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A B S T R A C T

Throughout developmental biology and ecology, transport can be driven by nonlocal interactions. Examples
include cells that migrate based on contact with pseudopodia extended from other cells, and animals that move
based on their awareness of other animals. Nonlocal integro-PDE models have been used to investigate contact
attraction and repulsion in cell populations in 1D. In this paper, we generalise the analysis of pattern formation
in such a model from 1D to higher spatial dimensions. Numerical simulations in 2D demonstrate complex
behaviour in the model, including spatio-temporal patterns, multi-stability, and patterns with wavelength and
shape that differ significantly depending on whether interactions are attractive or repulsive. Through linear
stability analysis in 𝑁 dimensions, we demonstrate how, unlike in local Turing reaction–diffusion models,
the capacity for pattern formation fundamentally changes with dimensionality for this nonlocal model. Most
notably, pattern formation is possible only in higher than one spatial dimension for both the single species
system with repulsive interactions, and the two species system with ‘run-and-chase’ interactions. The latter case
may be relevant to zebrafish stripe formation, which has been shown to be driven by run-and-chase dynamics
between melanophore and xanthophore pigment cells.
1. Introduction

Biological development primarily occurs in two or three spatial
dimensions. Mathematical models of biology must therefore balance
the analytical and numerical challenges associated with these higher
dimensions, against the ability to capture the essential driving mech-
anisms [1]. Most initial proof of concept papers for pattern formation
models choose the simplicity of a 1D domain. In the context of canon-
ical local reaction–diffusion models, this can be justified by linear
theory, where dispersion relations are qualitatively the same for any
number of dimensions [2]. Of course, the nonlinear analysis and the
possible shapes of patterns does change with dimensionality. A key
example is the distinction between spots and stripes in 2D that does not
exist in 1D [3]. Conversely, the impact of different spatial dimensions
on nonlocal models of biological self-organisation, particularly in terms
of linear stability and capacity for pattern formation, is understudied.

In this work, we look at the highly influential nonlocal attraction
and repulsion model for cell populations introduced by Painter et al.
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[4], based on the earlier model by Armstrong et al. [5]. We generalise
their analysis of pattern formation of cell aggregates from 1D to 𝑁
dimensions (𝑁D), motivated by 2D and 3D biological applications.
Most studies analysing the stability of related models only examine
the 1D case, with the notable exception of Dyson et al. [6], which
takes a functional analytical viewpoint and does not consider dispersion
relations, for instance.

Distinct from models in which the nonlocality features only in
reaction-kinetics, for example Britton [7] and Maruvka and Shnerb
[8], the Painter et al. [4] and Armstrong et al. [5] models incorporate
nonlocality purely through cell-migration in an advection term. These
latter nonlocal models thus lie within the broader context of a shift
in focus in the field of pattern formation from biochemical reaction-
kinetics to transport and migration dynamics. Increasingly, an area
of active interest is highlighting that many biological pattern forming
processes and the predictions of corresponding theoretical models both
vailable online 29 October 2023
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heavily depend on the details of transport dynamics beyond simple
diffusion [9].

The Painter et al. [4] model assumes that agents can interact nonlo-
cally, which is primarily interpreted in a developmental biology context
in terms of cells which can extend protrusions (pseudopodia) such as
filopodia or lamellipodia that transmit signals or force to other cells
which are relatively far from the original cell. In some contexts, such
as for the pigment cells of newts, these filopodia can extend up to ten
times the cell diameter [10]. The nonlocal interaction can be repulsive,
such as with fibroblast cells in the neural crest which move apart when
their lamellipodia come into contact [11]. It can also be attractive,
for example representing adhesion between cells. In fact, Villa et al.
[12] use such an approach to incorporate adhesion in their model of
vasculogenesis, the de novo formation of blood vessels.

Nonlocal transport models are also used in the context of ecology,
where animal populations form territorial patterns driven by nonlocal
interactions [13,14]. Animal swarms, such as flocks of birds or swarms
of locusts, are also modelled using a similar framework, with inves-
tigations by Mogilner and Edelstein-Keshet [15] predating the work
of Armstrong et al. [5]. For a recent example and a brief review of
swarming models, see Georgiou et al. [16]. Nonlocality in ecology can
take the form of direct long-ranged interaction mediated by sight or
smell, or indirect interaction through leaving scent markings or through
retained memory of previous encounters between animals.

A significant application of nonlocal transport models in the context
of pattern formation is to the development of zebrafish stripes. Ze-
brafish are model species commonly used to study pattern formation in
developmental biology due to the availability of their mutant types, the
comprehensive understanding of their genome, and the ability for their
stripes to regenerate in adults [9]. Yamanaka and Kondo [17] proposed
that these stripes are primarily formed through nonlocal ‘run-and-
chase’ interactions between two species of pigment cell: xanthophore
cells extend pseudopodia to melanophore cells and are attracted to-
wards melanophores, whilst melanophores are repelled away from the
xanthophores. With this in mind, Painter et al. [4] analysed their own
model in 1D, but found that purely run-and-chase dynamics with two
species could not drive pattern formation. In this work, we investigate
whether this capacity for pattern formation changes with the intro-
duction of two or more spatial dimensions. Furthermore, we examine
not only run-and-chase dynamics, but all combinations of attractive
and/or repulsive interactions with general interaction kernels for both
the single species and two species cases.

We begin with the single species case in 𝑁D, defining the model
n Section 2. In Section 3 we perform linear stability analysis, making
se of hyperspherical Bessel functions to derive the dispersion relation,
hich we then summarise and analyse in Section 4 to gain insight
n the conditions for pattern formation. In Section 5 we present a
hysical interpretation of the results to intuitively explain the effect of
imensionality on pattern formation. In Section 6 we present numerical
imulations of the 2D case to validate the predictions of linear instabil-
ty and explore beyond the linear regime. Then, in Section 7, we apply
ll of these techniques to investigate the two species case. Finally, in
ection 8, we discuss the significance of our findings.

. Model in 𝑵 dimensions

We nominally interpret the following model in a developmental
iology context, in which the agents are cells with nonlocal terms rep-
esenting pseudopodia induced interactions. However, due to the gen-
rality of each term, the model could apply to a general class of systems
n which agents diffuse and interact through nonlocal advection.

We study the continuum model introduced in Painter et al. [4]
escribing the time evolution of the population density, 𝑢(𝒙, 𝑡), for a
ingle species of cell at position 𝒙 ∈ R𝑁 and time 𝑡. An infinite domain
s chosen in order to focus on patterning due to nonlocal interactions,
ather than geometry or boundary conditions. In the model, cells can
2

iffuse, proliferate and die, and interact nonlocally. This nonlocal
nteraction induces a flux per unit cell density at (𝒙, 𝑡) given by

(𝒙, 𝑡) = 𝑝(𝑢(𝒙, 𝑡))𝜇 ∫R𝑁
𝒔̂ 1
𝜉𝑁

𝛺̃
(

𝑠
𝜉

)

𝑔(𝑢(𝒙 + 𝒔, 𝑡))𝐝𝒔𝑵 . (1)

Here, the integral sums the flux per unit cell density at 𝒙 induced by
interactions from cells at every point 𝒙 + 𝒔, where 𝒔 ≡ |𝒔|𝒔̂ ≡ 𝑠𝒔̂.
Accordingly, 𝐝𝒔𝑵 is the 𝑁 dimensional volume element. The magnitude
of flux generated by cell density 𝑢 varies as some function 𝑔(𝑢). This
flux is assumed to be parallel to the direction of separation between
cells, hence the 𝒔̂ term in the integrand. How this interaction varies with
separation is characterised by the interaction kernel, 𝛺̃

(

𝑠
𝜉

)

, which is
ormalised without loss of generality such that

R𝑁
𝛺̃
(

𝑠
𝜉

)

𝐝𝒔𝑵 = 𝜉𝑁 , (2)

where 𝜉 is a characteristic length scale called the signalling range. The
overall magnitude of the generated flux scales with 𝜇, the interaction
strength, which also dictates the direction: 𝜇 > 0 corresponds to attrac-
tive interactions, whilst 𝜇 < 0 corresponds to repulsive interactions.
In line with Painter et al. [4] we focus on the case where 𝛺̃

(

𝑠
𝜉

)

is a
non-negative function, and so either all cells are attracting or all cells
are repelling, for all separation distances. This choice does not affect
the dispersion relation we later derive. It is important to note that we
assume that the nonlocal interaction is isotropic in space, and so 𝛺̃

(

𝑠
𝜉

)

s a function of only the magnitude of separation, 𝑠. Finally, the flux is
regulated by some packing function, 𝑝(𝑢), representing, for example,
contact inhibition and, more generally, preventing infinite densities
forming at a point.

The total flux of cells at (𝒙, 𝑡) due to the nonlocal interaction is then
taken as proportional to 𝑢(𝒙, 𝑡)𝑭 (𝒙, 𝑡), where 𝑭 (𝒙, 𝑡) is given by Eq. (1).

he divergence, 𝛁⋅, of this flux thus contributes to the time evolution
f the density, given by

𝜕𝑢
𝜕𝑡

= ∇2𝑢 + ℎ(𝑢) − 𝛁 ⋅
(

𝑢𝑝(𝑢)
𝜇
𝜉𝑁 ∫R𝑁

𝒔̂ 𝛺̃
(

𝑠
𝜉

)

𝑔(𝑢(𝒙 + 𝒔, 𝑡))𝐝𝒔𝑵
)

, (3)

where 𝑢 = 𝑢(𝒙, 𝑡), unless explicitly specified. Diffusion is incorporated
through the Laplacian. Local cell proliferation and death is included
via the function ℎ(𝑢). We specify that these proliferation-death kinetics
have a positive equilibrium at 𝑢 = 𝑈 where ℎ(𝑈 ) = 0 and 𝜕ℎ(𝑢)

𝜕𝑢
|

|

|𝑈
< 0.

dditionally we focus on the case where 𝑝(𝑈 ) ≥ 0 and 𝜕𝑔(𝑢)
𝜕𝑢

|

|

|𝑈
> 0. These

two inequalities are not required for the dispersion relation we derive
in the stability analysis, however if 𝑝(𝑈 ) 𝜕𝑔(𝑢)𝜕𝑢

|

|

|𝑈
< 0 then some of the

predicted behaviour of attractive and repulsive interactions would be
swapped. The first inequality is the statement that (at density 𝑈) the
packing forces, which are a reactive normal force, cannot be actively
stronger than the nonlocal interaction against which they are reacting,
and hence cannot reverse the direction of the flux of cells. The second
inequality specifies that (at density 𝑈), the higher the density of cells in
a region, the stronger the interaction from that region. Both inequalities
are reasonable assumptions for most models.

For conciseness Eq. (3) is already non-dimensionalised, as in this
work we are investigating the underlying dynamics and stability of
such models, rather than strictly modelling a specific biological system.
The population density 𝑢 should be thought of as relative to some
packing density scale, whilst distances are relative to some reference
length scale, and the nonlocal flux and proliferation-death kinetics have
timescales relative to the timescale dictated by diffusion. For detailed
discussion of the non-dimensionalisation, see [4].

