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Soliton approximation in continuum models of leader-follower behavior
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Complex biological processes involve collective behavior of entities (bacteria, cells, animals) over many
length and time scales and can be described by discrete models that track individuals or by continuum models
involving densities and fields. We consider hybrid stochastic agent-based models of branching morphogenesis
and angiogenesis (new blood vessel creation from preexisting vasculature), which treat cells as individuals that
are guided by underlying continuous chemical and/or mechanical fields. In these descriptions, leader (tip) cells
emerge from existing branches and follower (stalk) cells build the new sprout in their wake. Vessel branching
and fusion (anastomosis) occur as a result of tip and stalk cell dynamics. Coarse graining these hybrid models in
appropriate limits produces continuum partial differential equations (PDEs) for endothelial cell densities that are
more analytically tractable. While these models differ in nonlinearity, they produce similar equations at leading
order when chemotaxis is dominant. We analyze this leading order system in a simple quasi-one-dimensional
geometry and show that the numerical solution of the leading order PDE is well described by a soliton wave that
evolves from vessel to source. This wave is an attractor for intermediate times until it arrives at the hypoxic region
releasing the growth factor. The mathematical techniques used here thus identify common features of discrete
and continuum approaches and provide insight into general biological mechanisms governing their collective
dynamics.
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I. INTRODUCTION

The interplay between discrete and continuum approaches
informs our understanding of many biological processes, such
as morphogenesis [1–8], aggregation and swarming [9–14],
pattern formation [15,16], bacterial motion [17,18], tissue re-
pair [19–21], tumor invasion, and metastasis [2,22–24]. These
phenomena all display elements of collective behavior, in
which groups adopt unique behaviors not observed in smaller
numbers of individuals. This comprises a central area of in-
terest for soft and active matter physics, but collective cell
behavior has the additional complexity that cell groups have
the ability to adopt a wide variety of fluidlike, solidlike, or
even glasslike states by undergoing so-called flocking and
jamming transitions [25–29]. Consequently, the mechanisms
underlying collective phenomena remain poorly understood
in general. Some insight may be provided by mathematical
modeling, as it provides an abstract setting in which to eval-
uate different hypotheses. Two approaches are largely used
to represent cells in a collective. One approach, known as
discrete modeling, involves tracking the evolution of each
individual cell [30,31]. Due to the ability of these discrete
approaches to represent each member of a collective, many
biological mechanisms can be straightforwardly incorporated
into discrete approaches and be directly tested in the lab-
oratory. However, the long-time behavior of these models
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is usually difficult to ascertain without extensive and costly
computation. This motivates the second type of modeling ap-
proach, which involves representing the whole population as a
continuous function that evolves in space and time according
to a set of partial differential equations (PDEs). While con-
tinuum approaches typically describe the ensemble average
behavior of a collective, and hence cannot be used in general
to resolve individual cells, these models are much faster to
simulate, more amenable to analysis, and can provide insight
into the important mechanisms governing the phenomenon of
interest. For processes spanning many length and time scales,
a combination of discrete and continuum approaches can be
particularly useful.

An important example of a biological phenomenon in
which mathematical modeling has helped uncover impor-
tant underlying mechanisms is angiogenesis, the process
by which new blood vessels grow from existing vascula-
ture. This complex multiscale process is the basis of organ
growth and regeneration, tissue repair, and wound healing in
healthy conditions [32–38]. Disruptions to the natural balance
of pro and antiangiogenic factors, by contrast, are linked
with various pathological diseases such as cancer, diabetes,
and retinopathies [37,39–43]. Angiogenesis is triggered by
hypoxic (oxygen-lacking) cells that secrete diffusible growth
factors which travel to nearby primary blood vessels. The
binding of these growth factors to endothelial cells lining
the primary vessel causes the latter to detach, move toward
the hypoxic region, and build capillaries which transport
blood, oxygen and nutrients. A growing capillary is led by
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so-called “tip” cells that sense and move up the gradient of
growth factors, in a process known as chemotaxis, to reach the
hypoxic region. Stalk cells proliferate along the path of tip
cells and construct the nascent capillary. A tip cell may en-
counter another tip cell or growing capillary during the course
of migration; when it does so, it fuses with the object in a
process called “anastomosis” which results in the new vessel
forming a closed loop that supports blood flow. Tip cells may
also emerge along the length of capillaries, which enables the
creation of multiple branches in the new network.

