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Abstract
Conditions for self-organisation via Turing’s mechanism in biological systems repre-
sented by reaction-diffusion or reaction-cross-diffusion models have been extensively
studied. Nonetheless, the impact of tissue stratification in such systems is under-
explored, despite its ubiquity in the context of a thin epithelium overlying connective
tissue, for instance the epidermis and underlying dermal mesenchyme of embryonic
skin. In particular, each layer can be subject to extensively different biochemical reac-
tions and transport processes, with chemotaxis - a special case of cross-diffusion -
often present in the mesenchyme, contrasting the solely molecular transport typically
found in the epidermal layer. We study Turing patterning conditions for a class of
reaction-cross-diffusion systems in bilayered regions, with a thin upper layer and cou-
pled by a linear transport law. In particular, the role of differential transport through
the interface is explored together with the presence of asymmetry between the homo-
geneous equilibria of the two layers. A linear stability analysis is carried out around
a spatially homogeneous equilibrium state in the asymptotic limit of weak and strong
coupling strengths, where quantitative approximations of the bifurcation curve can be
computed. Our theoretical findings, for an arbitrary number of reacting species, reveal
quantitative Turing conditions, highlighting when the coupling mechanism between
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the layered regions can either trigger patterning or stabilize a spatially homogeneous
equilibrium regardless of the independent patterning state of each layer.We support our
theoretical results through direct numerical simulations, and provide an open source
code to explore such systems further.

Keywords Turing instabilities · Stratified systems · Skin patterns · Interface ·
Chemotaxis

1 Introduction

1.1 Biological Motivation and Study Objectives

Among many other pioneering works, Turing (1952) introduced a new, mathematical
way to understand symmetry-breaking phenomena in biology. Over the intervening
decades, his concept of a diffusion driven instability in reaction-diffusion systems has
been extensively studied in the mathematical literature and confronted with biological
observations and experiments (Kondo and Miura 2010; Bard and Lauder 1974; Mur-
ray 2002, 2003). Despite extensive evidence that Turing patterning mechanisms can
explain numerous complex phenomena observed in nature, a core challenge ismodern-
izing Turing’s ideas to accommodate advances in our understanding of the livingworld
that have emerged since his study. In itsmost classical version, Turing’s theory predicts
that the stability of a spatially homogeneous equilibrium state involving two species
can be broken by the sole effect of the increased diffusion of one species (Murray
2003, Chapter 2), as in the renowned local activation/long-range inhibition paradigm
advocated in Gierer andMeinhardt (1972); Meinhardt and Gierer (2000). Many recent
works have refined this theory and proposedmore realistic biological scenarios, in par-
ticular regarding the geometry of the domain (Krause et al. 2021), the complexity of
the signalling network (Landge et al. 2020) or the inclusion of other influences, such
as cross-diffusion (Fanelli et al. 2013; Madzvamuse et al. 2015), mechanical forces or
active cell transport phenomena (Murray et al. 1988; Maini et al. 1991; Veerman et al.
2021). Contemporary perspectives on Turing systems are summarized in Krause et al.
(2021).

One refinement of Turing’s ideas that has been under-explored is the bilayer struc-
ture of many biological pattern forming systems. For instance, layered development
has been indicated as relevant for the morphogenesis of the plant shoot apical meris-
tem (Fujita and Kawaguchi 2013), cell-membrane Turing self-organisation modulated
by signalling molecules in the cytosol (Levine and Rappel 2005), cell-cell membrane
communication processes (Sugimura and Kori 2017), and propagation problems in
population ecology (Fussell et al. 2019; Roques and Bonnefon 2016; Cantrell and
Cosner 2003). Outside biology, bilayer systems have been studied in chemistry in the
context of the so-calledCIMAandCDIMAexperiments (Berenstein et al. 2004)which
havemotivatedmany analytical and experimental works on the patterningmechanisms
of bilayer systems (Yang et al. 2002; Yang and Epstein 2003, 2004; Bestehorn 1996;
Catllá et al. 2012).
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In particular, an important biological system that especially motivates this work
is the embryonic skin, which consists of a thin epidermal layer superimposed on
the extracellular matrix of the dermal mesenchyme. While the former is a thin layer
mostly composed of tightly packed cells with limited movement, the latter can be
much deeper and is composed of a network of collagen fibers supporting motile cells.
During embryonic development, the interplay between these two layers gives rise
to various repeating anatomical patterns such as hair follicles (Glover et al. 2017)
(Fig. 1a), feather placodes (Ho et al. 2019) or fingerprints (Glover et al. 2023). These
studies have identified complex signalling networks of diffusive molecules produced
in each layer and which interact with the motile mesenchymal cells in order to initiate
local cell clustering. Although reaction-diffusion-chemotaxis models (Bailleul et al.
2019; Painter et al. 2018; Kunz et al. 2023) have been able to accurately reproduce
the biological observations, they have focused on a simplified mono-layer geometry,
i.e. a single domain in which all the species interact. However, biological experiments
in Ho et al. (2019) have stressed the importance of the bilayer structure on pattern
formation by considering chimera skins composed of an epidermis from one species
and a dermis from another. Depending on the species considered, the patterning ability
may be conserved, or not, as well as the periodic structure of the patterning. This
demonstrates that the coupling between the two layers is in itself a crucial component
for symmetry-breaking.

Hence, on noting that cross-diffusion encompasses chemotaxis as a special case,
the focus of this study will be the mathematical derivation of patterning conditions for
bilayered reaction-cross diffusion systems, coupled via linear transport between the
layers. In particular, our objective will be to determine when the bilayer structure, with
a thin upper layer represented via a one dimensional domain, is predicted to enhance
self-organisation or stabilise the homogeneous equilibrium of the system.

1.2 RelatedWorks and Previous Theoretical Results

Bilayer systems similar to, but simpler than, the ones considered in the present article
have been analytically and computationally studied, in particular in Krause et al.
(2020) and in Catllá et al. (2012). The former article (Krause et al. 2020) is motivated
by patterns formed by bacteria growing on an agar substrate and thus considers a pure
reaction-diffusion system with a passive bulk (i.e. with only diffusion). Depending
on the thickness of the layers, several asymptotic instability conditions and reduced
dispersion relations are derived and studied numerically. The latter article (Catllá
et al. 2012) provides a detailed analysis of a coupled reaction-diffusion system of two
exactly identical two-component layers. In this setting, the linear stability analysis
of the coupled system is amenable to block-matrix computations which reduce the
problem to a classical 2D eigenvalue problem and thus allows for a detailed bifurcation
analysis.

Much earlier works were also motivated by the role of reaction-diffusion mecha-
nisms in skin patterning problems. In particular, in Nagorcka and Mooney (1992), a
very similar example based on a two-component reaction-diffusion system is studied
numerically with the aim of distinguishing the mechanisms leading to spot and stripe
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patterns. The authors assume equal reaction terms in both layers but possibly different
diffusion coefficients and a nonlinear transport law between the two layers. Patterning
is assumed to be driven by the epidermis where the homogeneous state is unstable.
Related works (Shaw and Murray 1990; Maini and Murray 1992; Murray et al. 1988)
have also considered mechano-chemical models of pattern formation in the skin, with
an overview presented in Murray (2003, Chapter 6). Other closely related theoretical
works (Ratz and Roger 2014; Rätz 2015; Levine and Rappel 2005; Madzvamuse et al.
2015; Morita and Seirin-Lee 2021; Gomez et al. 2021; Paquin-Lefebvre et al. 2019,
2020) in the literature are motivated by the cell membrane-cytosol system and thus
focus on a spherical geometry and most often a passive bulk. Although in this context
the curvature of the domain itself may have an important effect on pattern formation,
we restrict ourselves to a planar geometry which is more relevant for the example
of skin patterning. Another class of related models recently studied in the literature
are the so-called compartmental models (Pelz and Ward 2023a, b) where two or more
reaction-diffusion compartments are spatially coupled through a passive diffusive bulk
or an interface (Sukekawa 2023). In our setting, we do not consider a passive bulk,
since chemotaxis and other nonlinear reaction-diffusion effects are anticipated also
in the bulk (for instance again in the case of skin patterning). We will however only
consider homogeneous equilibria in each layer, which is in contrast with the recent
articles (Paquin-Lefebvre et al. 2019, 2020) where the passive (linear) bulk in a spher-
ical geometry allows for the derivation and systematic study of heterogeneous bulk
equilibria. Note also that the existence of, possibly non-equal, homogeneous equilib-
ria in each layer with arbitrary reaction kinetics cannot always be guaranteed so we
will discuss and introduce an appropriate modelling framework where this case can
be considered.

Although all these works study patterning conditions for various types of coupling
between reaction-diffusion systems, their modelling frameworks are quite different
from the bilayer structure that we consider here. In this article, we will consider a
more general cross-diffusion framework (which includes chemotaxis models) with
two active layers that need not to be identical and an arbitrary number of interacting
species. We give a set of quantitative conditions for (non)-patterning in the asymptotic
limit of small and large coupling and provide several examples of patterning scenar-
ios, theoretically, and with numerical evidence for reaction-diffusion and chemotaxis
systems. In particular we consider the general scenario of pattern formation driven by
an individual layer or their mutual coupling. Our analysis is based on classical linear
stability analysis in the context of multi-component reaction-cross-diffusion systems.
Since explicit analytical results cannot typically be obtained in this situation, we derive
patterning conditions via quantitative approximations of the bifurcation curve depend-
ing on the coupling strength. In theweak coupling case, related perturbation techniques
have been used in a different context for the study of weakly coupled oscillators and
reaction-diffusion networks (Ei 2002; Ei and Ohgane 2011).

