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Abstract
Many reaction–diffusionmodels produce traveling wave
solutions that can be interpreted as waves of invasion
in biological scenarios such as wound healing or tumor
growth. These partial differential equation models have
since been adapted to describe the interactions between
cells and extracellular matrix (ECM), using a variety
of different underlying assumptions. In this work, we
derive a system of reaction–diffusion equations, with
cross-species density-dependent diffusion, by coarse-
graining an agent-based, volume-filling model of cell
invasion into ECM. We study the resulting traveling
wave solutions both numerically and analytically across
various parameter regimes. Subsequently, we perform a
systematic comparison between the behaviors observed
in this model and those predicted by simpler models
in the literature that do not take into account volume-
filling effects in the same way. Our study justifies the
use of some of these simpler, more analytically tractable
models in reproducing the qualitative properties of the
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solutions in some parameter regimes, but it also reveals
some interesting properties arising from the introduc-
tion of cell and ECM volume-filling effects, where stan-
dard model simplifications might not be appropriate.

KEYWORDS
agent-based model, cell invasion, continuum model, partial dif-
ferential equation, reaction–diffusion, traveling waves, volume-
filling

1 INTRODUCTION

Cell invasion is central to a variety of biological phenomena, playing a key role in morphogen-
esis, tumor growth, and tissue engineering. Many different mathematical approaches have been
used to model cell invasion processes, from agent-basedmodels describing the processes underly-
ing invasion at a single-cell level, to partial differential equation (PDE) models that provide a cell
population-level description of invasion in terms of cell density dynamics.1 While some of these
PDEmodels have been formulated through adaptations of classical models for invasion processes
in other biological contexts, many are derived by coarse-graining a cell-level description to pro-
duce PDEs that offer the corresponding population-level description. However, there remain a
number of unanswered questions regarding the specific choice of model for a given application,
including how varying assumptions in the agent-based model give rise to different PDE models
and to what extent these differences impact the cell population-level description.2
In this work, the impact of various modeling assumptions at the single-cell level is compared

by investigating the qualitative and quantitative properties of the solutions of the resulting PDE
models. In particular, since in many real-life instances of cell invasion, the cells have to invade
through extracellular matrix (ECM)3–5 —that is, the network of proteins and othermolecules that
impact collective cell invasion by reducing space available for cells to migrate into—the focus is
on models of cell invasion into ECM.
The classic example of a model describing invasion of a single population is the Fisher–

Kolmogorov–Pietrovskii–Piskunov (FKPP) model, which was first proposed in the context of the
spread of an advantageous gene.6,7 This model has seen a broad spectrum of applications in the
natural sciences: most notably in cell biology8,9 and ecology,10,11 where traveling wave solutions
are representative of invasion phenomena.12,13 Amodel of cell invasion through ECM is presented
in El-Hachemet al.14 This consists of a systemof two coupled PDEs,with a nonlinear cross-species
density-dependent diffusion termand logistic growth,whereby proliferation of the cell population
is limited by the presence of cells and ECM.A similarmodel is considered in Colson et al.,15 where
proliferation depends only on the presence of cells. An obvious question to ask is how the predic-
tions of suchmodelsmay be affected by a consistent description of the role of volume-filling effects
(i.e., cells and ECM take up some given volume, preventing cell invasion) across both proliferative
and diffusive mechanisms of cell dynamics. In particular, the impact of crowding on cell motility
is generally modeled at a population-level by the introduction of a density-dependent diffusion
term, such as in Refs. [16–19]. However, these models provide a phenomenological description
of the impact of crowding, rather than considering how interactions at the individual cell-level
directly impact motility at the population-level.
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CROSSLEY et al. 1473

This study aims to extend and apply the work in Simpson et al.20,21 to develop an agent-based
model for cell invasion into ECM, taking into account volume-filling effects, where both cellmotil-
ity and proliferation are impacted by the presence of other cells or ECMcomponents.Wemake the
simplifying assumption that space is the only factor limiting cell invasion, whereas other models
in the literature22,23 assume various other factors, such as nutrient-limited growth.24 By coarse-
graining this model, a limiting PDE description is formally derived and explored both analytically
and numerically, making it possible to carry out a systematic comparison between the population-
level behaviors observed in this model and those predicted by simpler models. In particular, we
compare how the population-level behaviors predicted by this model relate to existing models
built on different constitutive assumptions, such as the FKPP model, or the simpler models pre-
sented in Refs. [14, 15]. Each of these simpler models can be recovered from the model presented
in this work by neglecting specific terms, such as those capturing volume-filling effects.

2 MATHEMATICALMODEL AND PRELIMINARY RESULTS

We begin by developing a simple one-dimensional, on-lattice, agent-based model of cell inva-
sion into ECM that incorporates both cell motility and proliferation, and degradation of ECM, in
the presence of volume-filling effects. We then coarse-grain this model to formally derive a cor-
responding PDE model that comprises a system of coupled PDEs for the densities of cells and
ECM.20,25

2.1 Agent-based model

In the simplified setting of this model, cells are represented as discrete agents that can proliferate
and move on a one-dimensional uniform lattice, which constitutes the spatial domain and can
also degrade the surrounding ECM, which is regarded as being composed of discrete constitutive
elements. The novel aspect of this model is the introduction of volume-filling effects, similar to
the model described in Morris et al.,26 which uses the methods described in Painter and Hillen,27
but extended to multiple populations.21
Let the number of cells and ECM elements on lattice site 𝑖 = 1, 2, … of width Δ at time 𝑡 ∈ ℝ+

of realization 𝑗 = 1, 2, … , 𝐽 of the model be denoted, respectively, by 𝑢
𝑗

𝑖
(𝑡) and𝑚

𝑗

𝑖
(𝑡). We assume

that ECM elements have constant density and are chosen to occupy a volume equal to that of a
cell, such that at most 𝑁 cells or ECM elements can occupy each lattice site.
The dynamics of the cells are governed by twomechanisms: proliferation, in which a cell places

a daughter cell into the same lattice site it occupies; and motility, whereby cells can move to one
of their two adjacent lattice sites. Moreover, ECM elements can be degraded by cells in the same
lattice site as them. To incorporate volume-filling effects into the model, we prescribe that each
lattice site has a maximum occupancy level 𝑁,28 and we assume that

(A1) if a cell attempts a move to a neighboring lattice site, then the probability that the move
is successful decreases linearly with the occupancy level of the target site, such that the
probability of a successful move to a target site with occupancy level 𝑁 is zero;

(A2) if a cell attempts to proliferate, then the probability of success decreases linearly with the
occupancy level of the site where the cell is located, such that the probability of a successful
proliferation event in a site with occupancy level 𝑁 is zero.
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1474 CROSSLEY et al.

Probability of cell movement
A cell attempts amovement in a time step 𝜏with probability 𝑝m ∈ [0, 1], and the attemptedmove-
ment from lattice site 𝑖 to either of the neighboring lattice sites 𝑖 ± 1 occurs with equal probability
1∕2. Using Assumption 2.1, we can define the probability of movement to the left, 𝑇m𝑗

𝑖−
(𝑡), or right,

𝑇m𝑗

𝑖+
(𝑡), during the time interval [𝑡, 𝑡 + 𝜏) of realization 𝑗, as

𝑇m𝑗

𝑖±
(𝑡) =

𝑝m

2

⎛⎜⎜⎝1 −
𝑢
𝑗

𝑖±1
(𝑡) + 𝑚

𝑗

𝑖±1
(𝑡)

𝑁

⎞⎟⎟⎠. (1)

Probability of cell proliferation
A cell in lattice site 𝑖 attempts to proliferate in time step 𝜏 with probability 𝑝p ∈ [0, 1]. If pro-
liferation occurs, then the cell places a daughter cell into the same lattice site as itself. Using
Assumption 2.1, we can define the probability of proliferation, 𝑇p𝑗

𝑖
(𝑡), during the time interval

[𝑡, 𝑡 + 𝜏) of realization 𝑗, as

𝑇
p𝑗

𝑖
(𝑡) = 𝑝p

(
1 −

𝑢
𝑗

𝑖
(𝑡) + 𝑚

𝑗

𝑖
(𝑡)

𝑁

)
. (2)

Note that, the initial distributions of cells and ECM elements must be such that at most 𝑁
cells or ECM elements can occupy each lattice site to ensure the probabilities 𝑇m𝑗

𝑖±
(𝑡), 𝑇

p𝑗

𝑖
(𝑡) ≥

0 are well-defined. Under the assumption that the initial distributions of cells and ECM
elements satisfy 0 ≤ 𝑢

𝑗

𝑖
(0) + 𝑚

𝑗

𝑖
(0) ≤ 𝑁 for all 𝑗 = 1, 2, … , 𝐽 and 𝑖 = 1, 2, …, the definitions for

the probabilities of cell movement and proliferation given by Equations (1) and (2) ensure
that

0 ≤ 𝑢
𝑗

𝑖
(𝑡) + 𝑚

𝑗

𝑖
(𝑡) ≤ 𝑁 for all 𝑗 = 1, 2, … , 𝐽 and 𝑖 = 1, 2, … for any 𝑡 ∈ ℝ+. (3)

Probability of ECM degradation
During the time interval [𝑡, 𝑡 + 𝜏) of realization 𝑗, an element of ECM in lattice site 𝑖 is degraded
by a cell on the same lattice site with probability 𝑝d ∈ [0, 1], such that the degradation per unit
element of ECM, 𝑇d𝑗

𝑖
(𝑡), is

𝑇d𝑗

𝑖
(𝑡) = 𝑝d𝑢

𝑗

𝑖
(𝑡).