In contrast to standard Turing patterning systems [2,18], the model
defined by Eq. (3) can support pattern formation even with just a
single species. The conditions under which this pattern formation can
occur, and the character of the patterns, was extensively explored in [4]
in 1D. Here we perform investigations in 𝑁D, which allows more
concise analysis of the biologically relevant 2D and 3D cases as well
as providing clearer insight into the underlying effects of changing the
number of spatial dimensions.

We begin these investigations with linear stability analysis.
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3. Derivation of dispersion relation

Following the standard procedure when determining the conditions
for pattern formation [2,19], we linearise our integro-PDE about the
positive spatially uniform steady state 𝑢(𝒙, 𝑡) = 𝑈 , and consider whether
a small heterogeneous perturbation such that 𝑢(𝒙, 𝑡) = 𝑈 + 𝑢̃(𝒙, 𝑡), where
𝑢̃(𝒙, 𝑡)| ≪ 1, will decay back to homogeneity or grow. From Eq. (3)
e see that the homogeneous steady state is at the equilibrium of the
roliferation-death kinetics, i.e. ℎ(𝑈 ) = 0. Linearising about this state

gives, to leading order,

𝜕𝑢̃
𝜕𝑡

= ∇2𝑢̃ + ℎ′(𝑈 )𝑢̃ − 𝑈𝑝(𝑈 )𝑔′(𝑈 )
𝜇
𝜉𝑁

𝛁 ⋅
(

∫R𝑁
𝒔̂ 𝛺̃

(

𝑠
𝜉

)

𝑢̃(𝒙 + 𝒔, 𝑡)𝐝𝒔𝑵
)

,

(4)

here ℎ′(𝑈 ) ≡ 𝜕ℎ(𝑢)
𝜕𝑢

|

|

|𝑈
and 𝑔′(𝑈 ) ≡ 𝜕𝑔(𝑢)

𝜕𝑢
|

|

|𝑈
.

We can see that for a spatially homogeneous solution to Eq. (4),
nly the ℎ′(𝑈 ) term is non-zero. We consider a stable equilibrium of
he proliferation-death kinetics, so that ℎ′(𝑈 ) < 0, and thus the system

is stable to spatially homogeneous perturbations, in analogue with the
standard Turing instability.

For spatially heterogeneous solutions to Eq. (4), we use the stan-
dard technique of expanding into independent modes of the form
𝑢̃ = 𝑢0𝑒𝑖𝒌⋅𝒙𝑒𝜆𝑡, with wave-vector 𝒌 and growth rate 𝜆. This yields the
dispersion relation

𝜆 = −𝑘2 + ℎ′(𝑈 ) − 𝑈𝑝(𝑈 )𝑔′(𝑈 )
𝜇
𝜉𝑁

𝑘𝑖∫R𝑁
(𝒌̂ ⋅ 𝒔̂) 𝛺̃

(

𝑠
𝜉

)

𝑒𝑖𝒌⋅𝒔𝐝𝒔𝑵 , (5)

here 𝒌 ≡ 𝑘𝒌̂.
It is important to note that Eq. (5) relies on the use of either: (1)

n infinite domain, or (2) periodic boundary conditions on a finite
ectangular domain with 𝛺̃

(

𝑠
𝜉

)

having compact support (with a small
nough support compared to the domain lengths to prevent self inter-
cting points). A finite domain without periodic boundary conditions
ould imply that the limits, and therefore value, of the integral in this
quation would be dependent on 𝒙, which invalidates the expansion in
erms of spatial modes. The linear analysis of the model for different
oundary conditions and geometries is left for future work. As previ-
usly noted, we assume an infinite domain, 𝒙 ∈ R𝑁 . The choice of

periodic boundary conditions on a finite domain would yield the same
dispersion relation, but with the added constraint that 𝒌 can only take
alues that correspond to integer numbers of wavelengths spanning the
omain, i.e. 𝑘𝑖 =

2𝜋
𝐿𝑖
𝑛, where 𝑘𝑖 is the component of 𝒌 in the direction

arallel to an axis of the domain, and 𝐿𝑖 is the length of the domain
long this axis.

To evaluate the dispersion relation, Eq. (5), we note that the nonlo-
al term is proportional to the 𝑁D Fourier transform of a radial vector
unction with isotropic argument, 𝒓̂ 𝛺̃

(

𝑟
𝜉

)

. To evaluate this, we first
consider the simpler case of an isotropic scalar function, 𝑓 (𝑟), and show
that these Fourier transforms can be naturally described in terms of
hyperspherical Bessel functions with hyperspherical Hankel transforms.

3.1. 𝑁D Fourier transform of 𝑓 (𝑟)

The 𝑁D Fourier transform of an isotropic function 𝑓 (𝑟) is defined as

𝑓 (𝑘) = ∫R𝑁
𝑓 (𝑟)𝑒𝑖𝒌⋅𝒓𝐝𝒓𝑵 , (6)

which is known [20] to be equal to the Hankel transform given by

𝑓 (𝑘) =
( 1
𝑘

)

𝑁
2 −1

(2𝜋)
𝑁
2
∫

∞

0
𝑟
𝑁
2 𝑓 (𝑟)𝐽𝑁

2 −1(𝑘𝑟)d𝑟, (7)

where 𝐽𝛼(𝑥) is the 𝛼 order Bessel function of the first kind.
We consider this transform in the context of hyperspherical Bessel

functions, which are an 𝑁D generalisation of Bessel functions, defined
by Avery and Avery [21] and Wen and Avery [22] as

𝑗(𝑁)
𝑙 (𝑥) ≡ 𝐴𝑁

𝐽𝑙+𝑁
2 −1(𝑥)

𝑁 , (8)
3

𝑥 2 −1
here 𝑙 ∈ N ∪ {0}. For convenience, we will use the normalisation
𝑁 = 𝛤

(

𝑁
2

)

2
𝑁
2 −1 so that 𝑗(𝑁)

0 (0) = 1, where 𝛤 is the gamma function.
In this case, Eq. (7) becomes

̃(𝑘) = 2𝜋
𝑁
2

𝛤
(

𝑁
2

) ∫

∞

0
𝑓 (𝑟) 𝑟𝑁−1 𝑗(𝑁)

0 (𝑘𝑟)d𝑟. (9)

In other words, the 𝑁D Fourier transform of an isotropic scalar function
is equivalent to a zeroth order hyperspherical Hankel transform.

In 1D, 𝑗(1)0 (𝑥) = cos(𝑥) and the hyperspherical Hankel transform
reduces to a Fourier cosine transform. In 2D, 𝑗(2)0 (𝑥) = 𝐽0(𝑥) and so
he transform is the canonical zeroth order Hankel transform. Similarly
n 3D, 𝑗(3)0 (𝑥) = 𝑗0(𝑥) ≡ sin(𝑥)

𝑥 , which is the zeroth order spherical
Bessel function, and so the transform is a zeroth order spherical Hankel
transform.

With this result for the transform of 𝑓 (𝑟), we can find the relevant
ransform for 𝒓̂𝑓 (𝑟), which matches the form in our dispersion relation.

.2. 𝑁D Fourier transform of 𝒓̂𝑓 (𝑟)

Many of the relationships between standard Bessel functions of
ifferent orders 𝑙 also apply for hyperspherical Bessel functions. For
xample, the derivative of a zeroth order Bessel function is the negative
f a first order Bessel function, d𝐽0(𝑥)

d𝑥 = −𝐽1(𝑥), and this is also
true for hyperspherical Bessel functions. We can prove this using a
well documented recurrence relation for standard Bessel functions,
d
d𝑥

(

𝐽𝛼 (𝑥)
𝑥𝛼

)

= − 𝐽𝛼+1
𝑥𝛼 , with the definitions in Eq. (8) such that

d
d𝑥

𝑗(𝑁)
0 (𝑥) = 𝐴𝑁

d
d𝑥

(𝐽𝑁
2 −1(𝑥)

𝑥
𝑁
2 −1

)

= −𝐴𝑁

𝐽𝑁
2
(𝑥)

𝑥
𝑁
2 −1

= −𝑗(𝑁)
1 (𝑥). (10)

This relation is useful for determining the 𝑁D Fourier transform,
𝑭̃ (𝒌), of a radial vector function with isotropic argument, 𝒓̂𝑓 (𝑟), which
is given by

𝑭̃ (𝒌) = ∫R𝑁
𝒓̂𝑓 (𝑟)𝑒𝑖𝒌⋅𝒓𝐝𝒓𝑵 . (11)

Implicit in the working presented below is sufficient smoothness of
the integrands to allow the commutation of limiting processes. Then,
by using the gradient in 𝑘-space, 𝛁𝑘, we can deduce

𝑭̃ (𝒌) = −𝑖𝛁𝑘 ∫R𝑁

𝑓 (𝑟)
𝑟

𝑒𝑖𝒌⋅𝒓𝐝𝒓𝑵 . (12)

Now as 𝑓 (𝑟)
𝑟 is itself an isotropic function, we can use the result of

Section 3.1 to write

𝑭̃ (𝒌) = −𝑖𝛁𝑘
2𝜋

𝑁
2

𝛤
(

𝑁
2

) ∫

∞

0

𝑓 (𝑟)
𝑟

𝑟𝑁−1 𝑗(𝑁)
0 (𝑘𝑟)d𝑟

= −𝒌̂ 𝑖 2𝜋
𝑁
2

𝛤
(

𝑁
2

) ∫

∞

0

𝑓 (𝑟)
𝑟

𝑟𝑁−1
[ 𝜕
𝜕𝑘

𝑗(𝑁)
0 (𝑘𝑟)

]

d𝑟

= 𝒌̂ 𝑖 2𝜋
𝑁
2

𝛤
(

𝑁
2

) ∫

∞

0
𝑓 (𝑟) 𝑟𝑁−1 𝑗(𝑁)

1 (𝑘𝑟)d𝑟.

(13)

Thus, the 𝑁D Fourier transform of a general function 𝒓̂𝑓 (𝑟) has direc-
tion parallel to 𝒌 and magnitude equal to the first order hyperspherical
Hankel transform of 𝑓 (𝑟).

In 1D, 𝑗(1)1 (𝑥) = sin(𝑥) and we have the Fourier sine transform. In 2D,
𝑗(2)1 (𝑥) = 𝐽1(𝑥) and so the transform is the canonical first order Hankel
transform. In 3D, 𝑗(3)1 (𝑥) = 𝑗1(𝑥) ≡

sin(𝑥)
𝑥2

− cos(𝑥)
𝑥 , which is the first order

spherical Bessel function, and corresponds to the first order spherical
Hankel transform.

For both 𝑓 (𝑟) in Eq. (9) and 𝒓̂𝑓 (𝑟) in Eq. (13) we have reduced
an 𝑁D integral to a 1D integral. In this process, the integral kernels



Mathematical Biosciences 366 (2023) 109093T.J. Jewell et al.

c
A
k
p
a
t
p

l
s
d

3

i

𝑖

𝑁

𝑗

f

s
d
a
s
a
i
a

3

n
s
s

𝑗

𝑗

a

Fig. 1. Plots of 𝑗(𝑁)
1 (𝑥) for the 𝑁 = 1, 2, 3 cases. 𝑗(1)1 (𝑥) = sin(𝑥), 𝑗(2)1 (𝑥) = 𝐽1(𝑥), and

𝑗(3)1 (𝑥) = 𝑗1(𝑥) =
1
𝑥2

sin(𝑥) − 1
𝑥
cos(𝑥).

hange from complex exponentials to hyperspherical Bessel functions.
ll angular information is then contained within these new integral
ernels. This angular information is intrinsic to, and changes with, the
articular number of dimensions 𝑁 , even when our original functions
re isotropic. Section 5 explores an intuitive physical picture for why
his angular information is dimensionally dependent and why it affects
attern formation.