Mathematical models of angiogenesis capture these
dynamics of cell movement, branching, and anastomosis
by describing tip and stalk cells as leaders and followers,
respectively. In addition to angiogenesis, such leader-follower
frameworks are important in explaining aspects of morpho-
genesis [3,4,6,7] and wound healing [44–46]. Multiple types
of frameworks have been constructed to describe angiogene-
sis, ranging from continuum approaches described by PDEs
[47–52] to discrete approaches using agent-based models
(ABMs) [43,53–63], mesoscale approaches relying on tools
from kinetic theory [64], or hybrid approaches combining
aspects of discrete and continuum frameworks to simulate
cells and their microenvironment [65–67]. One important dis-
crete model for angiogenesis, for instance, examined minimal
mechanisms that could lead to the branched vessel networks
resembling those observed in vivo [52]. Continuum models
of angiogenesis have also quantified how chemotaxis and
branching determined the speed and distribution of tip cells
[50]. For further information about mathematical modeling of
angiogenesis, we refer to the following reviews [52,68–78].

One drawback of many continuum models used to simu-
late angiogenesis is that the equations are constructed with
a phenomenological “top-down” approach, which involves
deducing the PDEs through principles such as the conserva-
tion of mass, energy, etc. For example, so-called “snail-trail”
models consider nonlinear stalk cell proliferation along tip
cell trajectories [48,50,73,79,80] and are inspired by math-
ematical frameworks used to study branching patterns in
fungal growth [81]. Consequently, these continuum models
can be difficult to link to the underlying biology and can be
deceptively difficult to analyze, even though they form a math-
ematically interesting paradigm for leader-follower behavior.
This motivated the derivation of “coarse-grained” PDEs,
which can be obtained by investigating the ensemble average
behavior of cell-based angiogenesis models using techniques
from statistical mechanics [74,82–95]. While different ABMs
can lead to quite different continuum equations [89,92],
methods from asymptotic analysis [95] show that there are pa-
rameter regimes for which these different continuum models
produce identical dynamics at leading order. These “leading
order” PDEs (LO-PDEs) suggest a shared set of mechanisms
that are inherent to the leader-follower dynamics exhib-
ited in angiogenesis and admit traveling wave solutions of
time-varying amplitude, which in certain cases may be ap-
proximated by self-similar solutions.

Our main result in this paper is that the LO-PDEs in sim-
ple geometries have solitonlike solutions with slowly varying
amplitudes, similar to those observed in [90]. We consider a
two-dimensional (2D) scenario in which the primary blood
vessel emitting tip cells and the hypoxic region is situated

along separated parallel vertical lines, such that we may
average the PDEs along the vertical direction to obtain a
1D approximation. Numerical simulations of the resulting
LO-PDEs show that solitons are attractors for intermediate
times until they arrive at the neighborhood of the hypoxic
region. Solitonlike solutions were previously found in con-
tinuum PDE descriptions of hybrid stochastic angiogenesis
models [90,91,94].

The paper is organized as follows. In Sec. II, we de-
scribe the leading order dynamics of different coarse-grained
discrete angiogenesis models and its relation to a hybrid
stochastic model. In Sec. III, we describe the approximation
of the numerical solutions of the LO-PDEs by a solitonlike
wave. We derive the collective coordinate equations (CCEs)
that govern the shape and velocity of the soliton. For a given
simple linear profile of the tumor angiogenic factor (TAF), we
find in Sec. IV that the soliton position is well approximated
by the CCEs but its shape is not. This shortcoming stems from
ignoring the transversal modulation of the TAF profile in a 2D
setting. Section V shows that the CCEs accurately predict the
shape and motion of the soliton for a quasisteady Gaussian
TAF profile. This is true after a short transient formation
stage and until the soliton arrives at the tumor. Increasing
the distance between the primary vessel and tumor enlarges
the time interval over which the CCEs provide accurate ap-
proximations to the soliton dynamics, as shown in Sec. VI.
In Sec. VII, we discuss the effect of tip-to-tip anastomosis on
soliton evolution. Lastly, Sec. VIII is devoted to concluding
remarks.