The present article is structured as follows. The modelling framework is described
in Sect. 2 and the main contributions are summarized in Sect. 2.4. As a starting point
of the analysis, the dispersion relations and bifurcation conditions are written in full
generality in Sect. 3.We then split the analysis into two asymptotic cases, first theweak
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coupling case in Sect. 4 and secondly the large coupling case in Sect. 5. Phenomena in
the intermediate coupling case are briefly described in Sect. 6 before the conclusions
and discussion in Sect. 7. The supplementary material contains a description of the
numerical methods (Appendix A) and the list and description of the supplementary
videos (Appendix B).

2 Models and Basic Properties

2.1 1D Surface - 2D Bulk Space Model

We first consider a suitably non-dimensionalised bilayer system �S ∪ �B where the
thin upper layer of length L > 0, �S = [0, L] – referred to as the surface – is taken to
be infinitesimally thin compared to the lower layer�B = [0, L]×[0, H ] – referred to
as the bulk – which has a depth H > 0 (Fig. 1b). We consider n species in the surface
and m species in the bulk. In both layers we assume interactions of these species
according to a system of reaction-cross-diffusion equations. Their concentrations are
denoted by1 uS(x) ∈ R

n in the surface at the location x ∈ �S and uB(x, y) ∈ R
m in

the bulk at the location (x, y) ∈ �B . We will always consider m ≥ n and we assume
that the n species in the surface can diffuse to the bulk and vice-versa for the first n
components of the bulk species uB . There are m − n species which do not diffuse
to the surface and remain in the bulk. The concentrations of these m − n species are
given by the lastm−n components of the vector uB ∈ R

m . Themathematical analysis
would hold similarly in the reverse case but we choose m ≥ n for both parsimony and
also noting the biological case of skin patterning where an extra cellular chemotaxis
component would be included in the bulk domain. Then, the general form of the model
is given by

∂tuS(x) = fS(uS(x)) + ηA
(
ũB(x, H) − uS(x)

) + ∇ · (
DS(uS(x))∇uS(x)

)
,

x ∈ (0, L) (1)

∂tuB(x, y) = fB(uB(x, y)) + ∇ · (DB(uB(x, y))∇uB(x, y)
)
,

(x, y) ∈ (0, L) × (0, H) (2)

where the matrix A ∈ R
n×n specifies the exchange rates of the different species

between the two layers and ũB ∈ R
n denotes the vector constructed by taking the first

n components of uB ∈ R
m , that is, when uB = (uB,1, . . . , uB,m)T ∈ R

m ,

ũB = (uB,1, . . . , uB,n)
T ∈ R

n .

where the superscript T denotes the transpose. The parameter η ≥ 0 represents the
strength of the coupling between the two layers. The reaction functions fS and fB are
arbitrary and the cross-diffusion matrices DS and DB are positive definite.

On the lateral sides and the bottom side of the bulk, we assume zero-flux boundary
conditions. At y = H , we consider the following linear transport law for the bulk

1 We suppress the dependence on time, t , for notational convenience.
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species:

DB
∂uB

∂ y
(x, H) = η B̃

(
ũS(x) − uB(x, H)

)
, x ∈ (0, L), (3)

with B̃ ∈ R
m×m denoting the matrix constructed on padding B ∈ R

n×n by zeros,
where B specifies linear transport from the bulk to the surface. Similarly, ũS ∈ R

m

denotes the vector constructed from uS ∈ R
n by adding m − n rows with zero com-

ponents, that is

B̃ =
(
B 0n,m−n

0m−n,n 0m−n,m−n

)
∈ R

m×m, ũS =
(
uS
0m−n

)
∈ R

m .

Furthermore, note that B − A corresponds to interfacial sources/sinks of species,
which are allowed for generality, but these will often be zero in applications.

Note that as in earlier works (Nagorcka andMooney 1992), one could also consider
nonlinear transport laws but for simplicity and because we will only carry out a linear
stability analysis that would also linearize this part of the equation, we will only work
with linear transport between the layers.

As motivated in the introduction, we focus on a model representing the bilayer
structure of embryonic skin (Glover et al. 2017; Ho et al. 2019; Glover et al. 2023),
with bulk chemotaxis where cells restricted to the bulk are chemo-attracted by n
species, which diffuse between the two layers (Fig. 1). In this case m = n + 1 and
uB = (ũB, c) where c(t, x, y) denotes the cell concentration. Assuming a classical
reaction-diffusion interaction for the chemical species, the equation in the bulk reduces
to

∂t ũB = f̃B(ũB, c) + D̃B∇2ũB (4)

∂t c = −∇ · (
h(c)∇k(ũB)

) + r(c) + dc∇2c, (5)

where D̃B ∈ R
n×n is a positive definite diagonalmatrix and dc > 0. The representative

examples for h(c), r(c) and k(ũ) are given by

h(c) = c, r(c) = r0c(c
∗ − c),

with r0, c∗ positive constants, and k(ũ) = u1, where u1 is the first component of
ũ ∈ R

n . The boundary conditions at the interface can be rewritten

D̃B
∂ ũB

∂ y
= ηB(uS − ũB),

∂c

∂ y
= 0.

This corresponds to Eqs. (2), (3) with

DB(ũ, c) =
(

D̃B 0
−h(c)∇k(ũ)T dc

)
, fB(ũ, c) = (

f̃B(ũ, c)T, r(c)
)T

.
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Fig. 1 Embryonic skin patterning in bilayer tissue and domain geometry. a An example of skin patterning:
the emergence of primordia of hair follicles at the interface between the epidermis and the dermis of a
mouse embryo at 15.5 days post coitum. The formation of these condensates of mesenchymal cells can be
explained by a complex network of reaction-diffusion and chemotaxis interactions between the two layers
(see Glover et al. 2017; Ho et al. 2019). Original picture from the e-Mouse Atlas Project under a CC BY
3.0 licence (Armit et al. 2017). bMathematical model in a 1D-2D geometry. The epidermis (later referred
to as the surface) is modelled by a one-dimensional layer while the dermis (later referred to as the bulk)
is two-dimensional to take into account its depth. The arrow symbolizes the boundary condition along the
outward normal of the domain. c Mathematical model in the 1D-1D geometry where the two layers are
taken to be one-dimensional

2.2 1D Surface - 1D Thin Bulk SpaceModel

In the embryonic skin example described in the introduction, local cell clustering
is typically observed only at the interface between the epidermal and dermal layers
(Fig. 1a) and the whole process takes place on a spatial range which does not exceed
the diameter of a few cells (Glover et al. 2017; Ho et al. 2019). Thus, we will also
consider the case of an infinitesimally thin bulk (Fig. 1c).

Under an appropriate rescaling of the coupling intensity η, the 1D-2D model (1)-
(3) can be reduced to two coupled one-dimensional equations. In particular, let us
consider a bulk concentration uB and a bulk depth of H ≡ ε > 0, with ε � 1
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corresponding to the additional assumption that the bulk depth is much smaller than
anyother lengthscale in the 1D-2Dmodel of the previous subsection.We then introduce
the rescaled concentration uB

ε(x,Y ) = uB(x, y) where Y = ε−1y ∈ [0, 1]. With
this change of variable, Eq. (2) becomes

∂tuB
ε(x) = fB(uB

ε) + ∂x
(
DB ∂xuB

ε
) + 1

ε2
∂Y

(
DB ∂Y uB

ε
)
. (6)

We also rewrite B = ε B̂, with the components of B̂ scaling as O(1), to ensure
there is a balance between the inter-layer flux and reaction terms of the rescaled bulk

equations, noting this scaling will also be inherited by B̃ = ε
̂̃B. In particular, for

other scalings, after the limit of infinitesimal bulk thickness has been taken, only
one of the reaction terms or the inter-layer transport will appear in the leading order
dominant balance. If the reaction terms dominate, then the layers are uncoupled and
the patterning is based on the individual layer dynamics at leading order, while if the
inter-layer transport dominates then there is no chemotaxis or interaction between the
signalling molecules, which again is not the system that is to be considered, as the
biological mechanisms of self-organisation are lost. Thus, with the scaling B = ε B̂,
the boundary condition Eq. (3) becomes:

DB∂Y uB
ε(x, 1) = ε2η

̂̃B
(
uS(x) − uB

ε(x, 1)
)
, x ∈ (0, L). (7)

We then expand uB
ε in powers of ε,

uB
ε = uB

ε,0 + εuB
ε,1 + ε2uB

ε,2 + . . . .

Carrying out this expansion in Eq. (6), we obtain at order ε−1 and ε−2

∂Y uB
ε,0 = ∂Y uB

ε,1 = 0,

and at order 0, we have

∂tuB
ε,0(x) = fB(uB

ε,0) + ∂x
(
DB ∂xuB

ε,0) + ∂Y
(
DB ∂Y uB

ε,2). (8)

For the expansion in the boundary condition Eq. (7), we obtain

DB∂Y uB
ε,2(x, 1) = η

̂̃B
(
ũS(x) − uB

ε,0(x, 1)
)

, x ∈ (0, L). (9)

Thus, noting that uB
ε,0, uB

ε,1 are independent of Y , integrating equation Eq. (8) in
Y between 0 and 1, using the boundary condition (9) and, for notational simplicity,

dropping the hat of ̂̃B and the superscript label “ε, 0", results in

∂tuS = fS(uS) + ηA(ũB − uS) + ∇ · (
DS(uS)∇uS

)
(10)

∂tuB = fB(uB) + η B̃(ũS − uB) + ∇ · (
DB(uB)∇uB

)
, (11)
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where all the functions are evaluated at a point x ∈ (0, L) and the spatial derivative
is one-dimensional and taken along the x direction. Hence one may also observe that
once the infinitesimal bulk thickness limit has been taken, and with the constraint
A = B, where we recall that B is the n × n block of B̃ corresponding to species that
can transport between the upper and lower regions, there are no additional sources or
sinks at the layer interface for the leading order equations. So the 1D-1D model is in
some sense a special case of the 1D-2D model given in Eqs. (1)-(3), though with the
important difference that the two layers of the 1D-1D model may not admit the same
spatially homogeneous equilibria, as explained in the following section.