2.2 Corresponding coarse-grained model

In order to derive a coarse-grained description of the agent-basedmodel, we introduce the average
occupancy of lattice site 𝑖 at time 𝑡 by cells and ECM elements over 𝐽 realizations of the model,
denoted, respectively, by

⟨𝑢𝑖(𝑡)⟩ =
1

𝐽

𝐽∑
𝑗=1

𝑢
𝑗

𝑖
(𝑡) and ⟨𝑚𝑖(𝑡)⟩ =

1

𝐽

𝐽∑
𝑗=1

𝑚
𝑗

𝑖
(𝑡).
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CROSSLEY et al. 1475

Coarse-grained model of cell dynamics
We proceed to derive a coarse-grainedmodel by considering how the average occupancy in lattice
site 𝑖 changes during the time interval [𝑡, 𝑡 + 𝜏):

⟨𝑢𝑖(𝑡 + 𝜏)⟩ =⟨𝑢𝑖(𝑡)⟩
+

𝑝m

2
⟨𝑢𝑖+1(𝑡)⟩(1 −

⟨𝑢𝑖(𝑡)⟩ + ⟨𝑚𝑖(𝑡)⟩
𝑁

)
+

𝑝m

2
⟨𝑢𝑖−1(𝑡)⟩(1 −

⟨𝑢𝑖(𝑡)⟩ + ⟨𝑚𝑖(𝑡)⟩
𝑁

)
−

𝑝m

2
⟨𝑢𝑖(𝑡)⟩(1 −

⟨𝑢𝑖+1(𝑡)⟩ + ⟨𝑚𝑖+1(𝑡)⟩
𝑁

)
−

𝑝m

2
⟨𝑢𝑖(𝑡)⟩(1 −

⟨𝑢𝑖−1(𝑡)⟩ + ⟨𝑚𝑖−1(𝑡)⟩
𝑁

)
+ 𝑝p⟨𝑢𝑖(𝑡)⟩(1 −

⟨𝑢𝑖(𝑡)⟩ + ⟨𝑚𝑖(𝑡)⟩
𝑁

)
. (4)

Note that, in writing down Equation (4) we have used probabilistic approximations of the mean-
field type which are frequently used for the coarse-graining of agent-based models and involve
assuming independence of lattice sites (see, e.g., Penington et al.29). Rearranging Equation (4)
and dividing both sides by 𝜏 yields

⟨𝑢𝑖(𝑡 + 𝜏)⟩ − ⟨𝑢𝑖(𝑡)⟩
𝜏

=
𝑝mΔ2

2𝜏

[⟨𝑢𝑖−1(𝑡)⟩ − 2⟨𝑢𝑖(𝑡)⟩ + ⟨𝑢𝑖+1(𝑡)⟩
Δ2

]
+

𝑝mΔ2

2𝜏𝑁

[⟨𝑢𝑖(𝑡)⟩(⟨𝑚𝑖−1(𝑡)⟩ − 2⟨𝑚𝑖(𝑡)⟩ + ⟨𝑚𝑖+1(𝑡)⟩)
Δ2

]
−

𝑝mΔ2

2𝜏𝑁

[⟨𝑚𝑖(𝑡)⟩(⟨𝑢𝑖−1(𝑡)⟩ − 2⟨𝑢𝑖(𝑡)⟩ + ⟨𝑢𝑖+1(𝑡)⟩)
Δ2

]
+

𝑝p

𝜏
⟨𝑢𝑖(𝑡)⟩(1 −

⟨𝑢𝑖(𝑡)⟩ + ⟨𝑚𝑖(𝑡)⟩
𝑁

)
. (5)

We now divide both sides of Equation (5) by length scale Δ, perform a Taylor expansion, and
take limits as Δ, 𝜏 → 0 to obtain a description of the cell density dynamics in terms of the vari-
ables 𝑢̃(𝑥̃, 𝑡) and 𝑚̃(𝑥̃, 𝑡), that are the continuum counterparts of ⟨𝑢𝑖(𝑡)⟩∕Δ and ⟨𝑚𝑖(𝑡)⟩∕(𝜇Δ) that
represent, respectively, the number density of cells and the density of ECM at position 𝑥̃ ∈ ℝ

and time 𝑡 ∈ (0,∞). The factor 𝜇 represents the number of cells equivalent to a unit mass of
ECM and is introduced as a conversion factor between the density of ECM, as defined by mass of
ECM per unit volume, and the number density of ECM elements, given by 𝜇𝑚̃(𝑥̃, 𝑡). Under the
assumptions

lim
Δ,𝜏→0

𝑝mΔ2

2𝜏
= 𝐷̃, lim

𝜏→0

𝑝p

𝜏
= 𝑟, lim

Δ→0

𝑁

Δ
= 𝐾̃, (6)
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1476 CROSSLEY et al.

we obtain the following PDE for the cell density 𝑢̃(𝑥̃, 𝑡):

𝜕𝑢̃

𝜕𝑡
= 𝐷̃

𝜕

𝜕𝑥̃

[(
1 −

𝑢̃ + 𝜇̃𝑚̃

𝐾̃

)
𝜕𝑢̃

𝜕𝑥̃
+ 𝑢̃

𝜕

𝜕𝑥̃

(
𝑢̃ + 𝜇̃𝑚̃

𝐾̃

)]
+ 𝑟𝑢̃

(
1 −

𝑢̃ + 𝜇̃𝑚̃

𝐾̃

)
, (7)

where 𝑥̃ ∈ ℝ and 𝑡 ∈ (0,∞). Note that the first term on the right-hand side of Equation (7)
describes the movement of cells down gradients in cell density, with movement prevented by the
presence of surrounding cells and ECM, as expected by the introduction of volume-filling effects.
The second term models the motion of the cells down the “total density gradient” of cells and
ECM, 𝑢̃ + 𝜇̃𝑚̃. The third term captures cell proliferation, which is also impacted by volume-filling
effects. From Equation (7), it is clear that the parameter 𝐷̃ ≥ 0, which is defined via Equation (6),
can be regarded as the diffusion coefficient of the cells in the absence of ECM, while the parame-
ters 𝑟 ≥ 0 and 𝐾̃ > 0, which are also defined via Equation (6), are the intrinsic growth rate of the
cell population, and the density corresponding to themaximumoccupancy level (i.e., the carrying
capacity), respectively.

Coarse-grained model of ECM dynamics
Probabilistic approximations similar to those underlying Equation (4) give the following con-
servation equation for the evolution of ECM elements in lattice site 𝑖 during the time interval
[𝑡, 𝑡 + 𝜏):

⟨𝑚𝑖(𝑡 + 𝜏)⟩ = ⟨𝑚𝑖(𝑡)⟩ − 𝑝d⟨𝑢𝑖(𝑡)⟩⟨𝑚𝑖(𝑡)⟩. (8)

Rearranging Equation (8), dividing byΔ and 𝜏 and taking limits asΔ, 𝜏 → 0, under the assumption

lim
Δ,𝜏→0

𝑝dΔ

𝜏
= 𝜆̃, (9)

we formally obtain the following differential equation for ECM density 𝑚̃(𝑥̃, 𝑡):

𝜕𝑚̃

𝜕𝑡
= −𝜆̃𝑚̃𝑢̃, (10)

where 𝑥̃ ∈ ℝ and 𝑡 ∈ (0,∞). Here, the parameter 𝜆̃ ≥ 0 defined via Equation (9) is the per cell
degradation rate of ECM.
We observe that when there is no ECM degradation (i.e., if 𝜆̃ = 0) and ECM is uniformly

distributed at 𝑡 = 0 (i.e. if 𝑚̃(𝑥̃, 0) ≡ 𝑚̃0 where 𝑚̃0 ∈ ℝ+ with 0 ≤ 𝑚̃0 ≤ 𝐾̃), the mathemati-
cal model defined via Equations (7) and (10) simplifies to the following FKPP model of cell
dynamics6:

𝜕𝑢̃

𝜕𝑡
= 𝐷̂

𝜕2𝑢̃

𝜕𝑥̃2
+ 𝑟𝑢̃

(
1 −

𝑢̃

𝐾̂

)
, (11)

where

𝐷̂ =

(
1 −

𝜇̃𝑚̃0

𝐾̃

)
𝐷̃, 𝑟 =

(
1 −

𝜇̃𝑚̃0

𝐾̃

)
𝑟, 𝐾̂ =

(
1 −

𝜇̃𝑚̃0

𝐾̃

)
𝐾̃.
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CROSSLEY et al. 1477

2.3 Nondimensional coarse-grained model

The mathematical model defined via Equations (7) and (10) can be nondimensionalized by the
introduction of the following nondimensional variables

𝑢 =
𝑢̃

𝐾̃
, 𝑚 =

𝜇̃𝑚̃

𝐾̃
, 𝑡 = 𝑡𝑟, 𝑥 =

√
𝑟

𝐷̃
𝑥̃,

and written as
𝜕𝑢

𝜕𝑡
=

𝜕

𝜕𝑥

[
(1 − 𝑚)

𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕𝑚

𝜕𝑥

]
+ 𝑢(1 − 𝑢 − 𝑚), (12)

𝜕𝑚

𝜕𝑡
= −𝜆𝑚𝑢, (13)

where 𝑥 ∈ ℝ and 𝑡 ∈ (0,∞). Here, the only remaining parameter is 𝜆 = 𝜆̃𝐾̃∕𝑟 ≥ 0, which is
interpreted as the rescaled ECM degradation rate. We complement the model defined via
Equations (12) and (13) with no flux boundary conditions for Equation (12):

(1 − 𝑚)
𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕𝑚

𝜕𝑥
= 0

||||𝑥=0

, (14)

and 𝑢, 𝜕𝑢∕𝜕𝑥 → 0 as 𝑥 → ∞. We also have the following initial conditions:

𝑢(𝑥, 0) = 𝑢0(𝑥) ≥ 0, 𝑚(𝑥, 0) = 𝑚0(𝑥) ≥ 0, 0 ≤ 𝑢0(𝑥) + 𝑚0(𝑥) ≤ 1 ∀ 𝑥 ∈ ℝ. (15)

We note that by assuming at the single-cell level that both the presence of cells and ECM
elements impair the movement and proliferation of the cells, the resulting population-level
description for cell density evolution in Equation (12) exhibits a number of differences to simi-
lar models without volume-filling effects. For example, the model studied by El Hachem et al.14
does not consider volume-filling of cells to impair cell movement, and therefore contains one less
flux term, namely that accounting for movement of cells down the “total density gradient.” This
model can be recovered from Equation (12) by employing different underlying assumptions such
that the probability of movement depends on the average available space (where space is only
filled by ECM) between the target lattice site and the lattice site the cell occupies at time 𝑡.

2.4 Numerical exploration of possible traveling wave solutions

We are interested in the possible constant profile, constant speed traveling wave solutions dis-
played by the model defined via Equations (12) and (13). As such, we first explore the range of
possible behaviors numerically. We report on the results of numerical simulations carried out for
the model posed on the spatial domain (0, 𝐿), with 𝐿 > 0 sufficiently large so that the no flux
boundary condition (14) at 𝑥 = 𝐿 does not interact with the traveling wave. The simulations were
subject to the following initial conditions:

𝑢(𝑥, 0) =

{
1, if 𝑥 < 𝛼,

0 if 𝑥 ≥ 𝛼,
(16)
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1478 CROSSLEY et al.

F IGURE 1 Numerical solutions of Equations (12) and (13) subject to the initial conditions (16) and (17), for
𝑚0 = 0.2 in the top row and𝑚0 = 0.8 in the bottom row, and for rescaled ECM degradation rates 𝜆 = 5, 50, 500.
Cell densities are shown in purple and ECM densities in orange at times 𝑡 = 25, 50, 75, 100 from left to right.
Further specifics of the parameter values and the numerical methods used can be found in Appendix B.

𝑚(𝑥, 0) =

{
0, if 𝑥 < 𝛼,

𝑚0 if 𝑥 ≥ 𝛼,
(17)

where 0 < 𝛼 ≪ 𝐿 represents the width of the initially invaded region at 𝑡 = 0 and 𝑚0 ∈ [0, 1)

corresponds to the uninvaded density of ECM ahead of the cells.
We note that, by design, the model (12) and (13) does not permit traveling waves when there

are initial conditions with compactly supported cell density and 𝑚0 = 1. This is because cells
require space ahead of the wave in order to invade; in any regions initially devoid of cells, the
ECM cannot be degraded to allow cells to invade. As such, we proceed by considering𝑚0 ∈ [0, 1).
Further specifics of the parameter values and the numerical methods used in this paper can be
found in Appendix B.
As shown in Figure 1, when 𝑚0 ∈ [0, 1) the solutions to Equations (12) and (13) subject to the

initial conditions (16) and (17) converge to traveling waves whereby the cell density, 𝑢, decreases
monotonically fromone to zero and the ECMdensity,𝑚, increasesmonotonically from zero to𝑚0.
The numerical results in Figure 1 also indicate that the speed of the traveling waves changes as the
values of the parameters 𝜆 and𝑚0 are changed. This is illustrated in more detail in Figure 2 that
also shows that (in agreementwith the analytical results presented in Section 3) when𝑚0 ∈ (0, 1):
if 𝜆 → 0+ then the speed of the travelingwaves converges to 𝑐 = 2 (1 − 𝑚0); whereas if 𝜆 → ∞ then
the speed of the traveling waves converges to 𝑐 = 2.
We also note thatwhen𝑚0 = 0, the solutions to Equation (13) subject to the initial condition (17)

are such that 𝑚(𝑥, 𝑡) ≡ 0 for all 𝑡 ≥ 0 and thus the model simplifies to the FKPP model (11) with
𝐷̂ = 𝑟 = 𝐾̂ = 1, that is,

𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2
+ 𝑢(1 − 𝑢). (18)

Consistent with this, numerical simulations indicate that when 𝑚0 = 0, the cell density 𝑢 con-
verges to a traveling wave that decreases monotonically from one to zero (results not shown),
and travels with speed 𝑐 = 2 (i.e., the minimal speed of traveling wave solutions to the FKPP
model (18)) (see Figure 2).
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CROSSLEY et al. 1479

F IGURE 2 The relationship between the numerically estimated speed (solid lines) of traveling wave
solutions of Equations (12) and (13) subject to the initial conditions (16) and (17). The dashed lines in the plot on
the left highlight the value of 2(1 − 𝑚0). The numerically estimated traveling wave speed is obtained by tracing
the point 𝑋(𝑡) such that 𝑢(𝑋(𝑡), 𝑡) = 0.1. Further specifics of the parameter values and the numerical methods
used can be found in Appendix B.

The numerical results summarized in Figure 2 for 𝑚0 ∈ [0, 1) show similar behaviors to that
in El-Hachem et al.,14 where no volume-filling effects of cells prevent cell movement, while a
marked difference is observed for the case𝑚0 = 1, as discussed in Appendix A.

3 TRAVELINGWAVE ANALYSIS

We seek traveling wave solutions of Equations (12) and (13) by adopting the usual traveling wave
ansatz 𝑢(𝑥, 𝑡) = 𝑈(𝑧) and 𝑚(𝑥, 𝑡) = 𝑀(𝑧), where 𝑧 = 𝑥 − 𝑐𝑡 with 𝑐 > 0. Since numerical sim-
ulations indicate that, for our chosen initial conditions, traveling waves do not emerge when
𝑚0 = 1 (see Appendix A), we proceed with this study by exclusively considering the case where
𝑚0 ∈ [0, 1) that gives

𝑑

𝑑𝑧

[
(1 − 𝑀)

𝑑𝑈

𝑑𝑧
+ 𝑈

𝑑𝑀

𝑑𝑧

]
+ 𝑐

𝑑𝑈

𝑑𝑧
+ 𝑈(1 − 𝑈 − 𝑀) = 0, (19)

𝑐
𝑑𝑀

𝑑𝑧
− 𝜆𝑀𝑈 = 0, (20)

for −∞ < 𝑧 < ∞ with boundary conditions

𝑈(𝑧) → 1 as 𝑧 → −∞, (21)

𝑈(𝑧) → 0 as 𝑧 → ∞, (22)

𝑀(𝑧) → 𝑚0 as 𝑧 → ∞. (23)

By expanding Equation (19) and using Equation (20) to substitute in 𝑑2𝑀∕𝑑𝑧2, we find that

(1 − 𝑀)
𝑑2𝑈

𝑑𝑧2
+ 𝑐

𝑑𝑈

𝑑𝑧
+ 𝑈[(1 − 𝑀) − 𝑈] = −𝑀

[
𝑈

(
𝜆𝑈

𝑐

)2

+
𝑑𝑈

𝑑𝑧

(
𝜆𝑈

𝑐

)]
. (24)
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1480 CROSSLEY et al.