With the above observations in mind, we should expect our bio-
ogical system to behave differently in different numbers of dimen-
ions. This is captured in the dispersion relation, which can now be
etermined using Eq. (13).

.3. Back to the dispersion relation

From the results of Section 3.2, we can evaluate the nonlocal term
n Eq. (5) as

∫R𝑁
(𝒌̂ ⋅ 𝒔̂) 𝛺̃

(

𝑠
𝜉

)

𝑒𝑖𝒌⋅𝒔𝐝𝒔𝑵 = − 2𝜋
𝑁
2

𝛤
(

𝑁
2

) ∫

∞

0
𝛺̃
(

𝑠
𝜉

)

𝑠𝑁−1 𝑗(𝑁)
1 (𝑘𝑠)d𝑠,

(14)

and so the dispersion relation becomes

𝜆 = −𝑘2 +ℎ′(𝑈 ) + 2𝜋
𝑁
2

𝛤
(

𝑁
2

) 𝑈𝑝(𝑈 )𝑔′(𝑈 )
𝜇
𝜉𝑁

𝑘∫

∞

0
𝛺̃
(

𝑠
𝜉

)

𝑠𝑁−1 𝑗(𝑁)
1 (𝑘𝑠)d𝑠.

(15)

3.4. Behaviour of 𝑗(𝑁)
1 (𝑥)

In order to interpret the dispersion relation, it is useful to under-
stand the overall behaviour of 𝑗(𝑁)

1 (𝑥), of which the 𝑁 = 1, 2, 3 cases
are plotted in Fig. 1.

Firstly, as illustrated in Fig. 1, 𝑗(𝑁)
1 (0) = 0 and

d𝑗(𝑁)
1 (𝑥)
d𝑥

|

|

|0
> 0 for all

. This can be seen by the function’s small argument asymptotic form,

(𝑁)
1 (𝑥) ≡ 𝛤

(𝑁
2

)

2
𝑁
2 −1

𝐽𝑁
2
(𝑥)

𝑥
𝑁
2 −1

∼
𝛤
(

𝑁
2

)

2
𝑁
2 −1

𝛤 (𝑁2 + 1)

(𝑥
2

)
𝑁
2 1

𝑥
𝑁
2 −1

∼ 𝑥
𝑁

,

(16)

in which we used the small argument asymptotic form for standard
Bessel functions, 𝐽𝛼(𝑥) ∼

1
𝛤 (𝛼+1)

(

𝑥
2

)𝛼
.

Secondly, considering the large argument approximation for Bessel
4

unctions, for which t
𝐽𝛼(𝑥) ∝
1
√

𝑥

[

sin(𝑥 + 𝜙𝛼) + 
(

𝑥−1
)]

when 𝑥 ≫ 𝛼2 − 1
4 , it follows that all

𝑗(𝑁)
1 (𝑥) are approximated by

𝑗(𝑁)
1 (𝑥) ∝ 1

𝑥
𝑁−1
2

[

sin(𝑥 + 𝜙𝑁 ) + 
(

𝑥−1
)]

, (17)

for 𝑥 ≫ 1
4 (𝑁

2 − 1). In essence, all 𝑗(𝑁)
1 (𝑥) oscillate as a sine wave, with

ome phase 𝜙𝑁 , enveloped by a negative power of 𝑥, with the power
ecreasing by a half with each added spatial dimension. Although these
pproximations have an unbounded relative error at the zeros of the
ine wave, due to the (𝑥−1) terms, the absolute error will be small
nd tends to zero as 𝑥 tends to infinity. For the purposes of this paper,
n which we will approximate integrals of 𝑗(𝑁)

1 (𝑥), only absolute errors
re important.

.5. Dependence on 𝜉

Finally, we highlight the relationship between the nonlocal sig-
alling range 𝜉 and the wavenumber 𝑘 in the dispersion relation. By
ubstituting 𝑠 = 𝑞𝜉, we can reparameterise the nonlocal term in Eq. (15)
uch that

1
𝜉𝑁

𝑘∫

∞

0
𝛺̃
(

𝑠
𝜉

)

𝑠𝑁−1 𝑗(𝑁)
1 (𝑘𝑠)d𝑠 = 1

𝜉
𝑘𝜉 ∫

∞

0
𝛺̃ (𝑞) 𝑞𝑁−1 𝑗(𝑁)

1 (𝑘𝜉𝑞)d𝑞

≡ 1
𝜉
𝐺(𝑘𝜉).

(18)

Here we see that all 𝑘 dependence takes the form of the product 𝑘𝜉.

4. Dispersion relation

For our nonlocal integro-PDE model in 𝑁 dimensions, defined by
Eq. (3), the dispersion relation between linear growth rate 𝜆 and spatial
mode 𝒌 is given by

𝜆(𝑘) = −𝑘2 + ℎ′(𝑈 ) (19)

+ 2𝜋
𝑁
2

𝛤
(

𝑁
2

) 𝑈𝑝(𝑈 )𝑔′(𝑈 )
𝜇
𝜉𝑁

𝑘∫

∞

0
𝛺̃
(

𝑠
𝜉

)

𝑠𝑁−1 𝑗(𝑁)
1 (𝑘𝑠)d𝑠, 𝑁 ∈ N

= −𝑘2 + ℎ′(𝑈 ) + 2𝜋
𝑁
2

𝛤
(

𝑁
2

) 𝑈𝑝(𝑈 )𝑔′(𝑈 )𝜇 1
𝜉
𝐺(𝑘𝜉), 𝑁 ∈ N

(20)

in which 𝑗(𝑁)
1 (𝑥) are the first order, 𝑁th dimensional hyperspherical

Bessel functions where

𝑗(1)1 (𝑥) = sin(𝑥), (21)
(2)
1 (𝑥) = 𝐽1(𝑥), (22)
(3)
1 (𝑥) = 𝑗1(𝑥) =

1
𝑥2

sin(𝑥) − 1
𝑥

cos(𝑥). (23)

Further, at 𝑥 = 0,

𝑗(𝑁)
1 (0) = 0, 𝑁 ∈ N, (24)

d𝑗(𝑁)
1 (𝑥)
d𝑥

|

|

|

|

|0
> 0, 𝑁 ∈ N. (25)

For 𝑥 ≫ 1
4 (𝑁

2 − 1) we can approximate,

𝑗(𝑁)
1 (𝑥) ∝ 1

𝑥
𝑁−1
2

sin(𝑥 + 𝜙𝑁 ), 𝑁 ∈ N, (26)

nd so for 𝑘𝑠 ≫ 1
4 (𝑁

2 − 1),

𝑠𝑁−1𝑗(𝑁)
1 (𝑘𝑠) ∝

( 𝑠
𝑘

)
𝑁−1
2 sin(𝑘𝑠 + 𝜙𝑁 ), 𝑁 ∈ N, (27)

o a good approximation.
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4.1. Analysis of dispersion relation

Here we have a dispersion relation that depends on diffusion
through the −𝑘2 term, proliferation-death through ℎ′(𝑈 ), and the non-
local interaction appears as a hyperspherical Hankel transform of the
nonlocal interaction kernel 𝛺̃

(

𝑠
𝜉

)

. The form of this transform is con-
rolled by the integral kernel, given by 𝑠𝑁−1 𝑗(𝑁)

1 (𝑘𝑠), and this depends
on the dimensionality of the system. For example, in 1D the transform
reduces to a Fourier sine transform, leading to the 1D dispersion
relation derived in Painter et al. [4]. In 2D and 3D, the integral kernels
respectively are 𝑠𝐽1(𝑥) and 𝑠2𝑗1(𝑥), corresponding to the first order
Hankel and first order spherical Hankel transforms. This dependence
on dimensionality arises because the integral transforms represent
summations of interaction signals originating from all directions in
space. Summations over a disk, for example, will behave differently
to summations over a line. Section 5 uses this physical picture to
intuitively explain some of the behaviour of our patterning system in
different dimensions. However, to precisely determine this behaviour,
we only have to study the properties of the integral transforms and
their corresponding hyperspherical Bessel functions.

Firstly, for all dimensions, 𝜆(𝑘) is always real, and so the wave-
modes are purely growing or decaying — we should expect to have
no temporal oscillations in the linear regime. Another notable feature is
that for all 𝑁 the homogeneous steady state’s stability to homogeneous
perturbations depends only on the stability of the proliferation-death
kinetics. This is evident from 𝑗(𝑁)

1 (0) = 0 which implies that from
Eq. (20) we have 𝜆(𝑘 = 0) = ℎ′(𝑈 ). We are interested in proliferation-
death kinetics with a stable equilibrium 𝑈 , and so 𝜆(𝑘 = 0) = ℎ′(𝑈 ) <
0.

Next, we can show that heterogeneous perturbations with infinitely
high frequency will decay, which is a requirement for a physically
realistic Turing patterning system. Eqs. (20) and (27) tell us that as
𝑘 → ∞, the nonlocal interaction term in the dispersion relation cannot
grow faster than 

(

𝑘
(

3
2−

𝑁
2

))

. For all 𝑁 , this grows slower than the

diffusion term, −𝑘2. Thus, as 𝑘 → ∞, 𝜆(𝑘) → −∞.
Additionally, this system can always have emerging spatial patterns,

provided the interaction strength 𝜇 is of sufficiently large magnitude
and appropriately positive or negative. For finite 𝑘, there will in general
always be some value of 𝑘 for which the nonlocal interaction term in
the dispersion relation is non-zero (for a non-zero interaction kernel).
This means there will always be some value of 𝜇 for which this
term is positive and outweighs the negative diffusion and proliferation
terms. In this case, 𝜆(𝑘) would be positive, and so a heterogeneous
perturbation would grow.

Together, the previous three observations tell us that this system
can have a Turing bifurcation for any number of dimensions. Whether
this occurs for attractive interactions (𝜇 > 0) or repulsive interactions
(𝜇 < 0) requires more analysis.

The fastest growing mode is simple to identify for parameters in
which the nonlocal interaction is dominant over diffusion, as in this
case we can approximate the growth rate by 𝜆(𝑘) ≈ 𝑈𝑝(𝑈 )𝑔′(𝑈 )𝜇 1

𝜉𝐺𝑁 (𝑘𝜉
s this is a function of the product 𝑘𝜉, its maximum is at 𝑘 ≈

1
𝜉 arg max𝑥𝐺𝑁 (𝑥) for attractive interactions, and 𝑘 ≈ 1

𝜉 arg min𝑥𝐺𝑁 (𝑥)
or repulsive interactions. Here, arg max𝑥𝐺𝑁 (𝑥) and arg min𝑥𝐺𝑁 (𝑥)
re positive real numbers that only depend on the dimensionality.
he wavelength of the initially emergent pattern is therefore directly
roportional to the nonlocal signalling range 𝜉 and insensitive to
hanges in any other parameter. This is consistent with what we might
ntuitively expect and is also observed in 1D in Painter et al. [4].