2.3 Equilibria Structure

Throughout this article, we assume that there exists a constant equilibrium pointw∗ =
(u∗

S, u
∗
B) such that in the 1D-1D case

fS(u∗
S) + ηA(ũ∗

B − u∗
S) = 0, (12)

fB(u∗
B) + η B̃(ũ∗

S − u∗
B) = 0. (13)

Note that this equilibrium point w∗ ≡ w∗(η) may depend on η and that u∗
S(η) and

ũ∗
B(η) may be different from each other. As we are going to show in the following,

the ability of the 1D-1D system to exhibit asymmetric equilibrium concentrations in
the surface and the bulk can have a strong influence on pattern formation.

In the 1D-2D case, the boundary condition at the interface imposes u∗
S = ũ∗

B and
w∗ is thus independent of the coupling strength η and only depends on the reaction
terms, which must satisfy

fS(u∗
S) = 0, fB(u∗

B) = 0, u∗
S = ũ∗

B. (14)

This condition can naturally be satisfied when fS and fB are proportional to each
other (including when one reaction function is identically equal to zero). However,
Eq. (14) does not impose any particular form for the reaction functions, which in
principle could be completely different. In practice it may however require some ad
hoc fine tuning of the parameters to ensure that the two reaction functions share the
same equilibrium point. Note also that when m > n, the m − n pure bulk species
concentrations may act as free parameters in the second relation. For instance in the
chemotaxis case, the equilibrium cell concentration c∗ can act as a parameter of the
system, specified by a growth term of the form r(c) = c(c∗ − c).

An important point to note is that the existence or uniqueness of such an equilibrium
point in the 1D-1D case cannot be guaranteed by the sole intrinsic properties of the
reaction terms, due to the dependence on η. For a sufficiently small coupling strength
η, we will thus adopt a perturbative approach. We always assume that at η = 0,
the uncoupled systems have a homogeneous equilibrium point. Then, by the implicit
function theorem, for η sufficiently small, it is possible to find a curve η 	→ w∗(η)

which satisfies the relations Eqs. (12)-(13), provided that the Jacobian matrices of fS
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and fB evaluated, respectively, at u∗
S(0) and u∗

B(0), are invertible (see Sect. 4.3 for
more details).

We also mention that we do not consider spatially heterogeneous equilibria in
the 2D bulk as was done for instance in Paquin-Lefebvre et al. (2019, 2020) in a
spherical geometry. In these articles, the derivation of such equilibria exploits the
solvability of linear reaction-diffusion problems but we cannot expect to extend this
derivation to arbitrary nonlinear bulk reaction kinetics.We thus focus on a perturbation
analysis around a global homogeneous equilibrium (when it exists). However, we
would like to stress that the 1D-1D model given by Eqs. (10)-(11) can be considered
and analyzed independently since it has a very specific structure which potentially
allows two asymmetric homogeneous equilibria, which is never possible for 1D-2D
models.

2.4 Objectives and Contributions

The goal of this study is to understand how Turing self-organisation is affected by
the coupling in a bilayer geometry and to derive mathematical conditions for the
linear instability of a homogeneous equilibrium in order to generate patterns. Thus
we consider the fundamental mechanism of Turing pattern formation theory, namely
diffusion-driven instability. We will focus our analysis on the two asymptotic regimes
η � 1 andη � 1 andwewill obtain explicit quantitative patterning conditions that can
be numerically computed. We will always assume that the two layers independently
can generate Turing patterns in general, though not necessarily with the parameters
investigated, so that our main objective will be to determine analytically the cases
where the coupling enhances or diminishes this patterning ability. Before proceeding
to the mathematical analysis, we briefly summarize our main contributions below:

• Weak coupling case (η � 1) for the 1D-1D system: Turing patterns can be
formed by coupling two independently non-patterning layers provided that the
exchange rate of one species is large enough (Sect. 4.2, Fig. 2a, Video 1) or that
the equilibria of the two uncoupled layers are different (Sect. 4.3, Fig. 3).

• Weak coupling case (η � 1) for the 1D-2D system:we extend the 1D-1D results
by studying (asymptotically) the influence of the bulk depth (Sect. 4.4.1). We also
show different patterning scenarios in Sect. 4.4.3 (Videos 2-3-4).

• Strong coupling case (η � 1) for the 1D-1D system: we show that the coupled
system reduces to one single cross-diffusion equation (Sect. 5.1) and find a sim-
ple criterion to determine whether the coupling stabilizes the homogeneous state
(Sect. 5.2.1, Video 5) or enhances patterning (Sect. 5.2.2, Video 6).

• Intermediate coupling case: In Sect. 6, we briefly comment on the wide variety of
patterning scenarios, and the difficulty in studying them in any generality, beyond
the asymptotic regimes above.
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3 Dispersion Relations and Bifurcation Points

As a starting point, we derive the dispersion and bifurcation relations associated with
a weak linear perturbation of the homogeneous state. In addition, in the 1D-2D case,
the change of variable y′ = H − y is convenient, so as to locate the interface at y′ = 0,
though the prime is dropped below.

3.1 1D-1D

For the 1D-1Dsystem (10)-(11), taking into account theNeumannboundary conditions
on the lateral sides, we consider a linear perturbation of the equilibrium point of the
form

uS = u∗
S + εeλtuS,q cos(kq x),

uB = u∗
B + εeλtuB,q cos(kq x), (15)

where q is an integer and kq = qπ/L . Linearizing Eqs. (10)-(11) around this equilib-
rium point shows that at order ε, the perturbation vector wq = (uS,q , uB,q)

T belongs
to the kernel of the following matrix

M =
(

λI + P0 0
0 λI + Q0

)
+ ηE. (16)

Here I is the identity matrix, ξ = k2q is treated as a continuous variable, P0 =
ξ DS − JS, Q0 = ξ DB − JB , where JB and JS are the Jacobian matrices of fS and
fB with respect to uS and uB , respectively, and

E =
⎛

⎝
A −A 0

−B B 0
0 0 0

⎞

⎠ .

Unless specified otherwise, all expressions are evaluated at the equilibrium point w∗.
Note again thatw∗ may depend on η if the surface and bulk equilibrium concentrations
are not equal.

The dispersion relation is given by the determinant of M being zero, i.e.

|M| = 0,

which is a polynomial relation in λ and ξ but possibly non polynomial in η due to
the unknown dependence of w∗ on η. For a given set of parameters and a given η,
it is nevertheless possible to determine the stability of each mode ξ by applying the
Routh-Hurwitz criterion to the polynomial in λ of degree (m + n).
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3.2 1D-2D

In the 1D-2D case, the amplitude of the perturbation in the bulk depends on the y-
variable so that the linearized equations become

λuS,q = (JS − k2q DS)uS,q + ηA(ũB,q(y = 0) − uS,q)

λuB,q , = JBuB,q + DB(−k2q + ∂2yy)uB,q .

The second equation can be rewritten as

∂2yyuB,q = M2
BuB,q , (17)

where the matrix MB is a square root of

M2
B = DB

−1(λI + Q0).

Note that in principle the square root of a matrix is not unique and may not even
exist. The square root of a diagonal matrix can be constructed by taking the principal
square root of the diagonal elements. This construction readily extends to diagonaliz-
able matrices which form a dense open set. However, as we shall see, this particular
convention does not play any role in the following. Solving Eq. (17) in y, with y = 0
corresponding to the interface, and no-flux conditions at y = H , gives

uB,q = cosh((H − y)MB)vB,q ,

for some vector vB,q , with the interfacial conditions still to be imposed. These, in turn,
give

DBMB sinh(HMB)vB,q = η B̃
(
ũS − cosh(HMB)vB,q

)
.

In the previous expressions, the hyperbolic sine and cosine of a matrix are defined by
their power series expansions, namely for a matrix M,

cosh(HM) :=
+∞∑

k=0

H2k

(2k)!M
2k,

M sinh(HM) :=
+∞∑

k=1

H2k−1

(2k − 1)!M
2k .

Note in particular that these are functions of M2, so that the final results do not depend
on taking a matrix square root, nor the choice of the square root.

Finally, we conclude that wq(0) := (uS,q , vB,q) belongs to the kernel of the fol-
lowing matrix

M =
(

λI + P0 0
0 DBMB sinh(HMB)

)
+ ηE, (18)
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with

E =
⎛

⎝
A −A[cosh(HMB)]n 0

−B
0

B̃ cosh(HMB)

⎞

⎠ ,

where [cosh(HMB)]n denotes the first n rows of cosh(HMB). Note that, unlike
λI + P0, the matrix MB does not depend linearly on λ or ξ due to the square root and
the hyperbolic sine and cosine. Consequently, the dispersion relation

|M| = 0,

is a transcendental relation in all variables. In particular, there is no standard criterion,
like the Routh-Hurwitz criterion in the polynomial case, to determine the stability of
a given mode. Note also that this dispersion relation is a straightforward extension of
the model studied in Krause et al. (2020) in a 2D-2D reaction-diffusion scenario with
a passive bulk layer.

As an example, in the chemotaxis case given by Eqs. (4)-(5), one can check that

M2
B =

(
R w1

wT
2 ω

)
,

with

R = DB
−1

(
λI − JB + k2q DB

)

w1 = −DB
−1 ∂ fB

∂c
w2 = d−1

c h(c∗)(RT − k2q I)(∇uBk)(u
∗
B)

ω = d−1
c

(
λ + dck

2
q + h(c∗)(∇uBk)(u

∗
B) · w1 − rc

)
,

where rc = ∂r/∂c, evaluated at the equilibrium point.