Equation (20), subject to the boundary condition (23), has a semiexplicit solution. That is, if𝑈(𝑧)

is known, then we can evaluate𝑀(𝑧) as

𝑀(𝑧) = 𝑚0 exp

{
−

𝜆

𝑐 ∫
∞

𝑧

𝑈(𝑠)𝑑𝑠

}
, (25)

which gives

𝑀(𝑧) → 0 as 𝑧 → −∞, (26)

and𝑀 ≤ 𝑚0 for all 𝑧 ∈ ℝ. Under the boundary condition𝑈(𝑧) → 0 as 𝑧 → ∞, at the leading edge
of the traveling front (i.e., for 𝑧 ∈ (𝓁,∞)with 1 ≪ 𝓁 < ∞ sufficiently large), we can use the ansatz

𝑈(𝑧) ≈ exp {−𝛼 𝑧}, (27)

with 0 < 𝛼 < ∞ for 𝑧 ∈ (𝓁,∞). Inserting Equation (27) into Equation (25) we find

𝑀(𝑧) ≈ 𝑚0 exp

{
−

1

𝛼

(
𝜆𝑈(𝑧)

𝑐

)}
, (28)

for 𝑧 ∈ (𝓁,∞). Moreover, writing 𝑑𝑈∕𝑑𝑧 = 𝑉, we can rewrite Equations (19) and (20) as a system
of three first-order ordinary differential equations

𝑑𝑈

𝑑𝑧
= 𝑉, (29)

𝑑𝑉

𝑑𝑧
=

1

(1 − 𝑀)

[
−𝑐𝑉 −

𝜆

𝑐
𝑀𝑈𝑉 −

𝜆2

𝑐2
𝑀𝑈3 − 𝑈(1 − 𝑈 − 𝑀)

]
, (30)

𝑑𝑀

𝑑𝑧
=

𝜆

𝑐
𝑀𝑈, (31)

with boundary conditions given by

𝑈(𝑧) → 1, 𝑉(𝑧) → 0 and 𝑀(𝑧) → 0 as 𝑧 → −∞, (32)

𝑈(𝑧) → 0, 𝑉(𝑧) → 0 and 𝑀(𝑧) → 𝑚0 as 𝑧 → ∞. (33)

The steady states of the system (29) and (31) with boundary conditions (32) and (33) are given by
1 = (1, 0, 0) and 2 = (0, 0,𝑚0). Traveling wave analysis based on standard linear stability tech-
niques (i.e., standard traveling wave analysis)30 seeks trajectories in the phase space that connect
1 at 𝑧 = −∞ to 2 at 𝑧 = ∞.31,32 The eigenvalues of the linearized system at (𝑈, 𝑉,𝑀) = (1, 0, 0)

are

𝜎1 =
𝜆

𝑐
, 𝜎2,3 =

−𝑐 ±
√

𝑐2 + 4

2
, (34)

which implies that (1,0,0) is a three-dimensional, hyperbolic, unstable saddle point,33 which has
eigenvectors given by

𝐯𝟏 =

(
𝑐2 − 𝜆2

𝑐2(𝜆 − 1) + 𝜆2
,

𝜆(𝑐2 − 𝜆2)

𝑐(𝑐2(𝜆 − 1) + 𝜆2)
, 1

)𝑇

, (35)

 14679590, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12635 by T
est, W

iley O
nline L

ibrary on [06/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CROSSLEY et al. 1481

F IGURE 3 Phase plane plot of the system of ordinary differential equations (29) and (30), for different
traveling wave speeds, 𝑐, demonstrating the change from a stable spiral to a stable node as the traveling wave
speed exceeds 𝑐min. The corresponding unstable eigenvector given by Equation (36) and stable eigenvector given
by Equation (39) are overlaid in the lower plots.30 Further specifics of the parameter values and the numerical
methods used can be found in Appendix B.

𝐯𝟐,𝟑 =

(
𝑐 ±

√
𝑐2 + 4

2
, 0, 1

)𝑇

. (36)

The eigenvalues of the linearized system at (𝑈, 𝑉,𝑀) = (0, 0,𝑚0) are

𝜎1 = 0, 𝜎2,3 =
−𝑐 ±

√
𝑐2 − 4(1 − 𝑚0)2

2(1 − 𝑚0)
, (37)

with corresponding eigenvectors

𝐰𝟏 = (0, 0, 1)𝑇, (38)

𝐰𝟐,𝟑 =

(
𝑐(𝑐 ±

√
𝑐2 − 4(1 − 𝑚0)2)

2𝜆𝑚0(𝑚0 − 1)
,

𝑐(𝑐2 ± 𝑐
√

𝑐2 − 4(1 − 𝑚0)2 − 2(1 − 𝑚0)
2)

2𝜆𝑚0(1 − 𝑚0)2
, 1

)𝑇

, (39)

which implies that (0, 0,𝑚0) is a stable, nonhyperbolic fixed point34 (see Appendix D for the full
derivation). In all cases, we use index 2 to refer to the positive of the two choices and 3 for the
negative. When 𝑐2 − 4(1 − 𝑚0)

2 ≤ 0, the steady-state (0, 0,𝑚0) is a stable spiral as the eigenvalues
have nonzero imaginary parts; however, when 𝑐2 − 4(1 − 𝑚0)

2 ≥ 0, the steady state is a stable
node. In the case that the state (0, 0,𝑚0) is a stable spiral, 𝑈 oscillates around this point on its
approach and can therefore take negative values (see Figure 3). However, when (0, 0,𝑚0) is a
stable node, there must exist a trajectory from (1,0,0) to (0, 0,𝑚0) contained entirely in the region
of phase space defined by 𝑈 ≥ 0, 𝑉 ≤ 0, and 𝑀 ≥ 0, which ensures nonnegativity of 𝑈 and 𝑀,
as required to be biologically consistent. This demonstrates the existence of a minimum wave
speed, 𝑐min = 2(1 − 𝑚0), such that the dependent variables,𝑈 and𝑀, remain nonnegative for all
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1482 CROSSLEY et al.

time. It is important to note that 𝑐min is a lower bound on the traveling wave speed, which is only
actually attained for this system when the rescaled ECM degradation rate is sufficiently small,
that is, 𝜆 → 0+ (see Section 3.1). This is clearly shown in Figure 2, which also demonstrates that
decreasing𝑚0 results in an increase in the traveling wave speed.
Traveling wave analysis has also been performed on a PDE model for melanoma invasion into

the skin,35 where volume-filling effects of cells are not considered to impact cell movement,14
as described earlier. Since traveling wave analysis is always performed on the linearized system,
it follows that the additional term describing cell movement prevented by the presence of other
cells is lost from Equation (30) during linearization and the minimum traveling wave speed is
the same as that derived in El-Hachem et al.14: 𝑐min = 2(1 − 𝑚0). Another minimal model for
tumor growth was proposed in Colson et al.,15 where the volume-filling effects of cells were not
accounted for in describing cell movement or cell proliferation. Both of these models have the
same equation for ECM density as Equation (13), and the models in Refs. [14, 15] have the same
flux terms in the equation for cell density evolution, but the model in Colson et al.15 has one
less reaction term since proliferation is unimpeded by the local ECM density. As a result of the
fact that all volume-filling effects are encoded in nonlinear terms, changes to the flux terms
alone (within this suite of models) have no effect on the predicted minimum traveling wave
speed, as they are all identical after linearization. However, alterations to the net proliferation
terms do significantly impact theminimum traveling wave speeds predicted by standard traveling
wave analysis. Further information regarding these models and their differences can be found in
Appendix C.
As previously described, we are particularly interested in investigating the dependence of

traveling wave solutions on the parameters 𝜆, the rescaled ECM degradation rate, and 𝑚0, the
density of ECM far ahead of the wave. Having now determined that the minimum traveling wave
speed decreases linearly as 𝑚0 increases, we now aim to explore the relationship between the
numerically estimated traveling wave speed and 𝜆.
Since the traveling wave speed depends on 𝜆, standard perturbation techniques are difficult to

apply to the traveling wave equations (19) and (20). As a result, we examine Figure 2 for clues as
to how to proceed. We immediately see that for sufficiently small 𝜆 it appears that the numer-
ically estimated traveling wave speed is independent of 𝜆 and matches the speed predicted by
standard traveling wave analysis. It can also be seen from the contour plot in Figure 2 that for
large values of 𝜆, the speed converges for all values of 𝑚0 ∈ [0, 1). As such, we now investigate
the asymptotic limits corresponding to slow and fast rescaled ECM degradation rates, 𝜆 → 0+ and
𝜆 → ∞, respectively.

3.1 Formal asymptotic analysis for 𝝀 → 𝟎+

Using Equation (28), it is clear that

𝑀(𝑧) ≈ 𝑚0 exp

{
−

1

𝛼

(
𝜆𝑈(𝑧)

𝑐

)}
→ 𝑚0 as 𝜆 → 0+, (40)

for 𝑧 ∈ (𝓁,∞) (see Figure 4 or Figures E1 and E2 for the traveling wave profiles).
In the asymptotic regime 𝜆 → 0+, substituting Equation (40) into Equation (24) and using the

fact that, since 0 ≤ 𝑈(𝑧) < 1 for 𝑧 ∈ (𝓁,∞) and 𝑑𝑈(𝑧)∕𝑑𝑧 ≈ −𝛼𝑈(𝑧) for 𝑧 ∈ (𝓁,∞) (cf. the ansatz
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CROSSLEY et al. 1483

F IGURE 4 Numerical solutions of Equations (12) and (13) subject to the initial conditions (16) and (17), for
𝑚0 = 0.2 in the top row and𝑚0 = 0.8 in the bottom row, and for rescaled ECM degradation rates
𝜆 = 10−3, 10−2, 10−1. Cell densities are shown in purple and ECM densities in orange at times
𝑡 = 2500, 5000, 7500, 10000 from left to right. Further specifics of the parameter values and the numerical
methods used can be found in Appendix B.

given by Equation (27)), the following asymptotic relation holds:

𝑚0 exp

{
−

1

𝛼

(
𝜆𝑈(𝑧)

𝑐

)}[
𝑈(𝑧)

(
𝜆𝑈(𝑧)

𝑐

)2

+
𝑑𝑈(𝑧)

𝑑𝑧

(
𝜆𝑈(𝑧)

𝑐

)]
→ 0 as 𝜆 → 0+, (41)

for 𝑧 ∈ (𝓁,∞), we find

(1 − 𝑚0)
𝑑2𝑈(𝑧)