.2. Attractive nonlocal interactions

To have patterning for attractive nonlocal interactions (𝜇 > 0) the
yperspherical Hankel transform in Eq. (20) must be positive for some
5

> 0 as this would allow 𝜆(𝑘) to be positive for a sufficiently large |𝜇|.
e can show that this transform is indeed always positive for small
on-zero values of 𝑘 by looking at its derivative with respect to 𝑘:

𝜕
𝜕𝑘

[

∫

∞

0
d𝑠 𝛺̃

(

𝑠
𝜉

)

𝑠𝑁−1 𝑗(𝑁)
1 (𝑘𝑠)

]

|

|

|

|

|𝑘=0

= ∫

∞

0
d𝑠 𝛺̃

(

𝑠
𝜉

)

𝑠𝑁−1
𝜕𝑗(𝑁)

1 (𝑘𝑠)
𝜕𝑘

|

|

|

|

|𝑘=0
> 0,

(28)

here positivity is guaranteed by all terms in the integrand being
ositive.

We know that 𝑗(𝑁)
1 (0) = 0, which implies that the transform is equal

o zero at 𝑘 = 0 and thus positive for small positive 𝑘. Therefore,
or all 𝑁 , attractive interactions can support Turing patterning for a
ufficiently large interaction strength.

.3. Repulsive nonlocal interactions

In contrast to attractive interactions, patterning can only occur
or repulsive interactions (𝜇 < 0) when the hyperspherical Hankel
ransform in Eq. (20) is negative. We know from the above section
hat for small 𝑘 the transform is positive and has positive gradient with
espect to 𝑘. For 𝜇 < 0 this implies that 𝜆 is negative and decreasing for
mall 𝑘. Whether it will ever increase and be above zero (as 𝑘 increases)
epends on the interaction kernel.

From Fig. 1 we see that 𝑠𝑁−1𝑗(𝑁)
1 (𝑘𝑠) is oscillatory with 𝑠, and

e also know that the first half of its initial oscillation is positive.
herefore for the specific case of a monotonic interaction kernel, we
an determine the sign of the transform by comparing the contributions
rom the positive part of each oscillation of 𝑠𝑁−1𝑗(𝑁)

1 (𝑘𝑠) against the
ubsequent negative part. If the product 𝛺̃

(

𝑠
𝜉

)

𝑠𝑁−1 𝑗(𝑁)
1 (𝑘𝑠) decreases

in amplitude as 𝑠 increases, then the contribution from the positive
part of each oscillation will be larger than its subsequent negative part,
and thus the integral transform will be positive for all 𝑘. See Fig. 2
for a visual explanation. Similar arguments are used for the Fourier
transform in Tuck [23]. If the above condition is broken, and instead
the amplitude increased over some region, then the integral transform
is not guaranteed to be positive for all 𝑘, which is significant because
if any value of 𝑘 leads to a negative integral transform, then pattern
formation can occur (for sufficiently high |𝜇|).

With the above argument, and the 
(

𝑠
𝑁−1
2

)

amplitude scaling from

Eq. (27), it follows that: if 𝑠
𝑁−1
2 𝛺̃

(

𝑠
𝜉

)

is a non-increasing function,
then pattern formation with repulsive interactions is not possible. For
example, in 1D, non-increasing interaction kernels can never support
patterning for repulsive interactions. In contrast, in 2D, patterning with
repulsive interactions can occur, but only for interaction kernels that
decay slower than ( 1

√

𝑠
) over some region. For the boundary case

where 𝑠
𝑁−1
2 𝛺̃

(

𝑠
𝜉

)

is constant, the transform is non-negative because
the first peak in 𝑗(𝑁)

1 (𝑘𝑠) is proportionally larger than the first trough
for 𝑁 > 1 and equal to it for 𝑁 = 1. Hence the above wording of
‘non-increasing’ rather than ‘decreasing’. It is worth noting that all of
these arguments also apply when the interaction kernel has compact
support, such as the ‘top-hat’ kernel.

Compared to attractive interactions, which can enable patterning
for small 𝑘, repulsive interactions can only enable patterning at larger
values of 𝑘, because the hyperspherical Hankel transform is always
positive for small 𝑘. Thus, assuming all other parameters are the same,
repulsive interactions can form patterns with a shorter wavelength than
attractive interactions. A further corollary is that repulsive interactions
require a greater magnitude of interaction strength, |𝜇|, to overcome
the larger −𝑘2 diffusion term, in order to form patterns. Physically,
this corresponds to the stabilising effect of diffusion being stronger at
shorter length scales.

Most importantly, the inability for the 1D system to form pat-
terns with repulsive interactions and non-increasing interaction kernels
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Fig. 2. A schematic of the integrand of the hyperspherical Hankel transform,
𝛺̃
(

𝑠
𝜉

)

𝑠𝑁−1 𝑗(𝑁)
1 (𝑘𝑠), is plotted by the dashed line, for some decaying kernel. By

pairing adjacent positive regions to negative regions (colour matched), we see that
the total area is positive and so the integral is positive, when the amplitude of
𝛺̃
(

𝑠
𝜉

)

𝑠𝑁−1 𝑗(𝑁)
1 (𝑘𝑠) is non-increasing. However, if 𝛺̃

(

𝑠
𝜉

)

were to decay sufficiently

slowly (or even increase) over some region, then the amplitude of 𝛺̃
(

𝑠
𝜉

)

𝑠𝑁−1 𝑗(𝑁)
1 (𝑘𝑠)

could increase over this region, potentially allowing negative regions of the integrand
to outweigh positive regions, leading to a negative integral.

marks a fundamental difference between it and higher dimensional
systems. The mathematical source of this difference is that the first
order hyperspherical Hankel transform can only be negative for 𝑁 > 1,
assuming a non-increasing interaction kernel. In general, for a non-
increasing interaction kernel, increasing the number of dimensions
enables faster decaying interaction kernels to support patterning with
repulsive interactions. However, we must be careful not to assume
that this always implies that increasing dimensionality promotes pat-
tern formation with repulsive interactions. For specific model appli-
cations, the realistic form of an interaction kernel may also change
with dimensionality, and potentially counter the change in the integral
kernel.

4.4. Transport-only system

We now consider the specific case of ℎ(𝑢) = 0, also studied in Painter
et al. [4]. In this case, cells do not proliferate or die, instead only under-
going diffusive and nonlocal transport, thus conserving total mass. This
system can also admit pattern formation through Turing instabilities of
a homogeneous state 𝑈 , as seen from the dispersion relation, Eq. (20),
with ℎ(𝑢) = 0, which still permits 𝜆(𝑘) > 0 for some 𝑘 > 0. However,
a key distinguishing feature of the transport-only case is that there is
no longer a unique stable homogeneous steady state, 𝑈 , constrained by
the proliferation-death kinetics. Instead, 𝑈 is free to take any positive
value, and in practise it will be dictated by initial conditions. The
threshold for pattern-forming instability depends on this free parameter
𝑈 , and therefore on the initial conditions, or equivalently, the total
mass in the system.

5. Physical interpretation

The dispersion relation can be understood more intuitively in a
physical sense by comparing the magnitude and direction of the fluxes
induced by the nonlocal interactions at a single point. In order for a
heterogeneous perturbation to be stable, there cannot be a net flux of
cells away from regions of high density.

We can analyse these fluxes by first considering only the nonlocal
interaction with cell packing. In the original integro-PDE (Eq. (3)), the
effects of diffusion, proliferation, and nonlocal interaction with packing
6

contribute additively. In the linear dispersion relation, Eq. (20), these
processes similarly contribute additively and independently, and so
we can consider each process separately to investigate its effect on
stability.

5.1. 1D

For illustrative purposes, we first consider the simplest case of a
1D system with a top-hat function for the nonlocal interaction kernel,
which has the form

𝛺̃
(

𝑠
𝜉

)

=

{

𝛺0, 𝑠 ≤ 𝜉
0, 𝑠 > 𝜉.

(29)

Using the notation of Painter et al. [4], we call this the O1 kernel.
It allows constant interaction within a distance 𝜉 and zero interaction
beyond.

With this in mind, for a sinusoidal perturbation to the homogeneous
state with frequency 𝑘, we can compare the induced fluxes at an
arbitrary point 𝑝. Fig. 3(a)–(c) show such a point with the nearest high
density peak on its right (by symmetry the following argument will
also hold if the nearest peak was on its left). If the total flux to the
left is larger than the total flux to the right, then the net movement of
cells is from high density to low density and the pattern will decay
to homogeneity. If the opposite is true, then the amplitude of the
perturbation will continue to grow, with some upper limit due to cell
packing.

To determine the induced flux from each direction we simply sum
the number of cells to the left and right of point 𝑝 within distance 𝜉.
Fig. 3(a)–(c) illustrate how the number of cells on the right is always
larger than the number of cells on the left. The only exception is
when 𝜉 equals a whole number of periods of 𝑘, in which case they
are equal, and thus the net flux is zero, but any inclusion of diffusion
and/or proliferation-death will still destabilise the pattern. This is a
fine-tuning observation; however, with all other values of 𝜉, for an
attractive interaction, the greater number of cells to the right leads to a
net induced flux to the right, and so the perturbation can always grow.
Conversely, for repulsive interactions, the net flux at 𝑝 is to the left and
the pattern decays to homogeneity.

The above argument can be expressed mathematically via:

𝑭 ∝ 𝜇𝒙̂

[

∫

∞

0
𝛺̃
(

𝑥
𝜉

)

sin(𝑘(𝑥 + 𝑝))d𝑥 − ∫

0

−∞
𝛺̃
(

𝑥
𝜉

)

sin(𝑘(𝑥 + 𝑝))d𝑥

]

∝ 𝜇𝒙̂

[

∫

𝜉

0
sin(𝑘(𝑥 + 𝑝))d𝑥 − ∫

0

−𝜉
sin(𝑘(𝑥 + 𝑝))d𝑥

]

∝ 𝜇𝒙̂ 2 cos(𝑘𝑝) [1 − cos(𝑘𝜉)] .

(30)

As 𝑝 is defined to the left of the nearest peak, − 𝜋
2 < 𝑘𝑝 ≤ 𝜋

2 and thus
2 cos(𝑘𝑝) [1 − cos(𝑘𝜉)] ≥ 0. This shows that the contribution from the
right is larger than from the left, in this case with the equality applying
when 𝜉 = 2𝜋𝑛

𝑘 for 𝑛 ∈ N, as stated above.
If we generalise to decaying interaction kernels in which cells

further from 𝑝 induce lower flux at 𝑝, the same argument holds — the
contribution from the right of 𝑝 is always larger than the contribution
from the left, even if we allow the interaction to act over an infinite
range. Therefore in the general 1D case, attractive nonlocal interac-
tions promote pattern formation whilst repulsive nonlocal interactions
inhibit it. Including diffusion and/or proliferation-death only further
dissipates any heterogeneity,1 and so cannot enable pattern formation
with repulsive interactions.

