapies, which
are typically applied following a “one-size-fits-all approach”, can be highly variable.
Patient-specific treatment design could aid in overcoming these barriers to treatment
efficacy, but this requires increased understanding of the factors which affect tumour
sensitivity to treatment. In this paper, we investigated how two distinct mechanisms
of growth arrest can influence tumour responses to radiotherapy (RT).

We extended an existingmodel of solid tumour growthwhich distinguishes between
nutrient limited (NL) and space limited (SL) growth control (Colson et al. 2022). In
the absence of treatment, this model exhibits three growth regimes: (i) NL, where a
tumour attains a NL steady state at which cell proliferation and death balance, (ii) SL,
where a tumour attains a SL steady state when cell proliferation ceases due to space
constraints, with no cell death, and (iii) bistable (BS), where stable NL and SL steady
states coexist. In this paper, we investigated how tumours in each regime respond
to RT. We found that the short- and long-term responses of tumours in monostable
regimes (i.e., NL and SL) can be distinguished from those of tumours in BS regimes.

Tumours in the SL regime typically respond well to RT in the short-term, as both
their viable and total volumes decrease during fractionation, while tumours in the
NL regime typically respond less well, since their total volume increases despite a
reduction in viable volume.However, certainNL and SL tumours respond significantly
better than the average tumour in their respective regimes. By identifying parameter
regions which give rise to these outliers, we determined different mechanisms that
underpin successful RT. For NL tumours, RT efficacy is maximised when regrowth
between fractions is minimised, while, for SL tumours, increased RT efficacy may
be due to limited regrowth (as for NL tumours) and/or RT cell kill. The additional
SL-specific mechanism is a consequence of low rates of RT cell kill for NL tumours
due to low oxygenation. This explains how the different growth arrest mechanisms
that characterise the NL and SL regimes can affect short-term tumour response to
RT. In the long-term, tumours in the NL and SL regimes always return to their pre-
treatment steady state volume, irrespective of the effects of RT during treatment. Our
model, therefore, predicts that any change in the tumour burden during radiation is
transient for these tumours. This result follows from our simplifying assumption that
the vascular volume remains constant during tumour growth andRT.We explain below
how we could extend the model to relax this assumption.

We also found that most tumours in the BS regime respond badly to RT in the short-
term, as their viable and total cell volumes increase during RT. As for monostable
regimes, outliers which lie, in parameter space, near the boundary between BS and
SL regions, exhibit more extreme responses to RT. In these cases, the intratumoural
oxygen concentration is close to, and smaller than, cmin , the threshold concentration
below which cells die due to nutrient insufficiency. If RT induces a net increase in
oxygen levels such that c > cmin , then cell death due to nutrient insufficiency ceases
and RT drives the tumour to its SL steady state. This leads to a significant increase
in RT-induced cell death and dead cell accumulation, resulting in large decreases
and increases in viable and total volumes, respectively. By contrast, if RT induces a
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net increase in oxygen levels such that c ≤ cmin , then RT causes large increases in
viable and total volumes as the tumour grows towards, and fails to reach, its SL steady
state. Here, RT cell kill is outweighed by tumour growth between fractions throughout
treatment. Irrespective of whether these outliers experience increases or decreases in
viable volume, they evolve to their larger SL steady state following RT. Therefore, the
model predicts that, in the BS regime, RT usually has a detrimental effect on tumour
growth.

A final key result relates to RT dosing schedules. We found that, in SL regimes,
applying larger doses at higher frequency typically increases RT efficacy, whereas, in
NL and BS regimes, administering lower doses at lower frequency can increase RT
efficacy for outliers and lessen, or prevent, large increases in tumour burden across the
virtual cohorts. The latter is a counter-intuitive result and challenges the assumption
that giving the maximum tolerable dose is the best course of treatment. In practice, we
are unlikely to know in which growth regime a patient’s tumour lies when treatment
starts. It would be interesting, in future work, to investigate whether we can determine
a tumour’s growth regime by monitoring its response to a given treatment protocol.
If we can establish that a tumour is in a SL regime, then this would allow us to adapt
the treatment protocol to maximise the reduction in tumour burden, e.g., by increasing
the RT dose or dosing frequency. Alternatively, if a tumour is in a NL or BS regime,
then it might be preferable to halt treatment early in order to prevent large increases
in tumour burden.

While someof our findings support experimentally and clinically observed phenom-
ena, others challenge some common assumptions. The significance of these results is
limited by the fact that they remain to be tested against relevant clinical and/or exper-
imental data. In future work, we will aim to calibrate and validate our model using a
range of experimental data, with the caveat that it may be difficult to estimate all of
the parameters from the data. For instance, in vitro assays involving 2D monolayers,
where all tumour cells have abundant nutrient and proliferate until they reach conflu-
ence (Kapałczyńska et al. 2018), could be used to test our predictions for SL tumours.
Further, in vitro assays involving 3D spheroids, which reach an equilibrium at which
cell proliferation and cell death rates balance (Costa et al. 2016), could be used to
test our predictions for NL tumours. Finally, if we can determine a tumour’s growth
regime from its initial response to RT, then, as mentioned above, we could also use in
vivo tumour data from mice treated with RT to test model predictions across regimes.