𝑑𝑧2
+ 𝑐

𝑑𝑈(𝑧)

𝑑𝑧
+ 𝑈(𝑧)[(1 − 𝑚0) − 𝑈(𝑧)] ≈ 0, (42)

for 𝑧 ∈ (𝓁,∞).
Equation (42) is equivalent to the FKPP model (11) in traveling wave coordinates

𝐷̂
𝑑2𝑈̂

𝑑𝑧
+ 𝑐

𝑑𝑈̂

𝑑𝑧
+ 𝑟𝑈̂

(
1 −

𝑈̂

𝐾̂

)
= 0, (43)

with 𝐷̂ = 𝑟 = 𝐾̂ = 1 − 𝑚0, with 𝑐min = 2(1 − 𝑚0), as predicted earlier. An excellentmatch around
the leading edge of the traveling wavefront between the traveling wave solution to the FKPP
model (11) (Equation (43) in traveling wave coordinates) and Equations (12) and (13) for low val-
ues of the rescaled ECM degradation rate can be seen in the plot on the left in Figure 6 (see also
Figure 4 or Figures E1 and E2).
We now consider the region 𝑧 ∈ (−∞, 𝓁) by rescaling Equations (19) and (20) using the new

variable 𝜖 = 𝑧𝜆 for 𝜖 ∈ (−∞, 𝓁𝜆]. The system of Equations (19) and (20) becomes

−𝑐𝜆
𝑑𝑈

𝑑𝜖
= 𝜆2 𝑑

𝑑𝜖

[
(1 − 𝑀)

𝑑𝑈

𝑑𝜖
+ 𝑈

𝑑𝑀

𝑑𝜖

]
+ 𝑈(1 − 𝑈 − 𝑀), (44)

𝜆
𝑑𝑀

𝑑𝜖
=

𝜆

𝑐
𝑀𝑈. (45)
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1484 CROSSLEY et al.

F IGURE 5 Numerical solutions of Equations (12) and (13) subject to the initial conditions (16) and (17), for
𝑚0 = 0.2 on the left and𝑚0 = 0.8 on the right with rescaled ECM degradation rate 𝜆 = 10−3 translated into the
traveling wave coordinate, 𝑧. Solid lines represent the cell and ECM densities from numerical simulations in
purple and orange, respectively. The FKPP solution (42) in traveling wave coordinates is plotted as a dotted blue
line. The solution𝑀(𝑧) = 𝑚0 is plotted in dotted black, and the analytical solutions given by Equations (48)
and (49) are plotted in dashed blue and black lines, respectively. Further specifics of the parameter values and the
numerical methods used can be found in Appendix B.

F IGURE 6 Left: plot of the cell density, 𝑢, obtained through numerical simulations of Equations (12) and
(13) subject to the initial conditions (16) and (17) (solid lines) for small values of 𝜆, and numerical simulations of
the FKPP model (11) with rescaled coefficients 𝐷̂ = 𝑟 = 𝐾̂ = 1 − 𝑚0 (dashed black line) with 𝑡 = 100 and
𝑚0 = 0.6. Right: plot of the cell density, 𝑢, obtained through numerical simulations of Equations (12) and (13)
subject to the initial conditions (16) and (17) (solid lines) for large values of 𝜆, and numerical simulations of the
FKPP model (18) (dashed black line) in the plot on the right for 𝑡 = 50 and𝑚0 = 0.4. Qualitatively, the same
behavior is observed for all𝑚0 ∈ [0, 1). Further specifics of the parameter values and the numerical methods
used for the simulations can be found in Appendix B.

For 𝜆 → 0+, we find from Equation (44) that𝑈(𝜖)(1 − 𝑈(𝜖) − 𝑀(𝜖)) = 0, so that for 𝜖 ∈ (−∞, 𝓁𝜆]

we have𝑈(𝜖) = 1 − 𝑀(𝜖) since𝑈(𝜖) → 1 as 𝜖 → −∞. By substitution into Equation (45), we find

𝑑𝑀

𝑑𝜖
=

𝑀(1 − 𝑀)

𝑐
,

which, using the matching condition that𝑀(𝜖 = 𝓁𝜆) = 𝑚0, gives

𝑀(𝜖) =
𝑚0 exp{−(𝜆𝓁 − 𝜖)∕𝑐}

1 − 𝑚0 + 𝑚0 exp{−(𝜆𝓁 − 𝜖)∕𝑐}
, (46)

Recalling that 𝑈(𝜖) = 1 − 𝑀(𝜖), we obtain

𝑈(𝜖) =
1 − 𝑚0

1 − 𝑚0 + 𝑚0 exp{−(𝜆𝓁 − 𝜖)∕𝑐}
, (47)
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CROSSLEY et al. 1485

which tends to 1 as 𝜖 → −∞ and to 1 − 𝑚0 as 𝜖 → 𝓁𝜆. In the traveling wave coordinate, 𝑧,
Equation (47) can be written as

𝑈(𝑧) =
1 − 𝑚0

1 − 𝑚0 + 𝑚0 exp{−𝜆(𝓁 − 𝑧)∕𝑐}
, (48)

for 𝑧 ∈ (−∞, 𝓁] and the solution to the FKPP model, as given by Equation (42), for 𝑧 ∈ (𝓁,∞).
In the traveling wave coordinate, 𝑧, the solution for the wave profile of the ECM given by
Equation (46) is

𝑀(𝑧) =
𝑚0 exp{−𝜆(𝓁 − 𝑧)∕𝑐}

1 − 𝑚0 + 𝑚0 exp{−𝜆(𝓁 − 𝑧)∕𝑐}
, (49)

for 𝑧 ∈ (−∞, 𝓁], and𝑀(𝑧) = 𝑚0 for 𝑧 ∈ (𝓁,∞), as given byEquation (40). An excellent agreement
between these analytical solutions and the numerical results can be observed in Figure 5.
Similar models, such as those described at the end of Section 3 that do not have volume-filling

effects taken into account, demonstrate qualitatively similar behavior. In all of these models, at
very low rescaled ECM degradation rates we observe convergence of the solutions to those of
the FKPP model with rescaled parameters. For models with the same cell proliferation term as
in Equation (12), the rescaled parameters are the same and the convergence has qualitatively
similar behavior, as displayed in the plot on the left in Figure 6. As a result, in the limit of
very small rescaled ECM degradation rates, 𝜆 → 0+, the model (12) and (13) can be simplified
to that presented in El-Hachem et al.,14 which neglects the volume-filling effects of cells upon cell
movement. This model can, in turn, be well approximated by the FKPP model (11) with rescaled
parameters 𝐷̂ = 𝑟 = 𝐾̂ = 1 − 𝑚0. This result is consistentwith predictions from standard traveling
wave analysis. However, for the model presented in Colson et al.,15 the parameters of the rescaled
FKPPmodel to which the model converges are, instead, 𝐷̂ = 1 − 𝑚0 and 𝑟 = 𝐾̂ = 1, that entails a
higher cell carrying capacity density since proliferation is not impacted by the surrounding ECM.
(See Appendix C for a more detailed comparison.) As such, the model (12) and (13) is poorly
approximated using models, such as that in Colson et al.,15 with different underlying assump-
tions for cell proliferation. These differences highlight the importance of fully laying out all of the
model assumptions at the single-cell level before deriving the PDEmodel, so that the population-
level model fully captures behaviors associated with the underlying cell-level assumptions, in all
parameter regimes.

3.2 Formal asymptotic analysis for 𝝀 → ∞

In the case of very large rates of ECM degradation, by considering the semiexplicit solution for𝑀
in terms of 𝑈 given by Equation (28), we see that

𝑀(𝑧) ≈ 𝑚0 exp

{
−

1

𝛼

(
𝜆𝑈(𝑧)

𝑐

)}
→ 0 as 𝜆 → ∞, (50)

for 𝑧 ∈ (𝓁,∞) (see Figure 7 or Figure E3 for the traveling wave profiles). In the asymptotic regime
𝜆 → ∞, substituting Equation (50) into Equation (24) and using the fact that, since 0 ≤ 𝑈(𝑧) < 1

for 𝑧 ∈ (𝓁,∞) and 𝑑𝑈(𝑧)∕𝑑𝑧 ≈ −𝛼𝑈(𝑧) for 𝑧 ∈ (𝓁,∞) (cf. the ansatz given by Equation (27)), the
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1486 CROSSLEY et al.