3.3 Bifurcation Points

In the following, all the parameters are assumed to be fixed except for one, generically
denoted by δ, which will be taken as a bifurcation parameter. Classically, δ is the diffu-
sion coefficient of one of the species, for instance the inhibitor diffusion in a classical
two-species reaction-diffusion system (Murray 2003, Chapter 2). Note however that
in the following, the parameter δ could be any parameter of the model, such as the
chemotaxis strength. Following the classical Turing theory for marginal instability,
for a given η we are interested in the critical value δc of the bifurcation parameter at
which λ = 0 is a solution of the dispersion relation, while all the other solutions have
a negative real part (i.e. a Turing bifurcation). In this article, we will only consider
the case of a Turing bifurcation and leave the case of Hopf (or wave) bifurcations (i.e.
associated with λ = iρ, ρ real) for future work. The goal of this section is to find a
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set of algebraic relations on (ξ, δ) that should be satisfied for a Turing bifurcation to
occur.

Highlighting the dependence with respect to the various parameters, the dispersion
relation reads

|M|(η,w∗, λ, ξ, δ) = 0, (19)

where M is given by Eq. (16) or Eq. (18). Thus, for a given η and a given equilibrium
w∗, defining the function (ξ, δ) 	→ a0(η,w∗, ξ, δ) := |M|(η,w∗, 0, ξ, δ), the critical
values ξc and δc at which a Turing bifurcation occur satisfy the following relation:

a0(η,w∗, ξc, δc) = 0, (20)

and our goal is to study the dependence of this solution on η and w∗. More precisely,
when η = 0 (i.e. when the two layers are independent), we will assume that a Turing
bifurcation occurs for one of the layers when the bifurcation parameter crosses a value
δc(0). Then, for η > 0, one of our main goals will be to compare the critical value
δc(η) of the bifurcation parameter of the coupled system with the critical value δc(0)
of the uncoupled system. More generally, we will give quantitative estimates on how
δc(η) behaves as η increases.

Note also that since all the other solutions of the dispersion relation are assumed to
have a non positive real part, it follows that a0 ≥ 0 in a ξ neighbourhood of ξc, which
imposes the second relation

∂a0
∂ξ

(η,w∗, ξc, δc) = 0. (21)

In the following, it will be useful to expand a0 as

a0(η,w∗, ξ, δ) =
n+m∑

k=0

ηk Hk(w
∗, ξ, δ). (22)

The first term is computed by setting η = 0, in which case Eq. (20) reduces to a
block-diagonal determinant:

H0(w
∗, ξ, δ) = |P0||W0|, (23)

where P0 = ξ DS − JS and W0 = Q0 = ξ DB − JB in the 1D-1D case. For
the 1D-2D case, P0 has the same definition but W0 := DB

√
R0 sinh(H

√
R0) with

R0 = DB
−1(ξ DB − JB) and

√
R0 denoting any square root of R0. For the second

term, we recall Jacobi’s formula for the differential of the determinant function,

d

dh
|A(h)| = co(A(h)) · A′(h),
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for anymatrix-valued differentiable curve h ∈ R 	→ A(h), with derivative at h denoted
by A′(h), where A · B := Tr(ATB) denotes the usual matrix dot product and co(A)

is the comatrix of the matrix A (which is the transpose of the adjugate matrix).
Consequently, we obtain that

H1(w
∗, ξ, δ) = ∂a0

∂η

∣∣∣
η=0

= |W0| co(P0) · A + |P0| co(W0) · B̃, (24)

in the 1D-1D case and

H1(w
∗, ξ, δ) = ∂a0

∂η

∣∣∣
η=0

= |W0| co(P0) · A + |P0| co(W0) · B̃ cosh(H
√
R0),(25)

in the 1D-2D case.

Remark 1 The expansion (22) will be useful to study the small coupling case η � 1
in the next section. Following the same methodology, it would possible to compute
the full Taylor expansion of a0 using the Faa di Bruno formula, although, due the
algebraic complexity, it does not seem possible to obtain exploitable analytical results
beyond the first order.

4 Weak Coupling Case for the 1D-1D and 1D-2DModels

When η = 0, the surface and bulk systems are decoupled and we assume that at least
one of them has a bifurcation parameter with the ability to produce Turing patterns.
Classically, it is possible to compute, explicitly or numerically, the critical value of
this bifurcation parameter, δc(0), as well as the critical wave number ξc(0) (see, for
instance, (Murray (2003), Sect. 2.3 as well as Sect. 4.2.2 in the case of a two-species
reaction-diffusion system). The goal of this section is to study how this critical param-
eter changes when the two systems are coupled with a small coupling strength η > 0.

4.1 General Formula

We first give a simple criterion for the existence of a critical bifurcation parameter
function η 	→ δc(η) and η 	→ ξc(η) in a neighbourhood of η = 0. Since these
critical values are defined by Eqs. (20)-(21), by the implicit function theorem and the
expansion given in Eq. (22), this reduces to proving that

det

(
∂ξ H0 ∂δH0

∂2ξξ H0 ∂2ξδH0

)
�= 0,

where all the partial derivatives are evaluated at (ξc(0), δc(0)). We will call surface-
driven (resp. bulk-driven) symmetry-breaking the case where δ is the diffusion
coefficient of a surface (resp. bulk) species and thus at δc(0), |P0| = ∂ξ |P0| = 0
and |Q0| �= 0 (resp. with Q0 and P0 switched). Without loss of generality, let us
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therefore assume a surface-driven symmetry breaking (again, otherwise P0 and Q0
are simply switched). In this case, using Eq. (23), the above condition thus reduces to

∂2ξξ |P0| ∂δ|P0| �= 0. (26)

This condition is fulfilled, for instance, for a classical two-species activator-inhibitor
system away from higher codimension points, as it is just a transversality condition.
We will always assume that Eq. (26) holds in the following.

In order to know if the coupling increases or decreases the ability to form pat-
terns, we want to compute the derivative of δc at η = 0 and thus obtain a first order
approximation of the bifurcation curve η 	→ δc(η). To do so, since

a0(η,w∗(η), ξc(η), δc(η)) = 0, ∂ξa0(η,w∗(η), ξc(η), δc(η)) = 0,

taking the derivative of these relations with respect to η (and using ′ to indicate deriva-
tives with respect to η), we find that δ′

c(0) and ξ ′
c(0) satisfy the following system of

coupled partial differential equations

∂ηa0 + w∗′
(0) · ∇w∗a0 + δ′

c(0)∂δa0 = 0,

∂2ηξa0 + w∗′
(0) · ∇w∗∂ξa0 + ξ ′

c(0)∂
2
ξξa0 + δ′

c(0)∂
2
ξδa0 = 0.

Using the expansion in Eq. (22), this reduces to

H1 + w∗′
(0) · ∇w∗ H0 + δ′

c(0)∂δH0 = 0,

∂ξ H1 + w∗′
(0) · ∇w∗∂ξ H0 + ξ ′

c(0)∂
2
ξξ H0 + δ′

c(0)∂
2
ξδH0 = 0.

In particular, we deduce the general formula

δ′
c(0) = −H1 + w∗′(0) · ∇w∗ H0

∂δH0
, (27)

where H1 and H0 are evaluated at (w∗(0), ξc(0), δc(0)). This formula can be further
simplified by usingEqs. (23)-(24) in the different cases thatwewill consider below. For
later convenience, we summarize the results in the following straightforward propo-
sition.

Proposition 1 Under the assumption that Eq. (26) holds true, the derivative at η = 0
of the bifurcation curve η 	→ δc(η) is given by the following formulas.

• In the 1D-1D surface-driven symmetry breaking case,

δ′
c(0) = −co(P0) · A + u∗

S
′(0) · ∇u∗ |P0|

∂δ|P0| . (28)

• In the 1D-1D bulk-driven symmetry breaking case, the same formula Eq. (28)
holds with (P0, A, u∗

S(0)) replaced by (W0, B̃, ũ∗
B(0)).
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• In the 1D-2D surface-driven symmetry breaking case, we recall that the two
layers must share the same equilibria, so w∗′(0) = 0 and consequently

δ′
c(0) = −co(P0) · A

∂δ|P0| . (29)

• In the 1D-2D bulk-driven symmetry breaking case, we need to take into account
the additional hyperbolic cosine term in Eq. (25), and finally obtain

δ′
c(0) = −co(W0) · B̃ cosh(H

√
R0)

∂δ|W0| . (30)

One surprising consequence of the formula Eq. (28) (and similarly for its variants
Eqs. (29)-(30)) is that at first order when η � 1, the function η 	→ δc(η) does
not depend on the bulk (resp. surface) parameters. When u∗

S
′(0) = 0, it is an intrinsic

property of the surface (resp. bulk) system.When u∗
S
′(0) �= 0, as explained in Sect. 4.3,

there is an additional contribution, but this only depends on the difference between
the equilibrium concentrations of the bulk and the surface.