II. CONTINUUM MODEL

A. Leading order equations

We consider the leading order angiogenesis model derived
in [95], under the assumptions of chemotaxis-dominated tip
cell movement and relatively low branching rates. This 2D
continuum model is described by the following dimensionless
coupled LO-PDEs

∂N

∂t
= D∇2N − χ∇ · (N∇C) + λN

C

1 + C

−μ aeNE − μ anN2, (1a)

∂E

∂t
= μ N, (1b)

for x = (x, y), with 0 < x < Lx and 0 < y < Ly. The primary
vessel and the tumor are located at x = 0 and x = Lx, respec-
tively (see Fig. 1 for a schematic cartoon of this setup). Here
C(x, t ), N (x, t ), and E (x, t ) denote the TAF concentration, the
density of tip cells, and the density of stalk cells, respectively.
The positive parameter D is the diffusion coefficient of tip
cells, and corresponds to the influence of random movement,
χ is the chemotactic sensitivity of tip cells, λ is the rate at
which branching of new sprouts occurs, and μ is a baseline
rate of anastomosis that is further modulated by the values of
ae and an, which denote the specific rates of tip-to-sprout and
tip-to-tip anastomosis, respectively.

Tip and stalk cell densities are driven by a 2D TAF field
(see below and Fig. 1). However, all terms depending on C
in Eq. (1a) can be reduced to one spatial variable by column
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FIG. 1. Sketch of the geometry showing how blood vessels
sprout from the primary vessel at x = 0 and move to the source of
TAF at x = Lx .

averaging (namely, averaging in the y direction) in the same
fashion as discussed in [95]. The different terms on the right-
hand-side of Eq. (1a) describe random diffusion, chemotaxis,
tip branching, tip-to-sprout anastomosis, and tip-to-tip anas-
tomosis, while the time evolution of stalk cells is given by
a production term depending on tip cell density according to
Eq. (1b). The LO-PDE (1b) was derived in [95] and it does
not include flux of tip cells and production of stalk cells due
to anastomosis [92], which are of higher order. The branching
term in Eq. (1a) saturates as C → ∞, which is more realistic
than the term linear in C used in Ref. [95]. In this paper, we
want to describe the evolution of traveling waves until they
arrive near the hypoxic region, but not their interaction with
the latter. Thus, we impose no-flux boundary conditions
for the tip cell density [95] and do not study the interaction
of the waves with the boundary. Such a study would require
using more realistic boundary conditions at x = Lx. We im-
pose the same nonnegative functions as in [95] to represent
the initial conditions for N and E .

The column-averaged PDEs in one spatial variable derived
from Eq. (1), together with the boundary and initial condi-
tions, are

∂N

∂t
= D

∂2N

∂x2
− χ

∂

∂x

(
N

∂C

∂x

)
+ λN

C

1 + C

−μ aeNE − μ anN2, (2a)

∂E

∂t
= μ N, (2b)

D
∂N

∂x
− χN

∂C

∂x
= 0 at x = 0, Lx, (2c)

N (x, 0) = G(x), E (x, 0) = H (x). (2d)

Strictly speaking, column averaging gives a solution equiv-
alent to that of the 2D equations only when the TAF field
does not vary in the direction transversal to the traveling front.
However, the authors found in [95] that there were some
situations in which the TAF field did vary in the y direction
but the numerical solution of the column averaged model

FIG. 2. Snapshots of the tip cell density taken at times 4 + j(�t )
(with �t = 2) between t = 4 and t = 30, j = 0, 1, . . . , 13. They
have been numerically computed by means of Eq. (2), assuming a
quasisteady, 1D linear TAF concentration C(x) = x and Lx = 20. The
scale on the vertical axis is ×10−5.