1 This is true in the single species system. However with multiple
species, diffusion can promote heterogeneity through the classic Turing
mechanism [18].
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Fig. 3. Schematics illustrating the influence of cells within a signalling range on an arbitrary point in 1D and 2D. (a)–(c) show an example perturbation of the form 𝛿sin(𝑘𝑥),
with wavenumber 𝑘 and amplitude 𝛿, applied to a homogeneous state of density 𝑈 in a 1D system with nonlocal interactions. We consider the fluxes of cells at a point 𝑝 (dotted
line) induced by cells within a distance 𝜉 (purple shaded region). In these examples, 𝜉 is smallest in (a), larger in (b), and largest in (c), where it equals a whole period of the
perturbation. Thus, for (a), (b) the shaded area is larger to the right of 𝑝 than to the left, and for (c) the areas are equal. (d), (e) show a heatmap of the density profile in the
analogous 2D system with perturbation 𝛿 sin(𝑘𝑥𝑥) sin(𝑘𝑦𝑦) applied to the homogeneous state with density 𝑈 . We consider fluxes of cells at a point 𝒑 (crossed marker) induced by
cells within distance 𝜉 (green circle). 𝜉 is smaller in (d) than in (e). Additionally, (e) includes arrows demonstrating the direction of fluxes of cells at 𝒑 induced by cells at different
points (for a repulsive interaction).
Note: the arrows are displayed at the points where the signals originate but each flux contribution occurs at 𝒑.
Furthermore, we see from Fig. 3 that increasing 𝜉 has an identical
effect to increasing 𝑘 on the proportion of the pattern contained within
the scale of the interaction range, and therefore has the same effect
on stability, provided nonlocal transport dominates over diffusion and
proliferation-death kinetics. This is consistent with how the nonlocal
interaction term in the dispersion relation is a function of the product
𝑘𝜉 and how, when nonlocal transport dominates, the final pattern
wavelength is directly proportional to 𝜉.

All of the above conclusions are also predicted by the dispersion
relation. In fact, the integral in Eq. (30) is essentially the 1D hy-
perspherical Hankel transform. However, this physical interpretation
also allows us to more intuitively see why stability changes in higher
dimensions.

5.2. Higher dimensions

To extend this argument to 2D, consider the induced fluxes in the
𝑥 direction on point 𝒑 in Fig. 3(d), (e). In (d), there are many more
cells in the semicircle to the right of 𝒑 than in the semicircle to the
left. Therefore this scenario, in which 𝜉 is small, is similar to the 1D
case: attractive interactions will move cells at 𝒑 from lower density
to higher density, thereby promoting pattern formation. Conversely,
repulsive interactions will move cells at 𝒑 from higher density to lower
density, inhibiting any pattern formation.

However, as 𝜉 increases it becomes important to consider a funda-
mental difference between 2D and 1D: the induced fluxes are not all
parallel but instead point at different angles.

For the 𝜉 used in Fig. 3(e), the difference between the number of
cells on the left versus the right of 𝒑 is fairly small, and so although
there are still more cells to the right, the effect of the induced fluxes
pointing at different angles is sufficient to ensure that the total flux
induced by cells from the left is larger than by cells from the right. This
is because, as illustrated by the arrows in Fig. 3(e), fluxes induced by
cells that are further away horizontally from 𝒑 have larger horizontal
components (compared to their magnitude) than fluxes induced by
closer cells. This angular effect can reverse the previous results such
7

that patterns can be, instead, dissipated by attractive interactions and
promoted by repulsive interactions.

From Fig. 3(d), (e) we see that, as 𝜉 is increased, the reversal
of flux described above first occurs when 𝜉 is approximately large
enough to reach a second peak, i.e. when the pattern wavelength is
approximately equal to 𝜉. Hence, the wavelength of patterns generated
by repulsive interactions is approximately 𝜉. In contrast, attractive
interactions maximally reinforce pattern formation when 𝜉 is only large
enough to include the first peak, implying that patterns will have a
wavelength of approximately 2𝜉. This is indeed what we find from the
dispersion relation with the O1 kernel.

We can extend the same logic and conclusions to decaying inter-
action kernels with infinite range (i.e. without compact support) by
considering 𝜉 as a scale length instead of a cut off. Decaying kernels
correspond to cells that are further away from each other having
weaker interactions. If this decay is sufficiently fast, it can dominate the
effect of changing angle with distance, thereby prohibiting any pattern
formation with repulsive interactions. This is predicted in Section 4.3
through the statement that any kernel decaying faster than 𝑠

1−𝑁
2 cannot

support pattern formation with repulsive interactions.
In general, the angular effect described here is present in all dimen-

sions higher than 1, implying that patterning with repulsive interac-
tions is possible for all 𝑁 > 1. The exact form and extent of this angular
effect will also differ with dimensions, i.e. the sum of induced fluxes
from within a sphere on a 3D domain will not behave identically to
the above 2D example. All of this information is fully captured in the
dispersion relation through the integral kernel, 𝑠𝑁−1𝑗(𝑁)

1 (𝑘𝑠).

6. Numerical validation of instability & exploration beyond insta-
bility

6.1. Numerical methods

6.1.1. Numerical integration scheme
To validate our dispersion relation and explore pattern forming

behaviour beyond linear instability, we numerically integrate the full



Mathematical Biosciences 366 (2023) 109093T.J. Jewell et al.
Fig. 4. Simulation results for the 2D model, Eq. (31), with attractive interactions and relatively low proliferation, for each example interaction kernel. (a), (c), (e) heatmaps of
the final cell density 𝑢 at steady state. (b), (d), (f) the corresponding dispersion relations, with the analytical prediction (blue line) from Eq. (35) compared with estimates from
the simulation (red dots) calculated using Eq. (34) for each spatial mode 𝑘 supported on the finite domain. (a), (b) uses the O1 kernel; (c), (d) uses the O2 kernel; (e), (f) uses
the O3 kernel. All simulations ran to 𝑡 = 40 and used parameters: 𝑈 = 0.5, 𝜇 = 50, 𝜌 = 1, 𝜉 = 0.4, 𝐿 = 8.
integro-PDE (Eq. (3)) in 2D. As in Painter et al. [4] we choose logistic
growth for the proliferation-death kinetics, ℎ(𝑢) = 𝜌𝑢(1− 𝑢

𝑈 ), and a linear
packing function, 𝑝(𝑢) = 1 − 𝑢, which restricts 𝑈 < 1. We assume that
the induced flux increases linearly with cell density, 𝑔(𝑢) = 𝑢. As such,
we integrate

𝜕𝑢
𝜕𝑡

= ∇2𝑢+ 𝜌𝑢(1 − 𝑢
𝑈
) −𝛁 ⋅

(

𝑢(1 − 𝑢)
𝜇
𝜉2 ∫

𝐿
2

− 𝐿
2
∫

𝐿
2

− 𝐿
2

𝒔̂ 𝛺̃
(

𝑠
𝜉

)

𝑢(𝒙 + 𝒔, 𝑡)d𝑠𝑥d𝑠𝑦

)

.

(31)

As a proxy for an infinite domain we choose a square domain,
[0, 𝐿]2, with periodic boundary conditions, as these are less restrictive
on the possible allowed wavemodes than Neumann or Dirichlet con-
ditions, and thus minimise any effects of the boundary on the final
pattern. Painter et al. [4] make the same choice, so this also allows
for a more direct comparison. For initial conditions, we choose the
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homogeneous state 𝑢 = 𝑈 with a perturbation of Gaussian white
noise with zero mean and standard deviation 10−3. This choice of
perturbation ensures every possible wavemode is excited.

We use the method-of-lines, first discretising in space and then in-
tegrating the resulting ODEs with backwards differentiation formulae.
The latter is implemented through the 𝚒𝚗𝚝𝚎𝚐𝚛𝚊𝚝𝚎.𝚜𝚘𝚕𝚟𝚎_𝚒𝚟𝚙 function
from Python’s SciPy library [24]. For errors in the integration over
time, we choose 10−11 for both the relative and absolute tolerances.
For the spatial discretisation, we use 100 × 100 mesh points, having
verified that this captures the same behaviour as with any further
increases in precision. Notably, the nonlocal term in Eq. (31) is equiv-
alent to a convolution between 𝒔̂ 𝛺̃

(

𝑠
𝜉

)

and 𝑢(𝒙), and so we efficiently
compute this using fast Fourier transform methods with the convolution
theorem. The diffusion term is discretised using the standard centred
5-point stencil. All code and associated documentation can be found at
the repository [25].
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Fig. 5. Simulation results for the 2D model, Eq. (31), with repulsive interactions with the O1 kernel, for a range of proliferation rates. (a), (c), (e) heatmaps of the final cell
density 𝑢 at steady state. (b), (d), (f) the corresponding dispersion relations, with the analytical prediction (blue line) from Eq. (35) compared with estimates from the simulation
(red dots) calculated using Eq. (34) for each spatial mode 𝑘 supported on the finite domain. The proliferation-death rates are (a), (b) 𝜌 = 1; (c), (d) 𝜌 = 30; (e), (f) 𝜌 = 300. All
simulations ran to 𝑡 = 100 and used parameters: 𝑈 = 0.5, 𝜇 = −5000, 𝜉 = 1, 𝐿 = 2.5.
6.1.2. Estimating the dispersion relation from simulation
In order to test the dispersion relation, we use a method of comput-

ing the growth rate 𝜆𝒌 of a particular spatial mode 𝒌 directly from the
simulation. This is achieved by decomposing the density 𝑢(𝒙, 𝑡) during
the linear regime (i.e. at early time) into modes as

𝑢(𝒙, 𝑡) =
∑

𝒌
𝑀𝒌(𝑡)𝑒𝑖𝒌⋅𝒙, (32)

where 𝑀𝒌(𝑡) is the amplitude of each spatial mode 𝒌, and thus evolves
as

𝑀𝒌(𝑡) = 𝑀𝒌(0)𝑒𝜆𝒌𝑡, (33)

while in the linear regime. We can rearrange this to give

𝜆𝒌 = 1 log
(

𝑀𝒌(𝑡)
)

, (34)
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𝑡 𝑀𝒌(0)
which can be calculated directly from simulation — each 𝑀𝒌(𝑡), in-
cluding 𝑀𝒌(0), is calculated through a discrete Fourier transform of
the spatially discretised 𝑢(𝒙, 𝑡) at each time step.

In practise, we choose the time 𝑡 = 10−6 for this calculation to ensure
the amplitude of the perturbation is still small and the dynamics are
approximately linear. We have verified that the specific choice of 𝑡 does
not affect the results as long as it is sufficiently small (any 𝑡 < 0.01
is sufficient for any of the sets of parameters used in this paper, and
ensures the simulation is in the linear regime).

6.1.3. Example interaction kernels
For consistency with Painter et al. [4], we use the same three

examples of nonlocal interaction kernels; these are displayed in Table 1.
The O1 kernel is the ‘top-hat’ function, representing uniform signalling
within a given area and zero signalling outside that area. The O2 kernel
is the exponential decay function, representing a rapid decrease in
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Fig. 6. Cell density heatmaps at subsequent times from a simulation with (a)–(d) repulsive interactions, and (e)–(h) attractive interactions. For the repulsive case, perturbations
about the homogeneous steady state initially grow into a stripe pattern. The stripes then reduce in width, and can then collapse into perforated stripes. For the attractive case,
perturbations initially grow into a labyrinthine pattern, which then collapses into spots. Spots which are close together then coalesce, leaving a state with fewer spots. Parameters
for (a)–(d) are the same as in Fig. 5(a),(b), and for (e)–(h) are the same as in Fig. 4(c),(d).
Table 1
Table showing the O1-O3 interaction kernels, 𝛺̃

(

𝑠
𝜉

)

, and their respective first order
(standard) Hankel transforms, 𝐻1(𝑘; 𝜉).