We recall that at (ξc(0), δc(0)), |P0| = ∂ξ |P0| = 0 and |P0| ≥ 0 elsewhere for
surface driven symmetry breaking. Moreover, patterning occurs in the surface system
as soon as there exist parameters (ξ, δ) such that |P0|(ξ, δ) < 0. Consequently, when
∂δ|P0| < 0, patterning occurs in the surface layer independently for δ > δc(0) and
when δ < δc(0) if ∂δ|P0| > 0. The second case is typically encountered when δ is
the diffusion parameter of the cells in a chemotaxis system, whereas the first case
corresponds, for instance, to a classical activator-inhibitor system with δ the diffusion
parameter of the inhibitor. Following this observation, one can conclude that the cou-
pling enhances patterning when δ′

c(0) and ∂δ|P0| have the same sign. For instance,
when ∂δ|P0| < 0, this would imply that δc(η) < δc(0) for η small enough. Due to Eq.
(28), this occurs if and only if

co(P0) · A + u∗
S
′
(0) · ∇u∗ |P0| < 0. (31)

The increased or decreased ability to form Turing patterns thus depends on the
balance between the two terms in Eq. (31). The second term may be non-zero only
in the case where the two layers have different equilibrium concentrations. Note that
this can only happen in the 1D-1D case. The contribution of this term is difficult to
estimate in full generality, so we will give some examples in Sect. 4.3. We now focus
on the contribution of the first term, theoretically and for various examples.

4.2 Global Equilibrium

In this section, we assume the following.

123



   13 Page 18 of 42 A. Diez et al.

Assumption 1 (Global equilibrium) The two layers share the same equilibrium when
they are uncoupled, i.e.

u∗
S(0) = ũ∗

B(0).

In particular, this value remains a global homogeneous equilibrium for any η > 0,
which implies that u∗

S
′(0) = 0.

4.2.1 Theoretical Considerations with Equal Surface and Bulk Equilibrium
Concentrations

Under Assumption 1, the second term in Eq. (31) vanishes and hence we focus on the
contribution of the first term. That is, we want to compute the sign of

I1 := co(P0) · A. (32)

Note that in the 1D-1D model, the surface and bulk are exchangeable so the main
result of this section, summarized in the following proposition, can be immediately
translated to 1D-1D bulk-driven symmetry breaking. Moreover, owing to Eq. (29),
the analysis in this section also applies to surface-driven symmetry breaking in the
1D-2D case. The bulk-driven symmetry breaking situation in the 1D-2D model will
be discussed in Sect. 4.4.1.

Proposition 2 Under Assumption 1 in the 1D-1D surface-driven symmetry breaking
case, the following results hold

• if A = I , then δ′
c(0) and ∂δ|P0| have opposite signs (i.e. coupling reduces the

ability to form patterns);
• if DS is diagonal with constant non-negative coefficients (pure reaction-diffusion
system), then there exists a diagonal matrix A such that δ′

c(0) and ∂δ|P0| have the
same sign (i.e. coupling enhances patterning).

Proof Let us first consider the case A = I . The quantity (32) is thus equal to the sum
of the n principal minors associated with the principal submatrices of order (n − 1).
It can be shown that this quantity is equal to the product of the (n − 1) non-zero
eigenvalues of P0 (Meyer 2001, Section 7.1). By definition, at (ξc(0), δc(0)), all these
eigenvalues have a positive real part and thus we conclude that I1 ≥ 0 and thus, using
Eq. (28) and Assumption 1, ∂δ|P0| and δ′

c(0) have opposite signs. This implies that the
coupling always reduces the ability to form patterns. In order to enhance patterning,
one needs to choose a matrix A whose elements corresponding to negative cofactors
are non-negative and large. For pure reaction-diffusion systems – that is DS is diagonal
with nonnegative coefficients – such cofactors always exist since

∂ξ |P0| = co(P0) · DS = 0,

which implies that at least one diagonal cofactor is negative. ��
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It is important to note that since the first order approximation δ′
c(0) is directly pro-

portional to the normof A, it can bemade as small as possible by an appropriate scaling
of the exchange rates. In theory, this fact thus allows the possibility that patterning can
be enhanced by the layer-coupling given an arbitrarily small diffusion of the reactive
species. Compared to the Turing theory for reaction-diffusion systems, the differential
transport (i.e. the fact that one of the interacting species has a higher exchange rate
through the interface) can compensate for, or even replace, the usually theoretically
necessary differential diffusion for the classical version of the Turing mechanism,
which has long been a subject of debate in real-world biological systems (Bard and
Lauder 1974; Meinhardt and Gierer 2000; Madzvamuse et al. 2015; Veerman et al.
2021).

In the following section, we will illustrate these phenomena through various exam-
ples in the 1D-1D situation.

4.2.2 Two-Species 1D-1D Reaction-Diffusion Systems

For this example, we consider only two reacting species with concentrations

uB = (uB, vB), uS = (uS, vS),

which share the same equilibrium. Thus we can, without loss of generality, consider
only the surface-driven symmetry breaking situation. In the rest of this article, the
subscript S will refer to surface quantities and the subscript B refers to bulk quantities.
In many cases, one of the two layers plays no role so we will omit this index when
no confusion is possible. In the present example, in the surface-driven symmetry
breaking situation, the bulk system plays no role at first order and we will thus denote
for simplicity (uS, vS) ≡ (u, v). Similarly, the surface reaction function is denoted by
fS ≡ ( f , g) and u and v subscripts will denote partial differentiation.

Proposition 3 Under Assumption 1, let us consider a 1D-1D two-species model with
surface concentrations (u, v) and such that

• the reaction functions fS = ( f , g) satisfy the Turing conditions (Murray 2003,
Eqs. (2.31));

• the bifurcation parameter δ ≡ dv is the diffusion parameter of the v-species,
which is the inhibitor, and the diffusion coefficient of the u-species (the activator)
is constant and equal to du = 1;

• the coupling matrix A is diagonal with non-negative diagonal coefficients denoted
by α, β, i.e.

A =
(

α 0
0 β

)
.

Then ∂δ|P0| < 0 and the derivative of the bifurcation curve η 	→ δc(η) at η = 0 is
equal to

δ′
c(0) = αδc(0)

ξc(0)

(
1 − β/α

δc(0)

)
. (33)
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Proof In this case, we have that

I1 = co(P0) · A = α(ξδ − gv) + β(ξ − fu),

and

∂δ|P0| = ξ(ξ − fu).

We recall (Murray 2003, Eq. (2.25)) that the critical diffusion and critical wave number
are linked by the relation

ξc(0) = δc(0) fu + gv

2δc(0)
,

so that

ξc(0)δc(0) − gv = δc(0) fu − gv

2
, ξc(0) − fu = −δc(0) fu + gv

2δc(0)
.

In particular, when the u- and v-species are, respectively, the activator and the inhibitor,
it follows that fu > 0 and gv < 0, and therefore ∂δ|P0| < 0 and Eq. (28) simplifies to
Eq. (33). ��

As a consequence, δ′
c(0) > 0 if and only if δc(0) >

β
α
. Since the classical Turing

instability requires that the inhibitor diffusion coefficient is larger than the activator
diffusion coefficient, and thus δc(0) ≥ 1, this condition for δc(0) is fulfilled when
β < α. In other words, the prospect of patterning is reduced if the exchange rate of
the activator is higher than the exchange rate of the inhibitor. This is always the case
when α = β provided δc(0) > 1. In order to enhance patterning it is sufficient to take
β > αδc(0), which can be understood as off-setting a small inhibitor diffusion with a
high exchange rate. Note that the quantity ξc(0) − fu is the negative cofactor in the
general case outlined in Sect. 4.2.1. This result is illustrated in Fig. 2 and Video 1 for
the following Schnakenberg system (Schnakenberg 1979):

f (u, v) = s(a − u + u2v), (34a)

g(u, v) = s(b − u2v), (34b)

where 0 < a < b and s > 0.

4.2.3 Chemotaxis Systems and Bulk-Driven Symmetry Breaking

Let us consider now the bulk-driven symmetry breaking scenario with a population of
chemotactic cells with density denoted by cwhich satisfies Eq. (5) in the bulk, and two
chemical species with equal equilibrium concentrations in the two layers. Similarly
as before, we omit the B indexing since the surface does not play any role.
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Fig. 2 Coupling two identical Schnakenberg systems with a = 02305, b = 0.7695 and s = 1. The
bifurcation parameter δ is the diffusion coefficient of the v-species. The instability region in the (η, δ) plane
is depicted in grey and is computed numerically by applying the Routh-Hurwitz criterion to the fourth
order polynomial Eq. (19) for the modes kq = qπ/L with L = 1000 and q ∈ {0, . . . , 1500}. The thin
solid line at the boundary of the instability region is computed by solving numerically Eqs. (20)-(21). The
dashed horizontal line indicates the critical bifurcation parameter δc(0) at η = 0. The thick solid line is
the first-order approximation δc(η) = δc(0) + ηδ′

c(0) computed using Eq. (33). (a) When α = β = 1, the
coupling reduces the ability to form Turing patterns in the sense that a higher diffusion coefficient is needed
(i.e. the instability region is reduced when η is increased). (b) When α = 1 and β = 30, the coupling
enlarges the parameter space in which Turing patterns are formed. See also Video 1. In both cases the bulk
layer is in a non-patterning state with diffusion coefficients duB = 1 and dvB = 15 < δc(0) � 17.3

Proposition 4 Under Assumption 1 and the assumption that all the species have con-
stant diffusion coefficients, let us consider the two following cases.

1. If only one species, the chemo-attractant with concentration u, diffuses through the
interface and if the reaction functions satisfy fu < 0, fc > 0 andrc < 0 (evaluated
at the equilibrium point) then the chemo-attractant diffusion coefficient δ ≡ du is
a bifurcation parameter for the uncoupled bulk system, i.e. there exists δc(0) > 0
such that patterning occurs for δ < δc(0). In the coupled case, if the exchange
matrix B̃ = diag(α, 0) is diagonal then

δ′
c(0) = − α

ξc(0)
< 0,

and hence ∂δ|W0|δ′
c(0) < 0 so that coupling reduces the ability of the system to

form patterns.
2. If the two reacting species (u, v) diffuse through the interface and satisfy Eqs. (4)-

(5) with a reaction function f̃B(u, v) = ( f (u, v), g(u, v)) and if the exchange
matrix B = diag(α, β) is diagonal then the derivative at η = 0 of the bifurcation
curve for δ ≡ dv can be simplified using the following expressions:

∂δ|W0| = ξ
(
(ξdu − fu)(ξdc − rc) − ξhku fc

)
, (35)
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co(W0) · B̃ = α
(
(ξδ − gv)(ξdc − rc) − ξhkvgc

)

+ β
(
(ξdu − fu)(ξdc − rc) − ξhku fc

)
. (36)

A typical example for the first case is the linear Keller-Segel model

f (u, c) = ac − bu, r(c) = c(c∗ − c),

with coefficients a, b, c∗ > 0.