accurately represented that of the full 2D model. Numerical
simulations of Eq. (2) are performed after discretizing the
spatial derivatives with centered finite differences on a uni-
form mesh and by using the MATLAB solver ode15s for
time integration. Figure 2 shows the tip cell density evolution
over time for Lx = 20 and the following set of parameter
values consistent with chemotaxis dominated transport, small
diffusion and relatively low branching rate [91]: D = 0.04,
χ = 0.24, λ = 0.73, μ = 236, ae = 0.14, and an = 0. These
values will be used throughout the paper, unless otherwise
stated. In this case, a source of TAF is assumed to be located
at x = Lx, considering a quasisteady, one-dimensional (1D)
linear concentration C(x) = x. A wave is generated at x = 0
and travels forward in the direction of the TAF gradient. In-
deed, this is a 1D continuum, macroscopic description of the
underlying stochastic process detailed in [95] and references
therein. Tip cells sprout from a primary vessel at x = 0 and
migrate toward the right, attracted by the TAF source. They
randomly branch and anastomose, thus generating a vascular
network.

B. Hybrid stochastic tip cell model equations

From the hybrid stochastic tip cell model of [65,85], we
can track the density of active tip cells, p(x, v, t ), and the TAF
concentration, C(x, t ), by ensemble averages over realizations
of the stochastic process [89]. Active tip cells are those mov-
ing or branching out at a given time. When an active tip cell
meets the trajectory of another tip cell, it anastomoses, stops
there, and ceases to exist. Then, we may derive the following
nondimensional PDE model [89,96]

∂

∂t
p(x, v, t ) = α(C(x, t ))δσv

(v − v0)p(x, v, t )

−	p(x, v, t )
∫ t

0
ds

∫
R2

dv′ p(x, v′, s)

− v · ∇x p(x, v, t ) + βdivv(vp(x, v, t ))

− divv[F(C(x, t ))p(x, v, t )]

+ β

2
�v p(x, v, t ), (3a)
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∂

∂t
C(x, t ) = κ�xC(x, t ) − χC(x, t ) j(x, t ), (3b)

p(x, v, 0) = p0(x, v), C(x, 0) = C0(x), (3c)

where

α(C(x, t )) = AC(x, t )

1 + C(x, t )
,

F(C(x, t )) = δ1∇xC(x, t )

(1 + 	1C(x, t ))q1
,

δσv
(v − v0) = 1

πσ 2
v

e
− |v−v0 |2

σ2
v , (3d)

j(x, t ) =
∫
R2

|v|
1 + e(|v−v0|2−η)/ε

p(x, v, t ) dv,

p̃(x, t ) =
∫
R2

p(x, v, t ) dv, (3e)

for x ∈ � ⊂ R2, v ∈ R2, t ∈ [0,∞). The dimensionless pa-
rameters β, 	, κ , χ , A, 	1, δ1, η, ε, q1 and σv are positive. The
integral sink term −	p

∫ t
0 p̃(x, s)ds [in which p̃ defined in

Eq. (3e) is the marginal tip density] captures the phenomenon
that a vessel tip ceases to be active when it encounters
another vessel and anastomoses. The anastomosis coefficient
	 is calculated by comparison to numerical simulations of
the stochastic process, in such a way that the ensemble av-
erage of the total number of active tips equals

∫
p̃(x, t )dx.

The Gaussian function in Eq. (3d) selects the direction of
motion and velocity of new active tips generated by branching.
In Eq. (3b), TAF diffuses and is consumed by the flux of
advancing tip cells, j(x, t ). For the slab geometry of Fig. 1,
appropriate nonlocal boundary conditions for p(x, v, t ) and
boundary conditions for C(x, t ) are indicated in [96]. There
an appropriate explicit finite-difference numerical scheme
is described, and its stability and convergence are proved.
Numerical simulations of the PDEs illustrating the formation
of a soliton solution and comparison with the solution of the
stochastic model can also be found in [96]. Global existence,
uniqueness and well-posedness results for Eq. (3) can be
found in [97,98].