F IGURE 7 Numerical solutions of Equations (12) and (13) subject to the initial conditions (16) and (17), for
𝑚0 = 0.2 in the top row and𝑚0 = 0.8 in the bottom row, and for rescaled ECM degradation rates
𝜆 = 104, 105, 106. Cell densities are shown in purple and ECM densities in orange at times 𝑡 = 25, 50, 75, 100

from left to right. Further specifics of the parameter values and the numerical methods used can be found in
Appendix B.

following asymptotic relation holds:

𝑚0 exp

{
−

1

𝛼

(
𝜆𝑈(𝑧)

𝑐

)}[
𝑈(𝑧)

(
𝜆𝑈(𝑧)

𝑐

)2

+
𝑑𝑈(𝑧)

𝑑𝑧

(
𝜆𝑈(𝑧)

𝑐

)]
→ 0 as 𝜆 → ∞, (51)

for 𝑧 ∈ (𝓁,∞), we find

𝑑2𝑈(𝑧)

𝑑𝑧2
+ 𝑐

𝑑𝑈(𝑧)

𝑑𝑧
+ 𝑈(𝑧)(1 − 𝑈(𝑧)) ≈ 0, (52)

for 𝑧 ∈ (𝓁,∞). Hence, when 𝜆 → ∞ we expect 𝑈(𝑧) at the leading edge of the traveling front to
behave, to a first approximation, as the solution to the FKPP equation (18) in traveling wave coor-
dinates subject to the boundary condition (22), forwhich 𝑐min = 2. This result can also be observed
numerically in the plot on the right of Figure 6. The same behavior is observed in similar models
without volume-filling effects,14,15 demonstrating that the model (12) and (13) can be approxi-
mated, to an extent, with any of these simpler models in the parameter regime 𝜆 → ∞, as growth
and diffusion are unrestricted by the ECM within a neighborhood of the traveling wavefront.

4 DISCUSSION AND CONCLUSIONS

In this paper, a model for cell invasion into the surrounding ECMhas been studied by considering
primarily its traveling wave solutions. In this model, derived from the first principles from an
agent-based model describing cell-level behaviors, cells evolve under the action of diffusion and
proliferation, that is coupled to degradation of the surrounding ECM.As a result of volume-fillling
effects, cells require space ahead of the wavefront in order to invade the domain.
Numerical solutions of the PDE model (12) and (13) demonstrate a complex relationship

between the traveling wave speed, 𝑐, the density of ECM far ahead of the wave of cells, 𝑚0, and
the rescaled ECM degradation rate, 𝜆. Partial relationships between these parameters in asymp-
totic regimes of interest have been established, including that 𝑐 → 2(1 − 𝑚0) as 𝜆 → 0+ and that
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CROSSLEY et al. 1487

TABLE 1 Description of the volume-filling effects of cells and ECM considered by the models compared in
this study.

Volume-filling in
movement

Volume-filling in
proliferation

Model
By
cells

By
ECM Diffusion term

By
cells

By
ECM

Reaction
term

Colson15 − +
𝜕

𝜕𝑥
[(1 − 𝑚)

𝜕𝑢

𝜕𝑥
] + − 𝑢(1 − 𝑢)

Browning14,35 − +
𝜕

𝜕𝑥
[(1 − 𝑚)

𝜕𝑢

𝜕𝑥
] + + 𝑢(1 − 𝑢 − 𝑚)

Equations (12)
and (13)

+ +
𝜕

𝜕𝑥
[(1 − 𝑚)

𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕𝑚

𝜕𝑥
] + + 𝑢(1 − 𝑢 − 𝑚)

Abbreviation: ECM, extracellular matrix.

𝑐 → 2− as 𝜆 → ∞. A good agreement with the FKPP model (11) has been demonstrated in the
case where 𝜆 → ∞, and we showed that the impacts of introducing volume-filling effects of cells
to reduce cell movement (in comparison to the model in El-Hachem et al.14) are minimal. As
such, the FKPP model (11) provides a suitable model simplification to reproduce the qualitative
behaviors of the fully dimensional system in the case of a large ECM degradation rate, 𝜆̃, com-
pared to the proliferation rate, 𝑟. Since 𝜆 = 𝜆̃𝐾̃∕𝑟, the results equivalently suggest that as 𝐾̃ → ∞,
the system can be well modeled by the FKPP model (11). This describes a model where volume-
filling effects are negligible, and thus the speed of the invasion front is given by 𝑐min = 2. For
𝜆 → 0+, which is representative of very large proliferation rates compared to the rescaled ECM
degradation rates, or extremely small carrying capacities, the system can be studied by consider-
ing the simplification to a rescaled FKPPmodel (42). In this case, traveling waves are observed for
𝑚 ∈ [0, 1), but the speed of the invasion front is now given by 𝑐min = 2(1 − 𝑚0). Converting back
to dimensional variables, as with the FKPP model (11), the analytically predicted traveling wave
speed increases with the cell proliferation rate, but with a more complicated relationship for the
regions of parameter space corresponding to where the relationship between the traveling wave
speed and rescaled ECM degradation rate is not yet well established. It is likely this complicated
relationship indicates that the system exhibits changes between pulled, pushed, and semipushed
waves due to the nonlinear cross-species dynamics that vary in strength for different parameter
values.36 This could be investigated further by examining the ratio between the traveling wave
speeds for different parameter values.
It is also clear that qualitatively similar results are observed between this new model with

volume-filling, and previously studied models outside this framework, as described by Table 1,
in all cases where 𝑚0 ∈ [0, 1). Therefore, it could be said that the model originally proposed in
Browning et al.35 provides a good model simplification for any case where𝑚0 ∈ [0, 1). In the case
where 𝑚0 = 1, the region that is initially uninvaded by cells is full of ECM, such that prolifera-
tion and movement of cells into this region is entirely prevented. This result provides the starkest
difference between the model studied in this paper and those previously studied elsewhere.14,15 It
is observed that in the case of compactly supported initial cell density, cell invasion cannot occur
into the region where𝑚(𝑥, 0) = 1, 𝑢(𝑥, 0) = 0, and thus pinning occurs and traveling waves can-
not form.37 It is biologically reasonable to assume that an invading cell populationmight have zero
density far ahead of the invading front. However it is important to note that the model considered
here is a very simplistic model for cell invasion into ECM, and if further biological complica-
tions, such as the secretion of matrix metalloproteinases (MMPs) by cells to degrade and remodel
ECM, were introduced then these phenomenological results would no longer be observed.38 This
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1488 CROSSLEY et al.

is because we could reasonably assumeMMPs could still diffuse into regions occupied entirely by
ECM, and then degrade it.
The overall conclusion of our study is that there exist simpler models for cell invasion into

ECM such as Refs. [6, 14, 15] that are defined by similar guiding principles and can be used to
reproduce the qualitative behaviors of the traveling waves observed in themodel presented in this
work. Analysis of these systems confirms that the qualitative model predictions are conserved,
and therefore the simpler models can be used in future studies to reduce computational com-
plexity and make the resulting PDE model more analytically tractable. The disadvantage of this
conclusion, however, is that in order to use thesemodels to infer parameters from data, extra steps
would be required to validate whether the correct model has been selected. For example, analy-
sis of cell trajectories can help infer the cell–cell interactions underlying the motility mechanism
and distinguish between the suite of models with qualitatively similar behaviors.39–41 Our results
reveal that the reaction term significantly impacts the traveling wave speed for small and interme-
diate values of 𝜆 and thus it could be used to informmodel development, by defining the reaction
term by considering whether space or nutrients are the limiting factor for cell invasion into ECM;
and model selection, by comparing the expected wave speeds to the data.
There are a variety of possible extensions to the work presented in this paper. The underlying

on-lattice agent-based model of cell movement involves a number of simplifying assumptions,
such as that cells can only degrade ECM agents in the same lattice site. By varying these assump-
tions, therewould be the possibility to expand the biological applicability of the study to determine
under which regimes the resulting models can also be approximated by simpler seminal models
of cell invasion. Different proliferation terms, as well as terms to account for ECM evolution in
more detail could be included, such as ECM remodeling by cells, or elastic deformation.42 Beyond
this, another clear extension of this work would be to introduce further spatial dimensions, or
different geometries, that are particularly interesting for studying cancer cell invasion, and to
investigate the stability of the traveling wave solutions for the different possible models. For the
case 𝜆 → 0+, there is an opportunity to apply boundary layer theory and asymptotic analysis to
arrive at an expression for the full traveling wave profile at long times. It would also be of particu-
lar interest to arrive at some functional form for the traveling wave speed, 𝑐(𝜆,𝑚0), for all possible
parameter values and to define the critical value of 𝜆𝑐, depending on 𝑚0 (see Figure 2), whereby
for 𝜆 < 𝜆𝑐 the minimum traveling wave speed observed numerically matches that predicted by
standard traveling wave analysis 𝑐 = 𝑐min. The critical value, 𝜆𝑐, might be found by establishing
the basins of attraction for each steady-state and seeking parameter regimes where the dynamics
follow different paths. If possible, this knowledge could then further aid an investigation using
perturbation methods into the shape of the wavefront for intermediate values of 𝜆 and by char-
acterizing this behavior, this model could be used to describe biological scenarios such as tumor
growth, where 𝜆 would represent the rate at which the tumor cells were able to degrade ECM in
the surrounding environment.
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APPENDIX A: MAIN RESULTS OF NUMERICAL SIMULATIONS FOR𝒎𝟎 = 𝟏

As demonstrated in Figure 2, when 𝑚0 = 1, the system (12) and (13) subject to the initial condi-
tions (16) and (17) does not permit travelingwave solutions. To investigate this further, we simulate
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the system (12) and (13) subject to different initial conditions. In every case, we consider the initial
condition for the ECM density,𝑚, given by

𝑚(𝑥, 0) =

{
𝑚0 − 𝑢(𝑥, 0), if 𝑚0 > 1 − 𝛾,

𝑚0, if 𝑚0 ≤ 1 − 𝛾,
(A1)

with 0 ≤ 𝛾 ≤ 1, which depends on the initial cell density, 𝑢(𝑥, 0). To explore the behaviors
observed at 𝑚0 = 1, we consider two different options for 𝑢(𝑥, 0) in this appendix. First, we
consider the compactly supported initial condition