O1 O2 O3

𝛺̃
(

𝑠
𝜉

)

=

{

1
𝜋
, 𝑠 ≤ 𝜉

0, 𝑠 > 𝜉
1
2𝜋
𝑒−

𝑠
𝜉 1

√

2𝜋3∕2

𝑠
𝜉

exp
(

− 1
2

(

𝑠
𝜉

)2
)

𝐻1(𝑘; 𝜉) = − 1
𝜋

𝜉
𝑘

[

𝐽0(𝑘𝜉) −
1
𝑘𝜉

∫ 𝑘𝜉
0 𝐽0(𝑝)𝑑𝑝

]

1
2𝜋

𝑘𝜉3

(1+𝑘2𝜉2 )3∕2
1

√

2𝜋3∕2
𝑘𝜉3exp

(

− 1
2
𝑘2𝜉2

)

interaction rate with increasing distance from the cell. Finally, the O3
kernel, unlike the other functions, is not monotonic and instead has a
maximum at a distance 𝜉 from the cell and a smooth drop off to zero
interaction at shorter or further distances. A kernel with this form was
also used in the animal swarming model of Mogilner and Edelstein-
Keshet [15]. Each kernel is appropriately normalised for the 2D case,
according to Eq. (2).

Specialising from Eq. (20), the dispersion relation in 2D with our
chosen 𝑝(𝑢), ℎ(𝑢), and 𝑔(𝑢) is given by

𝜆(𝑘) = −𝑘2 − 𝜌 + 2𝜋𝑈 (1 − 𝑈 )𝜇 𝑘
𝜉2

𝐻1(𝑘; 𝜉), (35)

where 𝐻1(𝑘; 𝜉) is the first order canonical Hankel transform of the
interaction kernel. This transform for each example kernel is shown
in Table 1. Out of these example kernels, only the O1 kernel has a
transform that can take negative values, and so only this kernel can
support pattern formation with repulsive interactions.

6.2. Simulation results

6.2.1. Steady state patterns
Figs. 4 and 5 show typical examples of the patterns generated by the

model in 2D. In all cases, we see that the dispersion relation derived
from the linear stability analysis is reproduced in the simulations and
accurately predicts the conditions for pattern formation. Most notably,
pattern formation is indeed possible with repulsive interactions, as
demonstrated in Fig. 5.

We find that repulsive interactions lead to apparent steady states of
stripes or perforated stripes. To corroborate that the perforated stripes
in Fig. 5(a) are an effective steady state, we carried out simulations
to 𝑡 = 100, where we found that |

𝜕𝑢(𝒙,𝒕)
𝜕𝑡 | < 2 × 10−10 at every spatial

point. For other parameter choices, we also observe perforated stripes
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that collapse to form a regular lattice of symmetric spots — this is
distinct from the spot patterns formed by attractive interactions, such
as in Fig. 4, which do not necessarily have a regular repeated structure.
For repulsive interactions with relatively high proliferation-death rates,
such as in Fig. 5(c),(e), we observe that stripes no longer necessarily
have equal width, and perpendicular stripes can stably coexist.

In contrast, for attractive interactions, stripes only appear to be
stable for parameters in which the density supported by proliferation
is close to the maximum density allowed by packing, i.e. when 𝑈 ≲
1. Otherwise, the attraction causes any initial stripes or labyrinthine
patterns to collapse into spots, as demonstrated in Fig. 6(e)–(h). Over
a longer timescale, these spots can merge, leaving a coarser pattern
than the initial instability predicted by linear theory. Repulsive inter-
actions, in contrast, appear to not enable this merging and coarsening
phenomenon, as shown in Fig. 6(a)–(d).

In general, we observe that repulsive interactions support shorter
wavelength patterns than attractive interactions, for a given signalling
range, 𝜉. This is partly caused by the nonlinear merging effect described
above, but it is also true at the level of linear stability. Attractive inter-
actions allow instabilities with smaller 𝑘 than repulsive interactions, as
explained in Section 4.3. From Eq. (35), we see that the fastest growing
wavemode occurs approximately at the first maximum of 𝑘

𝜉2
𝐻1(𝑘; 𝜉) for

attractive interactions and its first minimum for repulsive interactions.
For the O1 kernel in particular, these are approximately 𝑘 ≈ 1.05𝜋 𝜉 and
𝑘 ≈ 2.21𝜋 𝜉, respectively. As such, we might expect patterns to have a
wavelength of approximately 2𝜉 for attractive interactions and 𝜉 for
repulsive interactions. This is consistent with the simulations in Figs. 5
and 4(a).

Figs. 4 and 5 are examples of dynamics that appear to have reached
long time steady states. However, for other parameter choices, this
model also supports spatio-temporal patterns.

6.2.2. Spatio-temporal patterns
Whilst we do not observe any evolving spatio-temporal patterning

with repulsive interactions, we do observe it for the specific case
of attractive interactions with high proliferation. Fig. 7 shows two
such examples; we have confirmed numerically that this behaviour is
qualitatively similar for all three example interaction kernels. As both
the analytical and numerical results agree that linear growth rates 𝜆
are purely real, these spatio-temporal patterns must be a fundamentally
nonlinear effect. This is consistent with the fact that such behaviour in
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Fig. 7. Examples of spatio-temporal patterning in the 2D model, Eq. (31) with attractive interactions and high proliferation. Each row of subfigures shows results for a different
set of parameters. Within each row, each subfigure shows a heatmap of the cell density 𝑢 at a subsequent point in time. The top row simulation has lower proliferation, 𝜌 = 10,
than the bottom row simulation, 𝜌 = 20. Both simulations use parameters: O2 kernel, 𝑈 = 0.5, 𝜇 = 150, 𝜉 = 0.3, 𝐿 = 5. Animations of both simulations can be found at the
repository [25].
the simulation occurs at times significantly after the initial instability
of the homogeneous state.

The mechanism of formation for these patterns is the same as that
identified by Painter et al. [4] for the 1D case: when the proliferation
rate is high, new aggregates will form inside any regions of low density,
and then attract and coalesce with existing aggregates, thereby moving
and leaving behind new regions of low density in which new aggregates
form, continuing the dynamics indefinitely. A similar ‘emerging and
merging’ mechanism was previously shown to drive spatio-temporal
patterning in local Keller–Segel chemotaxis models in 1D [26].

In 2D, we can further categorise these spatio-temporal dynamics
into two qualitatively distinct types. The first, shown in Fig. 7(a)–
(d), features spontaneously forming spots that coalesce, forming new
spots. The second, shown in Fig. 7(e)–(h), occurs with an even higher
proliferation rate such that aggregates do not have time to fully coa-
lesce into distinct spots before they are pulled towards and connected
with new aggregates. The resulting dynamics then feature temporal
labyrinthine patterns that constantly move, connect, and break apart.
Notably, both of these patterns, as well as that shown in Fig. 8, bear a
striking resemblance to the spatio-temporal patterns generated by local
chemotaxis models in 2D, as seen in Aida et al. [27] and in our own
simulations of Kegel-Segel dynamics.

6.2.3. Multi-stability
Further increases in the proliferation rate, 𝜌, eventually lead to a

stable homogeneous steady state, as seen from Eq. (35). Physically, this
corresponds to cells that proliferate and die at such a high rate that all
regions on the domain rapidly return to the carrying capacity density,
𝑈 , regardless of transport effects. However, from simulations such as in
Fig. 8, we observe some parameter regimes in which large, nonlinear,
perturbations may lead to a stable evolving pattern, even when the
positive homogeneous steady state is linearly stable. Once again, the
character of this pattern can be seen as a continuation of the evolving
labyrinthine type (Fig. 7(e)–(h)) where the proliferation is now even
higher, causing all aggregates to be connected, creating an evolving
structure of low density holes.
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We have observed these multi-stable regimes for systems with at-
tractive interactions and a sufficiently high proliferation rate for linear
stability of the homogeneous state, but not so high as to induce a
single stable homogeneous steady state. Such multi-stability is indica-
tive of subcriticality in the Turing bifurcation, as observed in a similar
nonlocal advection–diffusion model in Giunta et al. [28], who use
weakly nonlinear analysis to investigate the criticality of the Turing
bifurcation.

6.2.4. Summary
In this section we have numerically verified the predictions of the

linear stability analysis for our single species model in 2D, including
the fact that repulsive nonlocal interactions can form patterns, which
was observed to not be possible in 1D by Painter et al. [4]. We find
that the wavelengths of patterns produced by repulsive interactions
are generally shorter than those of attractive interactions. The resulting
shapes are also more ordered, with stripes or spots in a regularly repeat-
ing structure, and no observed spatio-temporal behaviour. In contrast,
attractive interactions with high proliferation can drive spatio-temporal
patterning, which can also be multi-stable alongside the homogeneous
steady state, suggesting subcriticality of the Turing bifurcation. While
the above conclusions apply to our model with a single cell species,
many developmental processes in biology, such as zebrafish stripe
formation, are driven by the interactions of at least two different types
of cell.

7. Two species

Having examined the single species system, we now extend to two
species, showing how the linear stability analysis is easily adapted from
the single species case, and how there are some fundamental differences
in pattern formation going from 1D to higher dimensions.

In the two species model, nonlocal homotypic interactions can occur
between members of the same species and nonlocal heterotypic interac-
tions can occur between members of different species. Painter et al. [4]
showed that certain combinations of attractive and repulsive homotypic
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Fig. 8. Example of multi-stability in the 2D system. For a fixed set of parameters with attractive interactions and high proliferation: (a), the dispersion relation showing that all
modes linearly decay to the homogeneous state; (b), the heatmap of cell density for a simulation which uses a small perturbation and hence converges to the spatially homogeneous
steady state; (c), the heatmap of a large perturbation of cell density used as an initial condition for a simulation; (d)-(f) heatmaps of cell density at subsequent points in time after
the large perturbation. Parameters: O2 kernel, 𝑈 = 0.5, 𝜇 = 150, 𝜌 = 35, 𝜉 = 0.3, 𝐿 = 5. An animation can be found at the repository [25].
and heterotypic interactions do not permit pattern formation in the 1D
case. Here we show that, in higher spatial dimensions, any combination
can lead to pattern formation.