In addition to testing our model against experimental data, in future work we aim
also to relax some of its simplifying assumptions. First, we will view the vascular
volume as a dynamic variable, which evolves in response to treatment and angiogenic
signalling. In doing so, we will obtain a more realistic description, not only of the
co-evolution of the tumour cells and vasculature, but also of responses to treatments
which affect tumour and endothelial cells. In particular, if the vascular volume evolves
over time, then treatment may alter the steady state tumour volumes. Second, since we
found that the response of certain tumours (e.g., SL tumours) improves with higher
doses applied at higher frequency, it would be interesting to incorporate a trade-off
between anti-tumour effects anddetrimental side-effects. For example,we couldmodel
the damage experienced by surrounding healthy tissue following each RT dose and
impose a maximum value of cumulative damage over the RT protocol, above which
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the RT toxicity is considered intolerable (e.g., see Hanin and Zaider 2013; Huang
et al. 2015; Kuznetsov and Kolobov 2023; Stocks et al. 2017). This would enable us to
assess which dosing regimens are clinically feasible and to evaluate tumour responses
to RT protocols designed using the maximum tolerated dose.
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Appendix A Steady State Solutions in the Absence of Treatment

A steady state analysis of the system (10)-(13) with R ≡ 0 was performed in Colson
et al. (2022). There exist two SL steady states, given by

SS1 : (T ∗
1 , c∗

1) = (0, 1), (A1)

SS2 : (T ∗
2 , c∗

2) =
(

1 − V0,
V0

V0 + (q1/g)(1 − V0)

)

. (A2)

SS1 is unstable for all combinations of parameters, while SS2 is stable in the parameter
regions in which it is an admissible solution.

There are also two NL steady states, given by

SS3 : (T ∗
3 , c∗

3) = (T (c−), c−) (A3)

SS4 : (T ∗
4 , c∗

4) = (T (c+), c+) , if V0 �= 2(q3 − q1)

g + q3 − q1
, (A4)

where

T (c) = (1 − V0) −
(cmin

c
− 1

)

, (A5)
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and

⎧

⎨

⎩

c± = cmin(X∓
√

X2+4q3Y )

2Y , if V0 �= 2(q3−q1)
g+q3−q1

, (A6a)

c− = cmin(q3(g+q3−q1))
2 g
cmin

(q1−q3)−g(q1−3q3)+(q1−q3)2
, if V0 = 2(q3−q1)

g+q3−q1
, (A6b)

with

⎧

⎨

⎩

X = q1 − 3q3 +
(

g
cmin

+ q3
)

V0,

Y = 2(q1 − q3) + (g + q3 − q1)V0.
(A7)

In the regions in which SS3 and SS4 exist as admissible steady state solutions, SS3 is
stable, while SS4 is unstable.

Appendix B Sampling the (q1,q3) Pairs that Define the NL, SL and BS
Virtual Tumour Populations

From Fig. 2, it is straightforward to see that, for fixed V0, there exists a threshold value
of q1, say q̄1, such that the parameter set (q1, q3, V0) corresponds to a tumour which
lies in the NL regime for all q1 ≥ q̄1 and q3 > 0. We also see that, for fixed V0
and q1 < q̄1, there exists a threshold value of q3, say q̄3, such that the parameter set
(q1, q3, V0) corresponds to a tumour which lies in the SL regime for all q3 < q̄3 and
in the BS regime for all q3 ≥ q̄3.

Using the stable NL and SL steady state solutions in the absence of treatment
defined in Eqs. (A2) and (A3), we derive the following analytical expressions for q̄1
and q̄3

q̄1 = g

(

1

cmin
− 1

)

V0
1 − V0

, (B8)

q̄3 =
−q1 +

(

3g
cmin

− 2 + q1
)

V0 − g
cmin

V 2
0

(1 − V0)2
+ 2g1/2

(1 − V0)2
×

[

−
(

2

cmin
− 1

)

q1V0 +
(

g

(

2

c2min

− 3

cmin
+ 1

)

+ q1

(

3

cmin
− 1

)
)

V 2
0

−
(

g

(

1

c2min

− 1

cmin

)

+ q1
cmin

)

V 3
0

]1/2

. (B9)

We note that, for fixed cmin = 0.01 and g = 5, q̄1 depends only on V0, while q̄3
depends on V0 and q1.

Using (B8) and (B9), we define the uniform distributionsU (a, b) used to sample the
pairs of q1 and q3 values that correspond to the NL, SL and BS cohorts, respectively, in
Table 5. The code used to generate the (q1, q3) pairs for each cohort and the parameter
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Table 5 Uniform distributions U (a, b) used to sample the pairs of q1 and q3 values that correspond to the
NL, SL and BS cohorts, respectively. q̄1 and q̄3 are defined by Eqs. (B8) and (B9), respectively

Cohort NL SL BS

Distribution used to sample q1 U (q̄1, 10) U (0.01, q̄1) U (0.01, q̄1)

Distribution used to sample q3 U (0.01, 10) U (0.01, q̄3) U (q̄3, 10)

sets which define the three cohorts considered in this paper are available at: https://
github.com/chloeacolson/InvestigatingTumourResponsesRadiotherapy.

Appendix C Numerical Results: Steady State Switching of Tumours in
the Bistable Regime

For dosing regimens with R ∈ {0.1, 0.3, 0.5} and N f rac ∈ {1, 3, 5}, the scatter plots in
Fig. 19 highlight (in red) the (q1, Vd) pairs which correspond to tumours in a bistable
regime that switch steady state. We observe that tumours which switch steady state
typically have larger values of Vd . We note also that the number of tumours which
switch steady state increases with R and N f rac. These results are consistent with those
presented in Sect. 4.3.2 for tumour C3.

Fig. 19 For the virtual BS tumour population and fractionation schedules with R ∈ {0.1, 0.3, 0.5} and
N f rac ∈ {1, 3, 5}, the scatter plots show the (q1, Vd ) pairs that correspond to tumours that switch (red) and
do not switch (black) steady state. The former are typically characterised by larger values of Vd (Colour
figure online)
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