Proof 1. The linearized matrix of the bulk system is given by,

W0(ξ, δ) := ξ DB − JB =
(

ξδ − fu − fc
−ξhku ξdc − rc

)
,

and its determinant is

|W0|(ξ, δ) = ξ2δdc − (dc fu + δrc + h fcku)ξ + furc.

Since fu, rc < 0, and thus furc > 0, a necessary condition for this polynomial (in
ξ ) to take negative values for ξ ≥ 0 is that its derivative in 0 is non-positive, that
is δ < (h fcku − dc| fu |)/|rc|. Then, the minimal value of this polynomial is given
by −(dc fu + δrc + h fcku)2/(4δdc) + furc. This function of δ is monotonically
increasing between 0 and (h fcku − dc| fu |)/|rc| and is negative for δ smaller than a
certain value which defines the critical value δc(0) below which patterning occurs.
Moreover, a direct computation shows that

∂δ|W0| = ξ(ξdc − rc) > 0,

co(W0) · B̃ = α(ξdc − rc),

with diagonal matrix B̃ = diag(α, 0). Consequently, Eq. (28) simplifies to

δ′
c(0) = − α

ξc(0)
< 0.

2. The full dispersion relation for the bulk reads

|λI + W0| = 0,

where

W0 =
⎛

⎝
ξdu − fu − fv − fc

−gu ξδ − gv −gc
−ξhku −ξhkv ξdc − rc

⎞

⎠ .

The conclusion thus follows from a direct computation.
��
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Although one can provide a definitive (negative) answer to the question of whether
patterning is enhanced by the coupling in the first case, it seems impossible to draw
general conclusions in the second case. Indeed it would require assessing the sign of
the last expression Eq. (36), which, in a general setting, is difficult due to the number
of degrees of freedom. However, one scenario where the equilibria of the reacting and
diffusing species have the same values in the bulk and surface is where the cells are
slave, with no feedback on the signalling molecules, so that fc = gc = 0. Further, the
requirement of stability to homogeneous perturbations, i.e. when ξ = 0, gives rc < 0,
fu + gv < 0, and fugv − gu fv > 0, with the latter two constituting standard Turing
conditions. With the chemoattractant species, v, as the activator, and the assumption
that u, v are a Turing pair in the absence of chemotaxis, so that u is the inhibitor,
entails we additionally have gv > 0 > fu and hence gu fv < fugv < 0. Thus the
requirement that |W0| = 0 at the critical point gives

(ξdu − fu)(ξδ − gv)(ξdc − rc) − fvgu(ξdc − rc) = 0,

and hence the coefficient of α in co(W0) · B̃ is given by

(ξδ − gv)(ξdc − rc) = fvgu

(
ξdc + |rc|
ξdu + | fu |

)
< 0.

In contrast, the coefficient of β is given by (ξdu + | fu |)(ξdc + |rc|) > 0. Hence,
whether the bilayer enhances patterning depends on the between-layer transport of the
inhibitor, u here, relative to that of the activator, v here, with sufficiently low relative
activator between-layer transport acting to increase the ability to form patterns. We
also note that the chemotactic parameters occur only in the grouping (ξdc + |rc|),
which factors out of both the coefficients of α and β so that, as might be expected
given that the cells are slave to the signalling molecules, the chemotatic properties of
the cells do not influence these observations.

4.3 Asymmetric Equilibria in the 1D-1DModel

In this section, we drop the assumption of the existence of global equilibria (Assump-
tion 1) and we instead assume the following in the 1D-1D case.

Assumption 2 (Asymmetric equilibria) The equilibria of the uncoupled bulk and sur-
face layers are different, i.e.

u∗
S(0) �= ũ∗

B(0).

As usual, since the surface and bulk play a symmetric role in the 1D-1D case, we
consider the surface-driven patterning case and in order to assess whether asymmetric
equilibria have an influence on patterning, we focus on the contribution of the second
term in Eq. (31).

Proposition 5 Under Assumption 2,
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1. if fS and fB have continuous derivatives with invertible Jacobian matrices at η =
0, then there exists a differentiable equilibrium curve w∗ : η 	→ (u∗

S(η), u∗
B(η))

defined on an interval [0, η0) with η0 > 0 and which satisfies Eqs. (12)–(13);
2. in this case, the derivative of the equilibrium curve at η = 0 is given by

u∗
S
′
(0) = JS−1A

(
u∗
S(0) − ũ∗

B(0)
)
,

u∗
B

′
(0) = JB−1 B̃

(
u∗
B(0) − ũ∗

S(0)
);

3. consequently, the second term in Eq. (31) is equal to

I2 = u∗
S
′
(0) · ∇u∗ |P0| = co(P0) · (

JS−1A(u∗
S(0) − u∗

B(0)) · ∇u∗
)
P0. (37)

Proof 1. This is a direct consequence of the implicit function theorem applied to the
function

f : (η, uS, uB) 	→
(
fS(uS) + ηA(uB − uS), fB(uB) + η B̃(ũS − uB)

)
.

Indeed, this function vanishes at η = 0 by Assumption 2 and the determinant of
the Jacobian matrix J f of f with respect to (uS, uB) at η = 0 is given by

|J f | = |JS||JB|,

where JS and JB , respectively, denote the Jacobian matrices of the reaction func-
tions of the surface and the bulk.

2. The derivatives of the equilibrium curves are computed by differentiating the rela-
tion

f
(
η, u∗

S(η), u∗
B(η)

) = 0,

with respect to η.
3. The second expression of I2 comes from Jacobi’s formula for the differential of

the determinant which implies that for a given vector p = (p1, . . . , pn)T,

p · ∇u∗ |P0| = co(P0) · ( p · ∇u∗)P0,

where we use the operator p · ∇u∗ := ∑n
k=1 pk∂u∗

k
.

��
Since we only consider diffusion-driven instabilities, both Jacobian matrices JS

and JB are invertible (as they must have eigenvalues with strictly negative real parts)
and hence we are always in the situation where there exists a differentiable equilibrium
curve.

From the second and third points of the previous proposition, we can conclude that
the contribution of the asymmetry between equilibria on the first-order approximation
of the bifurcation curve given by Eq.(28) is due to u∗

S
′(0) and it depends only on

the difference between the equilibrium concentrations and on the reaction term of the
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surface but it does not involve the reaction termof the bulk layer. Thus, this contribution
will dominate when the uncoupled equilibrium concentrations in the two layers are
sufficiently different. This case is illustrated in Fig. 3. The situation is simpler in
the strong coupling case, as explained in the forthcoming Sect. 5, but, nevertheless,
progress can be made in simple examples, as we now show.

For example, we consider the Schnakenberg kinetics of Eq. (34), with s = 1, a
coupling matrix A = B = diag(α, 0) and, to force a difference in the surface and bulk
concentrations,we take the equivalent parameter for a in the bulk to be aB �= a, with all
parameters positive. The equilibria are given by the solution of the four simultaneous
algebraic equations governing u∗

S, v
∗
S, u

∗
B , v∗

B , namely

u∗
S = a + b + (aB − a)αη

1 + 2αη
,

u∗
B = aB + b + (a − aB)αη

1 + 2αη
, v∗

S = b

u∗2
S

, v∗
B = b

u∗2
B

.

Thus

u∗′
S = α(aB − a)

(1 + 2αη)2
, v∗′

S = − 2b

u∗3
S

u∗′
S .

Hence, explicitly evaluating Eq. (37) with du, dv the diffusion coefficients of the
respective species, we have

I2 = u∗′
S

(
∂|P0|
∂u∗

S
− 2b

u∗3
S

∂|P0|
∂v∗

S

)

= u∗′
S

(

2ξ(duu
∗
S − dvv

∗
S) + 2u∗

s + 4ξbdv

u∗2
S

)

= u∗′
S

(

2ξ

(

duu
∗
S + bdv

u∗2
S

)

+ 2u∗
S

)

,

with the final equality arising from noting that v∗
S = b/u∗2

S . Hence, for this case we
have

co(P0) · A + u∗
S
′
(0) · ∇u∗ |P0| = α(u∗2

S + ξdv) + α(aB − a)

(

2ξ

(

duu
∗
S + bdv

u∗2
S

)

+ 2u∗
S

)

,

where we recall that this expression is evaluated at the critical point η = 0, ξ =
ξc(0), dv = δc(0) and u∗

S(0) = a + b. Thus, when aB > a, this expression is always
positive and the layering acts to inhibit pattern, whilst for a > aB sufficiently large,
we have that the difference between the resulting surface and bulk equilibrium con-
centration levels will enhance prospective patterning.
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Fig. 3 Coupling two different Schnakenberg systems with parameters A = B = I , a = 0.15, b = 0.2,
s = 0.5, duB = 1, dvB = 15 < δc[ fB] � 25.7 for the bulk (non-patterning state) and a = 0.2305,
b = 0.7695, s = 2 for the surface. The instability region in grey and its boundary are computed numerically
as in Fig. 2. The coupling enhances patterning for small and large η but reduces patterning for intermediate
values. The first-order approximation at η = 0 is computed using Eq. (28). The asymptotic value is indicated
by the dotted line and is computed using Eq. (42). a η ∈ (0, 5). b η ∈ (0, 200)

4.4 The Case of the 1D-2DModel

In this section, we consider exclusively the 1D-2D setting with a particular focus
on bulk-driven symmetry breaking. In particular, the equilibria of the two uncoupled
layers must be the same, that is Assumption 1 holds true.