In the overdamped limit (small inertia), it is possible to
obtain a simpler equation for the density of active tip cells
p̃(x, t ) [90,91],

∂ p̃

∂t
+ ∇ · (F p̃) − 1

2β
∇2 p̃ = μ̃ p̃ − 	 p̃

∫ t

0
p̃(x, s) ds,

(4a)

∂C

∂t
= κ∇2C − τC p̃, (4b)

F = (Fx, Fy) = δ1

β

∇C

1 + 	1C
, (4c)

where τ = |v0|χ , we have set q1 = 1, and μ̃ is a function
of C related to branching (see [91]). These equations need
to be supplemented with initial and boundary conditions
appropriate for the configuration that we study. Similarly to
previous works [65,85,89–91], we consider a strip geometry
with a vertical primary vessel at x = 0 and a TAF source
located at x = Lx, as sketched in Fig. 1. Note that p̃(x, t ) and

∫ t
0 p̃(x, s)ds in Eq. (4a) correspond to N (x, t ) and E (x, t ) in

Eq. (1), provided tip-to-tip anastomosis is ignored (an = 0)
and there are no stalk cells initially [H (x) = 0 in Eq. (2d)].

After a transient stage, the density of active tips p̃(x, t )
evolves to a solitonlike wave with slowly varying velocity and
size, which we can describe by a combination of asymptotics
and numerical simulations [90,91]. This stage ends when the
soliton approaches the tumor at x = Lx.

III. SOLITON DESCRIPTION

In order to characterize the evolution of the tip cell density
N , we seek a wavelike approximation for the LO-PDEs in
Eqs. (1) and (2). Following the discussion in [91], the soliton
has the form

Ns(x, t ) = (2Kae + μ̃2)c

2ae(c − Fx )
sech2

(√
2Kae + μ̃2

2(c − Fx )
ξ

)
, (5)

where

Fx = χ
∂C

∂x
, μ̃ = λ

C

1 + C
, ξ = x − X . (6)

Note that, when C varies slowly in time and space, Fx and μ̃ in
Eq. (6) are suitable average values (see below). On the other
hand, K (t ), c(t ) and X (t ) are time-dependent collective coor-
dinates describing the shape and velocity of the soliton. They
will be computed by integrating a system of three coupled
ordinary differential equations. Thus, Eq. (5) yields a slowly
varying solitonlike approximation of the tip cell density,
which is valid after a formation stage and far away from the
boundary x = Lx where the TAF source is located (see [91]).

Now, following the illustration given in [91], we shall
deduce the system of CCEs for the LO-PDEs under the as-
sumptions of small diffusion and a TAF concentration that
varies slowly in space and time. First, we observe that Ns is
a function of ξ , and the space and time variables through C,
namely

Ns = Ns

(
ξ ; K, c, μ̃(C), Fx

(
∂C

∂x

))
. (7)

We assume that the TAF variations over time and space pro-
duce terms that are small compared to ∂Ns/∂ξ . In addition,
we suppose that μ̃(C) is approximately constant (since C is
slowly varying) and ignore ∂2Ns/∂i∂ j for i, j = K, Fx. Then,
plugging Eq. (5) into Eq. (1a), noting that Eq. (1a) has a
soliton solution for zero diffusion and constant ∇C, and taking
Eq. (7) into account, we obtain

∂Ns

∂K
K̇ + ∂Ns

∂c
ċ = A, (8)

where

A = D
∂2Ns

∂ξ 2
− Ns∇ · F − ∂Ns

∂Fx
[F · ∇Fx − D∇2Fx]