Noting that kinetics can be readily incorporated in the framework,
for definiteness, we immediately specialise to the transport-only case,
with no proliferation and death kinetics. Thus, the time evolution of
the population densities for two types of cell in this model, 𝑢(𝒙, 𝑡) and
𝑣(𝒙, 𝑡), is governed by the non-dimensional equations

𝜕𝑢(𝒙, 𝑡)
𝜕𝑡

=∇2𝑢 − 𝛁⋅
(

𝑢𝑝𝑢(𝑢, 𝑣)

[

𝜇𝑢𝑢

𝜉𝑁𝑢𝑢 ∫R𝑁
𝒔̂ 𝛺̃𝑢𝑢

(

𝑠
𝜉𝑢𝑢

)

𝑔𝑢𝑢(𝑢(𝒙 + 𝒔, 𝑡))𝐝𝒔𝑵

+
𝜇𝑢𝑣

𝜉𝑁𝑢𝑣 ∫R𝑁
𝒔̂ 𝛺̃𝑢𝑣

(

𝑠
𝜉𝑢𝑣

)

𝑔𝑢𝑣(𝑣(𝒙 + 𝒔, 𝑡))𝐝𝒔𝑵
])

𝜕𝑣(𝒙, 𝑡)
𝜕𝑡

=𝐷∇2𝑣 − 𝛁⋅
(

𝑣𝑝𝑣(𝑢, 𝑣)

[

𝜇𝑣𝑣

𝜉𝑁𝑣𝑣 ∫R𝑁
𝒔̂ 𝛺̃𝑣𝑣

(

𝑠
𝜉𝑣𝑣

)

𝑔𝑣𝑣(𝑣(𝒙 + 𝒔, 𝑡))𝐝𝒔𝑵

+
𝜇𝑣𝑢

𝜉𝑁𝑣𝑢 ∫R𝑁
𝒔̂ 𝛺̃𝑣𝑢

(

𝑠
𝜉𝑣𝑢

)

𝑔𝑣𝑢(𝑢(𝒙 + 𝒔, 𝑡))𝐝𝒔𝑵
])

,

(36)

where 𝐷 is the relative diffusion coefficient. Each nonlocal interaction
between a species and itself or another species has its own interaction
strength 𝜇𝑎𝑏, signalling range 𝜉𝑎𝑏, interaction kernel 𝛺̃𝑎𝑏, and source
function 𝑔𝑎𝑏, where 𝑎, 𝑏 ∈ {𝑢, 𝑣}. Additionally, each species can have its
own packing function 𝑝𝑎(𝑢, 𝑣), where 𝑎 ∈ {𝑢, 𝑣}.

7.1. Linear stability analysis

The linear stability analysis of Eq. (36) simply follows from the
single species case, in that the nonlocal term becomes a hyperspherical
Hankel transform of the interaction kernel in the dispersion relation.
We linearise about some homogeneous steady state (𝑈, 𝑉 ) such that
𝑢(𝒙, 𝑡) = 𝑈 + 𝑢̃(𝒙, 𝑡) and 𝑣(𝒙, 𝑡) = 𝑉 + 𝑣̃(𝒙, 𝑡), where (𝑈, 𝑉 ) are dictated by
the initial conditions. The dispersion relation is then given by

𝜆2 + (𝑘)𝜆 +(𝑘) = 0, (37)
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where

(𝑘) = 𝑘2(1 +𝐷) − 𝑘(𝛬𝑢𝑢 + 𝛬𝑣𝑣)

(𝑘) = 𝐷𝑘4 − 𝑘3(𝐷𝛬𝑢𝑢 + 𝛬𝑣𝑣) + 𝑘2(𝛬𝑢𝑢𝛬𝑣𝑣 − 𝛬𝑢𝑣𝛬𝑣𝑢)
(38)

in which each 𝛬𝑎𝑏 is the nonlocal term for each interaction and given by

𝛬𝑎𝑏 =
2𝜋

𝑁
2

𝛤
(

𝑁
2

) 𝐴𝑝𝑎(𝑈, 𝑉 )
𝜕𝑔𝑎𝑏
𝜕𝑏

|

|

|𝐵

𝜇𝑎𝑏
𝜉𝑁𝑎𝑏 ∫

∞

0
d𝑠 𝛺̃𝑎𝑏

(

𝑠
𝜉𝑎𝑏

)

𝑠𝑁−1 𝑗(𝑁)
1 (𝑘𝑠),

(39)

where 𝑎, 𝑏 ∈ {𝑢, 𝑣} with corresponding homogeneous states 𝐴,𝐵 ∈
{𝑈, 𝑉 }.

Eq. (37) is solved to give

𝜆± =
−(𝑘) ±

√

(𝑘)2 − 4(𝑘)
2

. (40)

Similarly to the single species case, this dispersion relation takes the
same form in the 𝑁D case as in the 1D case derived in Painter et al. [4],
but with hyperspherical Hankel transforms instead of just the Fourier
sine transform.

Pattern formation requires Re(𝜆+) > 0 for some 𝑘 > 0, which occurs
if and only if (𝑘) < 0 or (𝑘) < 0, for some 𝑘 > 0. Painter et al.
[4] show that this can happen in 1D (assuming all 𝑝𝑎(𝑈, 𝑉 ) 𝜕𝑔𝑎𝑏𝜕𝑏

|

|

|𝐵
>

0) for all combinations of attractive/repulsive interactions, except for
repulsive–repulsive homotypic and attractive–repulsive heterotypic in-
teractions. This exception corresponds to 𝜇𝑢𝑢, 𝜇𝑣𝑣 < 0 and 𝜇𝑢𝑣 < 0,
𝜇𝑣𝑢 > 0 (or 𝜇𝑢𝑣 > 0, 𝜇𝑣𝑢 < 0).

Their conclusion relies on the fact that the integral transforms of
the interaction kernels are always positive in 1D (for non-increasing
kernels). However, in 2D and above, this is no longer the case. Instead,
these integral transforms can be negative and so pattern formation can
occur for all combinations of interactions. This is the same mecha-
nism by which pattern formation in single species systems occurs for
repulsive interactions only in 2D or above.
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Fig. 9. Simulation results for the 2D two species model, Eq. (36), with repulsive–repulsive homotypic and attractive–repulsive heterotypic interactions. (b)–(f) heatmaps of the
cell density 𝑢 at subsequent times, illustrating the periodic oscillatory behaviour. Note that this shows half a period of oscillation, as the maxima and minima in (b) and (f) are
swapped; after the second half period, the pattern returns to (b). 𝑣 (not shown) similarly oscillates, but one quarter period behind 𝑢; for example, when 𝑢 looks like (f), 𝑣 looks
like (d). (a) the dispersion relation (solid line), which has one region of instability corresponding to the negative region of (𝑘) (dashed line). Parameters: 𝑈 = 0.25, 𝑉 = 0.25,
𝐷 = 1, 𝜇𝑢𝑢 = −2000, 𝜇𝑢𝑣 = −1000, 𝜇𝑣𝑢 = 1000, 𝜇𝑣𝑣 = −2000, 𝜉𝑢𝑢 = 0.75, 𝜉𝑢𝑣 = 1, 𝜉𝑣𝑢 = 1, 𝜉𝑣𝑣 = 0.75, 𝐿 = 2.5. An animation can be found at the repository [25].
Fig. 10. Simulation results for the 2D two species model, Eq. (36), with repulsive–repulsive homotypic and attractive–repulsive heterotypic interactions, with different parameter
values to Fig. 9. Heatmaps for the final stable pattern for (a) 𝑢, and (b) 𝑣. (c) the dispersion relation (solid line), which has one region of instability corresponding to the negative
region of (𝑘) (dashed line). Simulations ran to 𝑡 = 20 and used parameters: 𝑈 = 0.25, 𝑉 = 0.25, 𝐷 = 1, 𝜇𝑢𝑢 = −400, 𝜇𝑢𝑣 = −400, 𝜇𝑣𝑢 = 400, 𝜇𝑣𝑣 = −400, 𝜉𝑢𝑢 = 1, 𝜉𝑢𝑣 = 1, 𝜉𝑣𝑢 = 0.5,
𝜉𝑣𝑣 = 1, 𝐿 = 2.5.
It is perhaps unsurprising that patterning can be driven by repulsive–
repulsive homotypic interactions, given that we have shown that re-
pulsive interactions for an isolated single species can lead to patterns.
More notable is that attractive–repulsive heterotypic interactions, or
equivalently run-and-chase dynamics, alone may drive pattern for-
mation, contrary to results from Painter et al. [4], Woolley et al.
[29], Woolley [30]. However, this does require the function 𝛺̃𝑢𝑣

(

𝑠
𝜉𝑢𝑣

)

to be sufficiently different from 𝛺̃𝑣𝑢

(

𝑠
𝜉𝑣𝑢

)

such that one of their
hyperspherical Hankel transforms is positive and the other is negative
for some wavenumber. Biologically, this requirement is equivalent to
some asymmetry in the cross-species signalling/sensing process.

7.2. Numerical validation of instability

To validate our predictions numerically we look at Eq. (36) in 2D,
specifying the same packing and source functions as Painter et al. [4]:
𝑝 (𝑢, 𝑣) = 𝑝 (𝑢, 𝑣) = 1 − 𝑢 − 𝑣, 𝑔 (𝑢) = 𝑔 (𝑢) = 𝑢, 𝑔 (𝑣) = 𝑔 (𝑣) = 𝑣. We
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𝑢 𝑣 𝑢𝑢 𝑣𝑢 𝑣𝑣 𝑢𝑣
also choose O1 kernels for all interaction kernels. The system is then
integrated using the same numerical scheme as in Section 6.

Figs. 9, 10(c), and 11(c) show examples of numerical simula-
tions of systems with repulsive–repulsive homotypic and/or attractive–
repulsive heterotypic interactions. All example systems form patterns,
confirming our predictions that pattern formation is possible with such
interactions in 2D.

In contrast to the single species system, with two species the linear
growth rate 𝜆 can be complex, as seen by Eq. (40). When 𝜆 is complex
and Re(𝜆) > 0, the homogeneous state is destabilised into a temporally
oscillating spatially heterogeneous pattern. This is sometimes referred
to as a ’Turing–Hopf’ bifurcation [31] and sometimes as a ‘Turing-wave’
bifurcation [32], or simply a ‘wave’ bifurcation [33]. From Eq. (40) we
see that such bifurcations occur when (𝑘) passes through zero from
positive to negative with (𝑘) > 0, as in this case 𝜆+ will have a non-
zero imaginary part and its real part will go from negative to positive.
The model can exhibit such bifurcations in any number of spatial
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Fig. 11. Simulation results for the 2D two species model, Eq. (36), with attractive–repulsive heterotypic interactions and no homotypic interactions, i.e. run-and-chase dynamics.
(a), shows heatmaps of 𝑢 for the final stable pattern, whilst (b), shows the same for 𝑣. (c) shows the dispersion relation (solid line), which has one region of instability corresponding
to the negative region of (𝑘) (dashed line). Simulations ran to 𝑡 = 20 and used parameters: 𝑈 = 0.25, 𝑉 = 0.25, 𝐷 = 1, 𝜇𝑢𝑢 = 0, 𝜇𝑢𝑣 = −1000, 𝜇𝑣𝑢 = 1000, 𝜇𝑣𝑣 = 0, 𝜉𝑢𝑣 = 1, 𝜉𝑣𝑢 = 0.5,
𝐿 = 2.5.
dimensions, with Fig. 9 showing a 2D example. Being a linear effect,
this behaviour is distinct from the spatio-temporal patterns observed
for the single species system.