4.4.1 Large and Small Depth

In the 1D-2D case, the boundary condition Eq. (3) imposes a global homogeneous
equilibrium identical in both layers (Assumption 1). Thus, for bulk-driven patterns,
using (25), the formula Eq. (27) reduces to

δ′
c(0) = co

(
DB

√
R0 sinh(H

√
R0)

) · B̃ cosh(H
√
R0)

∂δ|DB
√
R0 sinh(H

√
R0)| , (38)

where R0 = DB
−1Q0, Q0 = ξ DB − JB and the notation

√
R0 denotes any square

root of R0. We recall that

√
R0 sinh(H

√
R0) =

+∞∑

k=1

H2k−1

(2k − 1)! R0
k =: F1(H , R0),

cosh(H
√
R0) =

+∞∑

k=0

H2k

(2k)! R0
k =: F2(H , R0),
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and thus the expression in Eq. (38) is a function of R0 only. When H → 0, one can
compute the following equivalent

δ′
c(0) ∼ 1

H

co(Q0) · B̃
∂δ|Q0| ,

that is, up to a positive factor H−1, this is the same as in the 1D-1D case. This scaling
is expected and consistent with the analysis for the reduction from 2D to 1D obtained
when H → 0.

When H is large, we also expect that the bulk will pattern on its own without
influence of the surface, that is δ′

c(0) → 0. Using Jacobi’s formula and the series
expansion in Eq. (22) we note that

∂δ|DB
√
R0 sinh(H

√
R0)| = co

(
DBF1(H , R0)

) · (
∂δ DBF1(H , R0)

+ H DB∂δR0 F̃2(H , R0)
)
,

where

F̃2(H , R0) :=
+∞∑

k=0

k + 1

2k + 1

H2k

(2k)! R0
k .

We can expect that, generically when H is large, the denominator in Eq. (38) will
behave as H multiplied by a quantity of the same order of magnitude as the numerator
co

(
DBF1(H , R0)

) · B̃F2(H , R0). With this formal argument we thus expect that
δ′
c(0) generically decreases as H−1.

4.4.2 Two-Species Case

For a two-species system like the one inSect. 4.2.2,we canmake the above computation
exact for any H . This follows from the fact that

R0 =
(

ξ − d−1
u fu −d−1

u fu
−d−1

v gu ξ − d−1
v gv

)

is nilpotent, satisfying R0
2 = 0 (for example by noting Tr(R0) = det(R0) = 0 at the

critical bifurcation point ξ = ξc(0), dv = δc(0), and then using the Cayley-Hamilton
theorem). Further note that, in this case, the matrix R0 has no square root. Thus it
follows that,

F1(H , R0) = H R0, F2(H , R0) = I + H2

2
R0,
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and Eq. (38) simplifies to

δ′
c(0) = 1

H

co(DBR0) · (B + H2

2 BR0)

∂δ|DBR0| .

We note that since |R0| = 0,

co(DBR0) · BR0 = d

dh
det(DBR0 + hBR0)

∣∣∣
h=0

= (
co(DB) · B)|R0| = 0.

Moreover, DBR0 = Q0 so it follows that

δ′
c(0) = 1

H

co(Q0) · B
∂δ|Q0| ,

and this exact formula remains valid for all H .

Remark 2 It should be noted that the eigenvalues of R0 at ξ = ξc(0) and δ = δc(0)
are the solutions of

|(ξc(0) − λ)DB − JB| = |Q0|
(
ξc(0) − λ, δc(0)

) = 0,

so λ = 0 is always an eigenvalue of R0. In the two-species case, this is the only
eigenvalue since the polynomial ξ 	→ |Q0|

(
ξ, δc(0)

)
is of degree 2, vanishes at ξc(0)

and is non-negative in a neighbourhood of this root. Consequently, R0 is a nilpotent
matrix, as computed before. The same situation could possibly happen for an arbi-
trary, but even, number of species, although it would require some fine-tuning of the
parameters, in which case the functions F1 and F2 would actually be polynomials in
R0. However, for an odd number of species, the polynomial ξ 	→ |Q0|

(
ξ, δc(0)

)
is

an even-degree polynomial and thus it must have at least one other root ξ0 < ξc(0).
Consequently, the matrix R0 always has a positive eigenvalue λ = ξc(0) − ξ0 > 0
so the functions F1 and F2 cannot be polynomials. This observation suggests that, in
layered systems, 2-species models may not be representative of higher species models
with a higher number of species since the impact of nilpotency in 2-species models is
a specific feature that may reflect a genuinely different behaviour compared to models
with a higher number of species.

4.4.3 Patterning Dynamics

Since Eq. (28) involves the characteristics of the patterning layer only, the critical
bifurcation curve in the surface-patterning case for the 1D-2D system has the same
first-order approximation as in the 1D-1D system. However, although the 1D-2D
and 1D-1D systems look similar from the point of view of patterning conditions,
the structure of the patterns is different depending on whether symmetry-breaking is
driven by the surface or the bulk. As may be expected, in the former case, patterning
preferentially occurs at the interface and is not observed to extend into the depth of

123



Turing Pattern Formation... Page 29 of 42    13 

a non-patterning bulk system, at least for the cases we will consider below. For bulk-
driven self-organisation, patterns can be observed throughout the bulk layer, with the
potential of creating surface concentration inhomogeneities when these bulk patterns
are formed close to the interface.

These phenomena are illustrated in Fig. 4 and Videos 2-3 for a reaction-diffusion-
chemotaxis model (4)-(5) using the following piece-wise linear reaction functions: in
the surface the reaction term is given by fS(u, v) = ( f (u, v), g(u, v)) with

f (u, v) = φ(a0 + a1u − bv) − a2u, (39a)

g(u, v) = φ(b0 + c1v + du) − c2v. (39b)

Here signalling molecules are produced by a fixed density of surface cells in an auto-
catalytic feedback response, with the continuous piece-wise linear function φ(ζ ) =
max(0,min(ζ, M)) for a givenM > 0, and parameters a0, a1, b, a2, b0, c1, d, c2 ≥ 0.
In this definition, the value M is chosen sufficiently large so that the reaction function
behaves as the identity function around the equilibrium value (obtained by solving the
linear system, with φ taken as the identity). The threshold values 0 and M are added
to ensure the positivity of the solutions and to prevent blow-up. This model has been
introduced in the seminal work of Kondo and Asai (1995). In the bulk we consider the
same system but where the chemical species are produced by the chemotactic cells
without feedback, so that fB(u, v, c) = ( f (u, v, c), g(u, v, c), r(c)), with

f (u, v, c) = φ(a0 + a1c − bv) − a2u, (40a)

g(u, v, c) = φ(b0 + c1c + dc) − c2v, (40b)

r(c) = r0c(c
∗ − c). (40c)

The parameters in both systems and the equilibrium cell concentration c∗ are chosen
so that uS

∗(0) = ũ∗
B(0). For a given set of parameters, the critical diffusion of the

v-species in the surface and the bulk are, respectively, denoted in the caption of the
figures by dcvS and dcvB .

In this situation, since one layer is in a patterning state, spot patterns appear simul-
taneously throughout the patterning layer and propagate through the interface to the
non-patterning layer. The amplitude of the patterns created in the non-patterning layer
depends on the coupling strength η, and it has been confirmed numerically that they
are directly proportional (results not shown). In particular, since we consider the case
of small η in all of the numerical simulations presented in this section, the amplitude
of the patterns in the non-patterning layer is typically much lower than in the pattern-
ing layer. For instance in Fig. 1b and Fig. 5, the amplitude of the surface patterns is
about one percent or less of the value of the homogeneous steady state, but it would be
proportionally larger for larger values of the coupling strength η (in the cases shown,
we took η = 0.01). The same is true for the bulk amplitude in Fig. 1a.

The patterning dynamics may be different when the patterns are created by cou-
pling two non-patterning layers with sufficiently large and different exchange rates,
i.e. by taking A or B sufficiently different from the identity, similarly to the system in
Sect. 4.2.2 and Fig. 2b. In particular, Fig. 5 shows the result for the piece-wise linear
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Fig. 4 Surface and bulk patterning with η = 0.01 in the pseudo-linear 1D-2D system (39)-(40) computed
in a 128 × 128 grid at time t = 500 after a steady state is reached. Surface parameters: a0 = 1, a1 = 2,
b = 2, a2 = 2, b0 = 0.25, c1 = 1, d = 1, c2 = 2. Bulk parameters: r0 = 0.2, a0 = 3, a1 = 8, b = 2,
a2 = 7, b0 = 0.75, c1 = 0.5, c2 = 1.5, d = 1, c∗ = 0.25, χ = 50. a Surface-driven patterning: duS = 1,
dvS = 6.41 > dcvS � 5.85, duB = 10, dc = 10, dvB = 6 < dcvB � 8. b Bulk-driven patterning: duS = 1,
dvS = 2.91 < dcvS , duB = 10, dc = 10, dvB = 60 > dcvB . Note that for both plots the original y-coordinate
is used, with the no-flux condition at y = 0 and the surface at y = H = 50. A brief description of the
numerical method used can be found in Appendix A as well as a link to the numerical code freely available
online

Fig. 5 Wave pattern with η = 0.01 computed on a 512 × 512 grid until a steady state is reached. Surface
parameters: duS = 1, dvS = 2.91 < dcvS . Bulk parameters: χ = 120, duB = 25, dc = 25, dvB = 35 <

dcvB � 37.5, βB = 180. The other parameters are the same as in Fig. 4

system (39)-(40) with A = I and B = diag(1, βB). Starting from a random perturba-
tion of the homogeneous equilibrium, when the exchange rate βB of the inhibitor v is
sufficiently large, patterns appear locally at the interface and then propagate throughout
the bulk and the surface (see also Video 4).
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The pattern propagation in the bulk (Fig. 5) can be understood as a multi-stability
phenomenon: although linearly stable, the homogeneous state in the bulk is only one
stable equilibrium of the PDE, and patterns in the uncoupled system can be obtained
by choosing an initial condition very far from the homogeneous equilibrium. In the
simulation, the initial condition is a small random perturbation of the homogeneous
state and the bulk independently thus does not typically escape from this linearly
stable state. However, when coupling is added, the interface plays the role of an active
boundary able to locally drive the system far from the homogeneous equilibrium
before spreading throughout the domain, in a similar fashion to the models introduced
by Maini and Myerscough (1997); Myerscough (1998).