+ 2D
∂2Ns

∂ξ∂Fx

∂Fx

∂x
− μ anN2

s , (9)

with F = χ∇C. Indeed, all terms in Eq. (9) depending on F
or Fx (hence on C) are reduced to the spatial variable x by
averaging in the y direction, as mentioned before (see [95]).
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Next, we multiply Eq. (8) by ∂Ns/∂K and integrate over x. We
consider a fully formed soliton, far from the primary vessel
and the TAF source. As it exponentially decays for |ξ | � 1,

the soliton is regarded to be localized on some finite interval
(−L/2,L/2), where the TAF varies slowly. Therefore, we can
make the approximation [91]

∫
I

φ(Ns(ξ ; x, t ), x)dx ≈ 1

L

∫
I

(∫ L/2

−L/2
φ(Ns(ξ ; x, t ), x)dξ

)
dx, (10)

where the interval I has extension equal to L and should contain most of the soliton (here φ is a generic function of Ns and x).
Thus, the CCEs only hold after an initial soliton formation stage and far from the TAF source region that must be excluded from
I. Similarly, we multiply Eq. (8) by ∂Ns/∂c and integrate over x. From the two resulting formulas, we then find K̇ and ċ. Since
the factor 1/L cancels out and the soliton tails decay to zero, we can set L → ∞ and obtain the following CCEs [91]:

K̇ =
∫ ∞
−∞

∂Ns
∂K A dξ

∫ ∞
−∞

(
∂Ns
∂c

)2
dξ − ∫ ∞

−∞
∂Ns
∂c A dξ

∫ ∞
−∞

∂Ns
∂K

∂Ns
∂c dξ∫ ∞

−∞
(

∂Ns
∂K

)2
dξ

∫ ∞
−∞

(
∂Ns
∂c

)2
dξ − (∫ ∞

−∞
∂Ns
∂c

∂Ns
∂K dξ

)2 , (11a)

ċ =
∫ ∞
−∞

∂Ns
∂c A dξ

∫ ∞
−∞

(
∂Ns
∂K

)2
dξ − ∫ ∞

−∞
∂Ns
∂K A dξ

∫ ∞
−∞

∂Ns
∂K

∂Ns
∂c dξ∫ ∞

−∞
(

∂Ns
∂K

)2
dξ

∫ ∞
−∞

(
∂Ns
∂c

)2
dξ − (∫ ∞

−∞
∂Ns
∂c

∂Ns
∂K dξ

)2 , (11b)

together with

Ẋ = c . (11c)

In these equations, all terms depending on C that vary
slowly with x are averaged over the interval I, which will be
specified in the sections devoted to the numerical results. On
the other hand, the penultimate term in Eq. (9) is odd in ξ and
does not contribute to the integrals in Eqs. (11a) and (11b).
Most of these integrals have been calculated in Appendix D in
[91]. The only two new integrals correspond to the last term
in Eq. (9), which models tip-to-tip anastomosis, and they are∫ ∞

−∞

∂Ns

∂K
N2

s dξ = 4c3(2Kae + μ̃2)
3
2

9a2
e (c − Fx )2

, (12)

∫ ∞

−∞

∂Ns

∂c
N2

s dξ = 4c2(c − 3Fx )(2Kae + μ̃2)
5
2

45a3
e (c − Fx )3

. (13)

These integrals will be relevant to the analysis reported in
Sec. VII.

IV. ONE-DIMENSIONAL LINEAR TAF

We first assume, as in Figure 2, that a quasisteady, 1D
linear TAF concentration

C(x) = x, (14)

for 0 < x < 20, drives the dynamics. Then, we seek a soli-
ton approximation for the tip cell density N as illustrated in
Sec. III. The model parameters are set to the values indicated
in Sec. II. Moreover, the initial conditions for the CCEs in
Eq. (11) are given at t0 = 10 (estimated as the soliton forma-
tion stage) as follows: X (t0) is the location of the maximum of
N at t0, c(t0) = X (t0)/t0, and K (t0) is determined so that the
soliton peak coincides with the maximum tip cell density at t0.
After solving the CCEs, the soliton in Eq. (5) is reconstructed
and compared to the dynamics of N given by the numerical
solutions of Eq. (2).