𝑢(𝑥, 0) =

⎧⎪⎨⎪⎩
𝛾

(
1 − tanh

(
𝑥

𝜖

))
, if 𝛾

(
1 − tanh

(
𝑥

𝜖

))
≥ 𝜉,

0, if 𝛾

(
1 − tanh

(
𝑥

𝜖

))
< 𝜉,

(A2)

and alternatively, the following noncompactly supported initial conditions, as used in El-Hachem
et al.,14

𝑢(𝑥, 0) =

{
𝛾, 𝑥 < 𝛽,

𝛾 exp{−𝑎(𝑥 − 𝛽)}, 𝑥 ≥ 𝛽.
(A3)

Here, 𝛾 ∈ [0, 1] represents the maximum cell density at 𝑡 = 0 and 𝑚0 ∈ [0, 1] corresponds to the
uninvaded density of ECM. Moreover, in the definition given by Equation (A2), the parameter
𝜉 ∈ (0, 1] is used to control the tolerance below which the cell density can be assumed, on a first
approximation, to be zero, and 𝜖 > 0 represents the initial width of the cell density profile. Finally,
in the definition given by Equation (A3), the parameter 𝛽 ∈ ℝ is used to define a region where the
cell density is initially constant and equal to 𝛾 ∈ [0, 1], while the parameter 𝑎 > 0 is used to pre-
scribe the lengthscale overwhich the cell density profile decays.We note that, since 𝛾, 𝑚0 ∈ [0, 1],
the initial conditions (A1), (A2), and (A3) are such that the total density of cells and ECM at 𝑡 = 0

does not locally exceed the extreme value 1, which corresponds to complete local saturation, that
is, 𝑢(𝑥, 0) + 𝑚(𝑥, 0) ≤ 1 for all 𝑥 ∈ [0, 𝐿]. We also note that when𝑚0 = 0 the initial condition (A1)
reduces to the trivial initial condition𝑚(𝑥, 0) ≡ 0.
The numerical results in Figure A1A, which complement the results summarized by Figure 2,

show that when𝑚0 = 1 the system (12) and (13) subject to the initial conditions with compactly
support cell density (A2) cannot sustain traveling wave solutions. On the other hand, the numer-
ical results in Figure A1B demonstrate that traveling wave solutions can be sustained in the case
where noncompactly supported initial conditions (A3) in 𝑢 are considered.
This result is a consequence of the volume-filling effects of cells. By considering an initial con-

dition where 𝑚(𝑥, 0) = 1 ahead of the invading population, due to volume-filling, the invading
population is unable to penetrate the regionwhere𝑢 = 0, 𝑚 = 1. This agreeswith the agent-based
description since cells are only able to degrade ECM in the same lattice site.
As such, for themodel (12) and (13), whenever𝑚0 = 1 and there are compactly supported initial

conditions in 𝑢, invasion is entirely prevented beyond a point 𝑥∗, that is the smallest 𝑥 such that
𝑢(𝑥, 0) = 0 for all 𝑥 ≥ 𝑥∗. This result is starkly different from simpler models in the literature that
do not include volume-filling effects of cells andECM, such asRefs. [14, 15], where the total density
of cells and ECM is not bounded above and cells can invade into a regionwhere 𝑢 = 0, 𝑚 = 1, and
thus exhibit traveling wave solutions.
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1492 CROSSLEY et al.

F IGURE A1 Numerical solutions to the system (12) and (13) subject to the initial conditions (A1) and (A2)
(panel (A)) or (A1) and (A3) (panel (B)), for𝑚0 = 1 and 𝜆 = 250. Cell densities are shown in purple and ECM
densities in orange at times 𝑡 = 2, 4, 6, 8, 10, 12, 14, 16 (from left to right) in panel (A) and times 𝑡 = 25, 50, 75, 100

(from left to right) in panel (B). Note that the axis in the plot in panel (a) is zoomed in on 𝑥 ∈ [0, 5] to display the
initial behavior in the transient region before invasion stops. Further specifics of the parameter values and the
numerical methods used for simulation can be found in Appendix B.

APPENDIX B: NUMERICALMETHODS
Equations (12) and (13) are solved numerically subject to no flux boundary conditions (14) in 𝑢 at
𝑥 = 0 and 𝑥 = 𝐿 using the method of lines on the one-dimensional spatial domain [0, 𝐿] where
𝐿 > 0 is chosen to be sufficiently large to remove boundary effects. Inmost cases, we take 𝐿 = 200.
The spatial domain is uniformly discretized with spacing Δ = 0.1 between each of the 𝑖 = 1, … , 𝐼

spatial points, and the following discretization is used43:

𝜕

𝜕𝑥

[
𝐷

𝜕𝑎

𝜕𝑥

]
𝑖

≈
1

2Δ2
[(𝐷𝑖−1 + 𝐷𝑖)𝑎𝑖−1 − (𝐷𝑖−1 + 2𝐷𝑖 + 𝐷𝑖+1)𝑎𝑖 + (𝐷𝑖 + 𝐷𝑖+1)𝑎𝑖+1], (B1)

where 𝑎𝑖 represents the value of 𝑎 at the spatial point 𝑖. For the model (12) and (13), we use this
discretization twice,with𝐷 = (1 − 𝑚), 𝑎 = 𝑢 and for the second term in the flux as𝐷 = 𝑢, 𝑎 = 𝑚.
Equations (12) and (13) can then be rewritten as a systemof 2𝐼 ordinary differential equations given
by

𝑑𝑢𝑖

𝑑𝑡
=

1

2Δ2
[𝑢𝑖−1(1 − 𝑚𝑖) + 𝑢𝑖(𝑚𝑖+1 + 𝑚𝑖−1 − 2) + 𝑢𝑖+1(1 − 𝑚𝑖)] + 𝑢𝑖(1 − 𝑢𝑖 − 𝑚𝑖), (B2)

𝑑𝑚𝑖

𝑑𝑡
= −𝜆𝑚𝑖𝑢𝑖, (B3)

for 1 ≤ 𝑖 ≤ 𝐼 − 1. To implement the boundary conditions, we introduce the ghost points 𝑥−1 and
𝑥𝐼+1

44 and set

𝑢0(𝑡) = 𝑢−1(𝑡), 𝑢𝐼+1(𝑡) = 𝑢𝐼(𝑡), ∀𝑡 ≥ 0, (B4)

so that

𝑑𝑢0

𝑑𝑡
= 2(𝑢1 − 𝑢0) + 𝑢0(1 − 𝑢0 − 𝑚0), (B5)

𝑑𝑢𝐼

𝑑𝑡
= 2(𝑢𝐼−1 − 𝑢𝐼) + 𝑢𝐼(1 − 𝑢𝐼 − 𝑚𝐼). (B6)
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CROSSLEY et al. 1493

We solve the system of equations (B2) and (B3) and (B5) and (B6) using the built-in Python solver
scipy.integrate.solve_ivp with the explicit Runge–Kutta integration method of order 5 and time
step 𝜏 = 1. Convergence checks were completed by considering a range of tolerances, time, and
spatial steps to ensure that the parameters used for simulations produced solutions within the
second-order error associated with the numerical scheme.
For the simulations of the PDE systems in this work, we consider compactly supported ini-

tial conditions (16) and (17) with 𝛼 = 1. In Appendix A, we use 𝜉 = 10−7, 𝛾 = 0.1, and 𝜖 = 1

when considering compactly supported initial conditions (A1) and (A2), and 𝑎 = 0.1, 𝛾 = 0.1, and
𝛽 = 10 for noncompactly supported initial conditions (A1) and (A3). Varying these parameters
reproduces the behaviors observed in El-Hachem et al.14
In Figure 3, we show the results of numerically solving Equations (29) and (30) with the ini-

tial condition (𝑈, 𝑉,𝑀) = (0.9, −0.01, 0.01) for 𝑐 = 1, 2(1 − 𝑚0), 3 with time step 𝜏 = 0.01 and
final time 𝑡 = 100 using Python’s built-in stiff solver scipy.integrate.ODE with tolerance 10−15

and order 5.