Static patterns are also possible for the two species model, through
the standard Turing bifurcation where Im(𝜆+) = 0. From Eq. (40) we
see that this bifurcation occurs when (𝑘) passes through zero from
positive to negative: (𝑘) = 0 implies 𝜆+ = 0, and (𝑘) < 0 implies
Re(𝜆+) > 0 and Im(𝜆+) = 0. Figs. 10(c) and 11(c) are examples
of these static patterns. In particular, Fig. 11(c) demonstrates static
stripe patterns that do not require any homotypic interactions and are
formed purely through attractive–repulsive heterotypic interactions,
i.e. through run-and-chase dynamics alone.

8. Discussion

To gain a better understanding of how cells self-organise into the
essential structures for biological development, it is crucial to identify
the key factors that influence cell aggregation. This paper’s primary
objective has been to explore the influence of spatial dimension on
pattern formation of cell aggregates within the nonlocal attraction and
repulsion model proposed by Painter et al. [4]. In particular, does
the inclusion of the full two or three spatial dimensions present in
real biological systems significantly alter the conditions for pattern
formation? To address this question, we employed a combination of
linear stability analysis in 𝑁D utilising hyperspherical Bessel functions,
along with numerical simulations in 2D for both the single species and
two species models.

Our findings reveal a significant feature of this nonlocal model:
in contrast to standard reaction–diffusion systems, its linear stabil-
ity fundamentally changes with the number of spatial dimensions.
Changing dimensionality thus not only affects the shapes of possible
patterns, but changes the very capacity for pattern formation itself,
as well as the capacity for linearised spatio-temporal dynamics. Our
results underscore the importance of considering 2D and 3D cases when
studying systems with nonlocal interactions, as simplistic 1D models
may overlook essential behaviours in biological systems.

That said, we have shown that the dispersion relation derived
in Painter et al. [4] for 1D generalises to a very similar form in 𝑁D,
for both the single species and two species models. Essentially, the only
change is the generalisation of the Fourier sine transform of the inter-
action kernel to a hyperspherical Hankel transform. This consistency
allowed us to show that patterning through a Turing bifurcation can
occur for this model in any number of dimensions, given appropriate
nonlocal interaction directions and strengths. For example, attractive
interactions between a single species can always form patterns, given
a sufficiently high interaction strength.

Additionally, for all 𝑁 , we have illustrated the mathematical mech-
anism by which a system dominated by nonlocal transport produces a
14

pattern with wavelength directly proportional to the signalling range.
We have shown how the proportionality constant depends only on the
dimensionality, the shape of the interaction kernel, and whether the
interactions are attractive or repulsive. This insensitivity to changes
in all other parameters is an essential trait for any mechanism in
developmental biology, in which structures with precise size have to
form in noisy environments.

However, as captured by the behaviour of hyperspherical Hankel
transforms, there are some fundamental differences in pattern forma-
tion in this model for different dimensions. We have shown that this
can be understood intuitively in terms of the flux induced by nonlocal
interactions pointing at different angles depending on the location of
the source of the signal. An important example of such a difference
is the ability for single species systems to form patterns driven by
repulsive interactions, which is only possible in two or more dimensions
and hence not observed in Painter et al. [4]. Some developmental
processes do feature a single type of cell which move apart when
contact is made between cell protrusions, such as with fibroblast cells
during neural crest development [11], although we are not claiming
that this particular example is reflected perfectly in the model.

Linear theory predicts that patterns generated by repulsive interac-
tions will have a shorter wavelength than those generated by attractive
interactions. With the O1 kernel, the wavelength is approximately
equal to the signalling range in the repulsive case and twice that in
the attractive case. In cellular systems, we might then expect the scale
of patterning to be roughly the length of a filopodium for repulsive
interactions and twice this length for attractive interactions.

Beyond linearity, our simulations show that attractive interactions
can enable aggregates to merge, further coarsening the pattern, and
potentially leaving aggregates unevenly spaced apart. Repulsive inter-
actions, on the other hand, seemingly do not enable merging and will
produce patterns with a regular repeated structure. Additionally, we
only observed spatio-temporal patterning in the attractive case. These
spatio-temporal patterns are driven by proliferation and resemble those
found in local chemotaxis models, as previously identified by [4] in
1D. Attractive systems can also feature multi-stability, with the possi-
bility of stable evolving patterns even whilst the homogeneous state
is linearly stable. Investigating such nonlinear behaviour analytically
presents a promising direction for future work. In particular, weakly
nonlinear analysis has been shown to be tractable for similar nonlocal
models [28]. Such analysis could potentially provide more definite
insight on which structures can form through attractive or repulsive
interactions, as well as revealing whether the Turing bifurcation is
supercritical or subcritical. Subcriticality would explain the observed
multi-stability and could also have important biological implications,
as it can enable robust high amplitude patterns to emergence from only
small changes in the underlying system [34].

Another significant difference between the 1D and higher dimen-
sional cases is the behaviour of the two species model with attractive–

repulsive heterotypic interactions or run-and-chase dynamics. Yamanaka
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and Kondo [17] proposed that such dynamics could underlie zebrafish
stripe formation. Despite this, Painter et al. [4] found from their analy-
sis of the 1D case that run-and-chase alone cannot produce patterns, and
his has been supported by studies of related models in 2D by Woolley
t al. [29] and Woolley [30]. Nevertheless, our work demonstrates that
n 2D, which more accurately represents skin, the Painter et al. [4]
odel actually predicts that such dynamics alone are sufficient to drive
attern formation.

However, this does require some asymmetry in the cross-species
ignalling ranges or interaction kernels. This could explain why Wool-
ey et al. [29] and Woolley [30] do not predict such patterning —
hey implicitly assume symmetric signalling distributions. In fact, it
s possible to see that the inclusion of asymmetric signalling would
ndeed enable the similar nonlocal model of Potts and Lewis [13] to
roduce patterns with run-and-chase dynamics, where previously such
atterning was not predicted from the restricted set of cases examined.
n zebrafish, asymmetric signalling would correspond to the ratio of the
esponse by xanthophores and the response by melanophores differing
n their dependence on separation distance. In this case, ‘response’
ould be measured as a magnitude of induced velocity or flux, or a
robability to move, for example.

A significant caveat to the application of the Painter et al. [4] model
o zebrafish is that the model assumes that the nonlocal interaction in-
uces flux parallel to the separation between cells. In contrast, zebrafish
elanophores have been observed to move away from xanthophores

n average in an anticlockwise direction [17]. Although we have
emonstrated that run-and-chase dynamics can drive patterning in 2D
where it was previously shown to not be possible in 1D), it is unclear
hether this result extends to interactions that induce a cellular flux

hat is not parallel to separation. Incorporating anisotropy into the
ramework, to model flux induced at different angles, would thus be

valuable avenue for future work. Woolley [30] has already shown
hat, in the limit of signalling range tending to zero, the choice of angle
an heavily affect the capacity for patterns to form and the shapes
hat they take, which include patterns that are typically not seen in
revious reaction–diffusion models. Anisotropy in a more generalised
odel could also be used to represent some bias of direction in the
omain which, biologically, could correspond to directed fibres in an
xtracellular matrix, for example.

Another possible direction for future work is to consider the model
n different geometries, which could be more biologically realistic
nd also could provide insight into the generality of our current re-
ults. In this work, we consider only an infinite domain or a finite
omain with periodic boundary conditions. Curved manifolds, such
s spheres or prolate ellipsoids, could thus be a natural extension as
hese shapes automatically feature such periodicity. Beyond periodicity,
ecent work [35,36] has focused on formulating models like Eq. (3)
n bounded domains with zero-flux and other boundary conditions,
ncluding in 2D [37]. These works largely focus on proving existence
nd well-posedness. To the best of our knowledge, investigation of
attern formation in these models through linear stability analysis has
ot yet been implemented.

In addition to providing biological and modelling insights, the
nalytical work in this paper has also demonstrated how hyperspherical
essel functions with hyperspherical Hankel transforms can be power-
ul tools for the linear stability analysis of integro-partial-differential
quations, in any number of dimensions. Our analysis can be directly
pplied to simplify the analysis of 2D and 3D models with equivalent
onlocal terms, such as in Villa et al. [12]. Furthermore, our analysis
s easily adapted to nonlocal models that do not feature a radial vector
̂, including those with nonlocal advection such as [13,14,38], and
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hose with nonlocal reaction-kinetics such as [7,8,39,40]. Extending
the linear analysis of these models from 1D to 𝑁D will simply use
hyperspherical Hankel transforms of order 𝑙 = 0, instead of the order
𝑙 = 1 used in our work. Integro-partial-differential-equations are also
used in contexts without physical space, such as evolutionary models
in ‘phenotype space’ [41–43], and hyperspherical Hankel transforms
could potentially be useful for extending these to higher dimensions.

Finally, to close, we briefly discuss the importance of understanding
the specifics of how nonlocal signalling varies with separation, for
each biological or ecological application. Regarding the model defined
by Eq. (3), we emphasise that the capacity for pattern formation is
dependent on the behaviour of the interaction kernel, and in particular,
whether 𝑠

𝑁−1
2 𝛺̃

(

𝑠
𝜉

)

increases over any region, as this dictates whether
the hyperspherical Hankel transform can be negative. The behaviour
of such interaction kernels depends on the given biological application,
specifically the mechanism by which signals are transmitted. For exam-
ple, we could construct a simplistic kernel for interactions caused by the
extension of filopodia by assuming that the filopodium has equal prob-
ability of being any length (up to a limit) and then touches all points
within the circle/sphere of this length with equal probability. In 2D a
filopodium that extends to distance 𝑠 might then sample any point on a
circle of circumference 2𝜋𝑠, and so the rate of interaction at a point at
his distance should decrease by a factor 1

2𝜋𝑠 . Similarly in 3D, the choice
of samples scales as the area of a sphere, 4𝜋𝑠2, and the interaction rate
hould decrease by a factor of 1

4𝜋𝑠2 . In general, this ‘splattergun’ effect
would correspond to a kernel that decays with a factor 

(

𝑠1−𝑁
)

. In this
case, 𝑠

𝑁−1
2 𝛺̃

(

𝑠
𝜉

)

is never an increasing function, so the hyperspherical
Hankel transform cannot be negative, and therefore pattern formation
cannot occur with repulsive interactions in a single species or run-and-
chase dynamics with two species. However, the above example is only a
very simplistic construction. Interaction kernels could equally also not
decay in the above way, such as if the filopodia have higher probability
of being a particular length, or if the filopodia could rotate at a faster
timescale than they extend, or if signalling was due to some chemical
released in all directions with activation only requiring a threshold
concentration to be detected. In these cases, the model could plausibly
predict pattern formation with repulsive interactions in a single species
or run-and-chase dynamics with two species. This illustrates how the
predictions of pattern formation in the model are dependent on the
specific details of the signalling mechanism.

Ultimately, we have shown in this work how pattern formation in a
nonlocal reaction–diffusion–advection model is intrinsically dependent
on the number of spatial dimensions, in a way which is not the case
for local models. This motivates the need for future nonlocal models to
reflect the dimensionality of their subject system. However, we should
also consider the biological detail of the interaction mechanism’s po-
tentially complicated dependence on distance. Such details can only
be properly understood through experiment or observation for each
specific biological application. This suggests that pattern formation
modelling should not merely focus on complex reaction kinetics with
simple diffusion, but also on the details of more complex transport
dynamics.
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