Figure 3 shows the position and value of the peak (i.e.,
the maximum) tip cell density as computed by numerical

simulations of Eq. (2) and the soliton in Eq. (5). We can
observe that, while the peak location is well predicted in the
time interval 10 � t � 22, the approximation of the maxi-
mum value of N fails. This is due to the simple form of
the TAF concentration in Eq. (14). If C = x, then the terms
in Eq. (9) that depend on advection (i.e., differentials of F)
vanish and do not contribute to the CCEs. However, these

FIG. 3. Time evolution of position (top) and value (bottom) of
the maximum tip cell density N as computed by solving Eq. (2)
(solid, blue line) and the soliton in Eq. (5) (dashed, red line), for
the TAF concentration in Eq. (14) and Lx = 20.
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FIG. 4. Counterpart of Fig. 2, for the (column-averaged) TAF
concentration in Eq. (15).

terms are crucial for the correct evaluation of the maximum
tip density N , which explains the discrepancy shown in Fig. 3.

V. TWO-DIMENSIONAL GAUSSIAN TAF

In order to improve the soliton approximation, we now as-
sume that the quasisteady TAF concentration is a 2D Gaussian
[91]:

C(x, y) = a e−(x−21)2/σ 2
x −(y−0.5)2/σ 2

y , (15)

for 0 < x < 20 and 0 < y < 1, with a = 30, σx = 15, and
σy = 4. These values are chosen in such a way that the gener-
ated soliton wave has a similar velocity and height as the wave
generated for the linear profile of Eq. (14).

In Eqs. (9) and (11)–(13) there are terms depending on the
2D TAF concentration. First, we calculate them as functions
of x and y on the 2D domain. Second, we column average
them to eliminate their dependence on y. Next, we average
over x ∈ I = (0, 2] all terms in the CCEs that depend on the
TAF and we set the initial conditions for the CCEs at t0 = 10.
As before, the model parameter values are those indicated
in Sec. II. The counterparts of Figs. 2 and 3 are given by
Figs. 4 and 5, respectively. Now, both location and value of
the peak tip cell density are well predicted by the soliton in
Eq. (5) over the time interval 10 � t � 18. Indeed, the TAF
concentration in Eq. (15) contributes to all relevant terms in
the system of CCEs; cf. Eq. (9). It is worth remarking that the
soliton approximation is robust with respect to changing the
values of a, σx and σy in Eq. (15). Finally, we observe that
the soliton description is limited to a finite time window: its
validity is affected by the no-flux boundary condition for the
tip cell density imposed in the model at x = Lx = 20.

VI. TWO-DIMENSIONAL TAF ON A LARGER
SPATIAL DOMAIN

In this section, we study how the no-flux boundary con-
dition imposed on the tip cell density at x = Lx affects the
soliton approximation. Hence, we consider a quasisteady,
2D Gaussian TAF concentration on a larger spatial domain,
namely

C(x, y) = a e−(x−41)2/σ 2
x −(y−0.5)2/σ 2

y , (16)

for 0 < x < 40 and 0 < y < 1, with a = 50, σx = 23, and
σy = 4. For the sake of comparison with Sec. V, the parameter

FIG. 5. Counterpart of Fig. 3, for the (column-averaged) TAF
concentration in Eq. (15).

values in Eq. (16) have been selected so as to generate [via
numerical simulations of Eq. (2)] a tip cell density that reaches
its largest maximum at around 75% of the spatial domain in
approximately twice the time as in Sec. V; compare Figs. 4
and 6.

Now, the x averages shall be computed in the spatial
interval I = (0, 4], even though restricting the averaging to a
small subinterval (e.g., I = [3.2, 3.3]) may result in a slightly
better outcome. The model parameters are again set to the val-
ues indicated in Sec. II. After an initial stage of t0 = 26 (when
the tip cell density reaches its peak at around 25% of the
spatial domain, as in the case of Sec. V), the soliton in Eq. (5)
is able to predict both location and value of the maximum of
N to reasonable accuracy on the time interval 26 � t � 42.