APPENDIX C: COMPARISON TO OTHERMODELS IN THE LITERATURE
This study focuses on the impact of introducing volume-filling effects of cells and ECM to amodel
of cell invasion into ECM. There are a number of PDE model simplifications in the literature,
including the following model, proposed as a minimal model for tumor growth into ECM in
Colson et al.15:

𝜕𝑢

𝜕𝑡
=

𝜕

𝜕𝑥

[
(1 − 𝑚)

𝜕𝑢

𝜕𝑥

]
+ 𝑢(1 − 𝑢), (C1)

𝜕𝑚

𝜕𝑡
= −𝜆𝑚𝑢, (C2)

that assumes cell motility to be impacted by the presence of surrounding ECM only and cell pro-
liferation impacted only by other cells, that is, the resource limiting cell proliferation is not space.
Another similar model is presented in Browning et al.35 to describe melanoma growth into skin
and it is subsequently analyzed in El-Hachem et al.14 Themodel can be interpreted to assume that
cell motility is decreased by ECM and that cell proliferation is impacted by both other cells and
ECM:

𝜕𝑢

𝜕𝑡
=

𝜕

𝜕𝑥

[
(1 − 𝑚)

𝜕𝑢

𝜕𝑥

]
+ 𝑢(1 − 𝑢 − 𝑚), (C3)

𝜕𝑚

𝜕𝑡
= −𝜆𝑚𝑢. (C4)

The model variables and parameters are interpreted in the same way as in the model presented in
this work (12) and (13).
We are particularly interested in comparing the population-level behaviors of the PDE model

for cell invasion into ECM presented in this work, which incorporates volume-filling effects into
both diffusion andproliferation of cells, to the simplermodelswithout these volume-filling effects,
presented in the literature. By looking at Figure C1, we can draw the following conclusions: all
three models produce traveling wave solutions with a speed 𝑐 ≥ 𝑐min, where 𝑐min is the minimum
speed predicted by standard traveling wave analysis. In fact, all of these speeds are dependent
on both the initial density of ECM ahead of the wave, 𝑚0, and the rescaled ECM degradation
rate 𝜆. The two models with the same reaction (growth) terms, depending on both cell and
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1494 CROSSLEY et al.

F IGURE C1 The relationship between the numerically estimated speed of traveling wave solutions to the
system (C1) and (C2) on the left (blue), (C3) and (C4) in the middle (green), and (12) and (13) on the right (red),
subject to the initial conditions (16) and (17). The numerically estimated traveling wave speed is obtained by
tracing the point 𝑋(𝑡) such that 𝑢(𝑋(𝑡), 𝑡) = 0.1. Further specifics of the parameter values and the numerical
methods used can be found in Appendix B.

ECM preventing growth, predict the same traveling wave speed 𝑐min = 2(1 − 𝑚0), that is achieved
numerically for 𝜆 → 0+. However, the model (C1) and (C2) presented in Colson et al.15 predicts
a speed 𝑐min = 2

√
1 − 𝑚0, that is also revealed for 𝜆 → 0+. As a result, the behaviors observed in

these models for small rescaled ECM degradation rates 𝜆 can be reproduced by studying a FKPP
model (11) with the appropriate parameters. In the same manner, by looking at Figure C1, it is
clear that all three models produce traveling waves with speed 𝑐 → 2− as 𝜆 → ∞. The behaviors
observed here can be studied by considering the standard FKPP model (18) with all parameters
equal to unity. The FKPP model (18) is also a suitable model simplification for all three systems
when𝑚0 = 0.
The transition between the two asymptotic regions is yet to be fully characterized for any of the

models, but it is clear that 𝑐 is a monotonic, increasing function of 𝜆 and𝑚0 for all of the models.
The critical value above which 𝜆 begins to influence the speed is similar across the models but
clearly depends on 𝑚0 and takes larger values across the models as more volume-filling effects
are taken into account. Following intuition, we also find that, in general, the speed of invasion is
slower as volume-filling effects are considered to impact more aspects of cell behaviors (from left
to right in Figure C1).
Themost obvious difference between these results is that themodel (12) and (13) derived in this

work does not permit traveling waves for compactly supported initial conditions in 𝑢 when𝑚0 =

1. This is a direct result of consistently including volume-filling effects across all the mechanisms
of cell movement, such that there is always a maximum number of cells present at any point in
space. The results match those of the model (C3) and (C4) when noncompactly supported initial
conditions are simulated, as presented in Appendix A.
As such, the model presented in Browning et al.35 provides a good model simplification by

which to study the qualitative properties of the solutions to (12) and (13) across all parameter values
when 𝑚0 ∈ [0, 1), with simplifications to the FKPP model also being appropriate as 𝜆 → 0+ and
𝜆 → ∞.

APPENDIX D: DERIVATION OF EIGENVALUES AND EIGENVECTORS
In this section, we derive the eigenvalues of the system of ordinary differential equations (29)–
(31). This system has two equilibrium points 1 = (1, 0, 0) and 2 = (0, 0,𝑚0), at which we want
to find eigenvalues. We first find the Jacobian of the linearized system (29)–(31). To do this, we
introduce the following combinations for simplicity

𝜈 =
𝜆

𝑐
, 𝑁 =

1

1 − 𝑀
, 𝑊 = 𝑀𝑈, (D1)
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CROSSLEY et al. 1495

so that the Jacobian is given by

𝐉 =

⎛⎜⎜⎜⎝
0 1 0

𝑁(𝑀 − 1 + 2𝑈 − 3𝜈2𝑊𝑈 − 𝜈𝑊) −𝑁(𝑐 + 𝜈𝑊) 𝑈𝑁(1 − 𝜈2𝑈2 − 𝜈𝑉 + 𝑁(𝑈 + 𝑀 − 1 − 𝜈2𝑊𝑈)) − 𝑁2(𝑐𝑉 + 𝜈)

𝜈𝑀 0 𝜈𝑈

⎞⎟⎟⎟⎠ .
(D2)

Then the Jacobian at 2 = (0, 0,𝑚0) is

𝐉(0,0,𝑚0) =

⎛⎜⎜⎜⎜⎝
0 1 0

𝑚0 − 1

1 − 𝑚0

−𝑐

1 − 𝑚0
0

𝜆

𝑐
𝑚0 0 0

⎞⎟⎟⎟⎟⎠
, (D3)

and the Jacobian at 1 = (1, 0, 0) is

𝐉(1,0,0) =

⎛⎜⎜⎜⎜⎜⎝

0 1 0

1 −𝑐 1 −

(
𝜆

𝑐

)2

0 0
𝜆

𝑐

⎞⎟⎟⎟⎟⎟⎠
. (D4)

By looking for the solutions of det|𝐉 − 𝜎𝐈| = 0, where 𝐈 is the identity matrix, we can find the
eigenvalues of these matrices and calculate their corresponding eigenvectors. As such, at (1,0,0),
the eigenvalues are 𝜎1 = 𝜆∕𝑐, 𝜎2,3 = (−𝑐 ±

√
𝑐2 + 4)∕2, which have associated eigenvectors

𝐯𝟏 =

(
𝑐2 − 𝜆2

𝑐2(𝜆 − 1) + 𝜆2
,

𝜆(𝑐2 − 𝜆2)

𝑐(𝑐2(𝜆 − 1) + 𝜆2)
, 1

)𝑇

, (D5)

𝐯𝟐,𝟑 =

(
𝑐 ±

√
𝑐2 + 4

2
, 0, 1

)𝑇

. (D6)

These indicate that (1,0,0) is a three-dimensional, hyperbolic, unstable saddle point since it has
one negative and two positive eigenvalues.
At (0, 0,𝑚0), det|𝐉(0,0,𝑚0) − 𝜎𝐈| = 0 gives eigenvalues 𝜎1 = 0, 𝜎2,3 =

(−𝑐 ±
√

𝑐2 − 4(1 − 𝑚0)2)∕2(1 − 𝑚0), showing that (0, 0,𝑚0) is a nonhyperbolic, stable steady
state, since one of these eigenvalues has zero real part. If 𝑐2 < 4(1 − 𝑚0)

2, then we have a spiral
at (0, 0,𝑚0), and, otherwise, a stable node point. The corresponding eigenvectors are

𝐰𝟏 = (0, 0, 1)𝑇, (D7)

𝐰𝟐,𝟑 =

(
𝑐(𝑐 ±

√
𝑐2 − 4(1 − 𝑚0)2)

2𝜆𝑚0(𝑚0 − 1)
,

𝑐(𝑐2 ± 𝑐
√

𝑐2 − 4(1 − 𝑚0)2 − 2(1 − 𝑚0)
2)

2𝜆𝑚0(1 − 𝑚0)2
, 1

)𝑇

. (D8)
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1496 CROSSLEY et al.

APPENDIX E: TRAVELINGWAVE PROFILES FOR 𝝀 → 𝟎+ AND 𝝀 → ∞

F IGURE E1 Traveling wave solutions of Equations (12) and (13) subject to the initial conditions (16) and
(17), for𝑚0 = 0.2 in the top row and𝑚0 = 0.8 in the bottom row, and for rescaled ECM degradation rates
𝜆 = 10−3, 10−2, 10−1. Cell densities are shown in purple and ECM densities in orange. Further specifics of the
parameter values and the numerical methods used can be found in Appendix B.

F IGURE E2 Traveling wave solutions of Equations (12) and (13) subject to the initial conditions (16) and
(17), for𝑚0 = 0.2 in the top row and𝑚0 = 0.8 in the bottom row, and for rescaled ECM degradation rates
𝜆 = 10−3, 10−2, 10−1. Cell densities are shown in purple and ECM densities in orange, zoomed in on the evolved
traveling wavefront, as shown in Figure E1. Further specifics of the parameter values and the numerical methods
used can be found in Appendix B.
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CROSSLEY et al. 1497

F IGURE E3 Traveling wave solutions of Equations (12) and (13) subject to the initial conditions (16) and
(17), for𝑚0 = 0.2 in the top row and𝑚0 = 0.8 in the bottom row and for rescaled ECM degradation rates
𝜆 = 104, 105, 106. Cell densities are shown in purple and ECM densities in orange. Further specifics of the
parameter values and the numerical methods used can be found in Appendix B.
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