FIG. 6. Snapshots (at distance �t = 4) of the time evolution
between t = 4 and t = 60 of the tip cell density as numerically com-
puted from Eq. (2), for the (column-averaged) TAF concentration in
Eq. (16) and Lx = 40. The scale on the vertical axis is ×10−5.
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FIG. 7. Counterpart of Fig. 3, for the (column-averaged) TAF
concentration in Eq. (16) and Lx = 40.

Indeed, the soliton takes longer to reach a point where the
effect of the no-flux boundary condition (imposed at x = 40
on the tip cell density) starts playing a role. Thus, the soliton
approximation holds over a much wider time window, as
illustrated in Fig. 7.

VII. EFFECT OF TIP-TO-TIP ANASTOMOSIS

Let us now model tip-to-tip anastomosis by considering
an 
= 0 in Eq. (2). Figure 8 shows the tip cell density evolution
over time for the same parameter values as indicated in Sec. II,
with (an = 1) and without (an = 0) tip-to-tip anastomosis,
for the TAF concentration in Eq. (15). Indeed, only a small
difference can be appreciated in the overall advance of the
wavelike profiles between the two cases. Calibrating the value
of the parameter an > 0 allows modulation of the intensity of
this mechanism of vessel fusion.

FIG. 8. Counterpart of Fig. 2, for the TAF concentration in
Eq. (15), considering an = 0 (blue lines) and an = 1 (red lines).

FIG. 9. Temporal evolution of the three collective coordinates,
K (t ), c(t ) and X (t ), for the TAF concentration in Eq. (15) and
different values of μ an.

The effect on the soliton approximation can be quantified
by taking into account the term −μ anN2

s in Eq. (9), which
modifies the CCEs according to the integrals in Eqs. (12) and
(13). Considering x averages of the TAF-dependent terms on
the spatial interval I = (0, 2] and initial conditions at t0 = 10,
the system of CCEs is integrated in the interval 10 � t � 18
for different values of μ an (here, we fix μ = 236 and vary an).
Figure 9 illustrates the resulting temporal behavior of the three
collective coordinates, K (t ), c(t ) and X (t ), in comparison
with their evolution for no tip-to-tip anastomosis (an = 0).
We can note that, in the simulated cases, the influence on the
overall propagation velocity of the soliton is fairly small. As
a consequence, the location of its peak remains unaffected.
Undoubtedly, the shape coordinate K is the most sensitive to
the presence of the additional term. Indeed, μ an < 5 × 10−3

should be considered in order to preserve a soliton description
of the tip cell density to within an accuracy similar to the case
without tip-to-tip anastomosis (see Sec. V).
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VIII. CONCLUDING REMARKS

We have found that the leading order dynamics of ST-PDE
and P-PDE systems evolves to a quasi-1D soliton wave after
a transient formation stage. The velocity and shape of the
soliton are well approximated by CCEs until it approaches the
tumor at x = Lx. The system of CCEs gives an accurate rep-
resentation of the soliton shape and motion for a quasisteady
Gaussian TAF concentration, whereas the shape is not cor-
rectly described if the TAF profile is purely linear. However,
we should recall that the 1D LO-PDEs is the result of averag-
ing the corresponding 2D PDEs over the transversal coordi-
nate. When we consider a 2D TAF profile and average it over
the transversal coordinate, the soliton wave describes well the
velocity and shape of the evolving system of blood vessels.

The LO-PDEs are analogous to the overdamped limit of
the continuum equation for the density of active tip cells
corresponding to the hybrid stochastic angiogenesis model of
[85,89] (which does not include tip-to-tip anastomosis). Thus,
the soliton seems to be an attractor for a class of continuum
equations resulting from coarse graining different discrete
and stochastic angiogenesis models. Provided external fields
informing chemotaxis, haptotaxis [65], etc, evolve slowly
over longer spatial scales, we can consider their effects by
appropriately modifying the CCEs of the soliton [99]. To
extend the analysis of the LO-PDEs, we should model a
tumor that emits TAF and study its interaction with the

arriving soliton wave. This is outside the scope of the present
paper.
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