5 Strong Coupling in the 1D-1D Case

5.1 Asymptotic Reduction

When η ≥ 1 and for sufficiently nice A and B, the concentrations ũB and uS are
expected to converge towards a common value u. For simplicity, we consider here
only the case m = n, but the extension to the general case would be straightforward.
Thus, splitting uS and uB as

uS = up + um, uB = up − um,

where

up = uS + uB

2
, um = uS − uB

2
,

provided that uS and uB remain uniformly bounded, the half difference um satisfies

∂tum = −η(A + B)um + O(1).

As a consequence, if A and B are such that their sum A + B has only non-negative
eigenvalues (for instance when A and B are both symmetric and positive definite), it
follows that um = O(η−1). Up to an error of order η−1, the concentrations uS and uB
are thus equal to their average up. The dynamics of up can be found by multiplying
Eq. (10) by A−1 and Eq. (11) by B−1 and summing the two resulting equations so
that the exchange term cancels out. Again, up to an error of order η−1, the behaviour
of up is given by the following equation

(A−1 + B−1)∂tu = A−1 fS(u) + B−1 fB(u) + ∇ · (
(A−1DS + B−1DB)∇u

)
.

For instance, in the simple case where A = B, corresponding to no sinks or sources
at the interface, u satisfies

∂tu = fS(u) + fB(u)

2
+ ∇ ·

(
DS + DB

2
∇u

)
. (41)
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A further case with a simple reduction occurs when fS = fB so that the reaction
term remains unchanged while the diffusion matrix becomes a linear combination of
the surface and bulk diffusionmatrices. In addition, for a mass conserving systemwith
fS = − fB , the reduced equation Eq. (41) simply becomes a pure (cross-)diffusion
equation.(cross-)diffusion equation. However, in full generality, the behaviour of the
solution does not readily simplify, since the properties of the new reaction term cannot
be expected to immediately follow from the properties of the surface and bulk reaction
terms.

5.2 Patterning Conditions for Two-Species Systems

In the case of two coupled two-species reaction-diffusion systemswith duS = duB = 1,
the critical bifurcation parameter of the inhibitor in the surface can be simply computed
from Eq. (41) and is given by

δc(∞) := lim
η→+∞ δc(η) = 2δc

[
fS + fB

2

]
− dvB , (42)

where we denote by δc[ f ] the critical inhibitor diffusion of a reaction-diffusion system
with reaction term f = ( f , g) and activator diffusion du = 1. Note that there is a
balance between the diffusion coefficients of the two layers. In particular, and as in the
small coupling case (Sect. 4.2.1), the critical diffusion of the v-species in the surface
in the coupled system can be made as small as desired, provided that the diffusion in
bulk dvB is large enough.

For later convenience, we recall the following formula corresponding to a standard
reaction-diffusion system with f = ( f , g) (Murray (2003), Eq. (2.27)):

δc[ f ] =
(√

fugv − fvgu + √− fvgu
fu

)2

. (43)

5.2.1 Stabilization by Coupling

When the two coupled systems are identical, fS = fB , with a common critical bifur-
cation parameter for the inihibitor diffusion denoted by δc(0), then, asymptotically
when η is large,

δc(∞) = 2δc(0) − dvB , (44)

and in particular, if the bulk is in a non-patterning state, i.e. dvB < δc(0), then δc(∞) >

δc(0). As might be expected, and similarly to the small coupling case (Sect. 4.2), this
means that a large coupling has a stabilizing effect: a larger diffusion of the inhibitor
in the surface is needed to de-stabilize the homogeneous state. This observation is
illustrated in Fig. 6a.

More generally, the analysis presented in Sect. 4 reveals that if a layer is in a pat-
terning state, then for small coupling, the coupled system remains in a patterning state.
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This can be seen as a consequence of the fact that the derivative δ′
c(0) of the critical

parameter is an intrinsic property of the considered layer. Consequently, if δ is chosen
above the critical value δc(0) and δ′

c(0) < +∞, then the coupled system must remain
in a patterning state for η sufficiently small (when δ′

c(0) > 0 and δ is close to δc(0),
a first order approximation of this value would be η = (δ − δc(0))/δ′

c(0)). Therefore,
if one wants to use the coupling to stabilize a homogeneous state, it is necessary to
consider a sufficiently large coupling strength. When the two layers are independently
in a patterning state, i. e. when dvB > δc[ fB] and dvS > δc[ fS], an asymptotically
non-patterning state for the coupled system corresponds to the case where

dvS < δc(∞) = 2δc

[
fS + fB

2

]
− dvB .

It is possible to find such parameters (dvS , dvB ) if and only if

δc

[
fS + fB

2

]
>

δc[ fB] + δc[ fS]
2

. (45)

This strict midpoint-concavity property requires that fB �= fS. Checking this property
for two arbitrary reaction functions heavily depends on the form of these functions.
When the reaction function depends linearly on its parameters, using the explicit
formula Eq. (43) for the critical diffusion, checking Eq. (45) reduces to checking the
convexity properties of this several-variable function (note that midpoint convexity is
equivalent to convexity for continuous functions). For instance, it is straightforward
to select reaction functions which satisfy this concavity property: one can consider a
family of (pseudo)-linear models of the form (39) parametrised by a single parameter
p > 1 such that the Jacobian matrix of the equilibrium system is given by

Jp =
(
1 −1
p 1 − p

)
. (46)

In this case

δc = 1 + p + 2
√
p

is a concave function of p. This situation is illustrated in Fig. 6b and Video 5.

5.2.2 Strong Coupling Patterns

Reciprocally, if dvB < δc[ fB] and dvS < δc[ fS] (i.e. the two layers are independently
in a non-patterning state), then the homogeneous state of the coupled system, with η

large, is unstable whenever δc(∞) < dvS < δc[ fS]. Using Eq. (42), such a value of
dvS will exist if and only if the following midpoint-convexity condition is satisfied:

δc

[
fS + fB

2

]
<

δc[ fB] + δc[ fS]
2

. (47)
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Fig. 6 Large coupling asymptotics. The dotted horizontal line indicates the asymptotic value δc(∞) com-
puted using Eq. (42). a Coupling two identical Schnakenberg systems with the same parameters as in Fig. 2.
The asymptotic value of the critical bifurcation parameter is larger than δc(0). bCoupling two pseudo-linear
systems with Jacobians given by Eq. (46) with p = 2 for the bulk and p = 200 for the surface. The bulk is in
a patterning state with diffusion coefficients duB = 1 and dvB = 10. Consequently, for small η the coupled
system is in a patterning state for all values of dvS . However, since δc(∞) > δc(0), for η sufficiently large
and dvS ∈ (δc(0), δc(∞)), the coupled system is in a non-patterning state and thus the coupling stabilizes
the homogeneous equilibrium. See also Video 5

Once again, it is necessary to consider two different systems in the surface and bulk
layers. Note that in contrast to the small coupling case (Sect. 4.3), the patterning
condition (47) is typicallymore straightforward to ascertain, as it reduces to computing
the convexity properties of a function. For instance, the condition (47) is always
satisfied for theSchnakenberg system (34) (Schnakenberg 1979) andGierer-Meinhardt
system (Gierer and Meinhardt 1972), (Murray (2003), Eq. (2.8)), as it can be verified
using the Eq. (43). An example is shown in Fig. 3b and Video 6.

6 Beyond the Asymptotic Cases

For intermediate values of η, many different scenarios are possible. An important
point to note is that the Turing conditions for each layer at η = 0 do not ensure that
the coupled system at η > 0 is stable without diffusion (i.e. that ξ = 0 is a stable
mode). For instance, taking two identical 1D-1D layers with Jacobian matrix J and
A = B, as in Eq. (16), the stability of the mode ξ = 0 can be checked by computing
the eigenvalues of the block matrix

(
J − ηA ηA

ηA J − ηA

)
.
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Fig. 7 Coupling two identical Schnakenberg systems with a = 0.2305, b = 0.7695, s = 2, dvB = 1 and
A = B diagonal with coefficients α = 1 and β = 40. The behaviour of the boundary of the instability
region (in grey) near η = 0 and for large η is well-predicted, respectively, by Eq. (33) (solid thick line)
and Eq. (42) (dotted horizontal line). For η between the roots of the polynomial Eq. (48) (depicted by the
randomly dotted band), the 0-th mode is unstable, which indicates a non-Turing type instability

Using the formula for block-diagonal determinants, the eigenvalues of this matrix are
the eigenvalues of the matrix J and the eigenvalues of the matrix J − 2ηA. If A �= I ,
then the latter may have non-negative eigenvalues, indicating that the mode ξ = 0 is

unstable. For instance for A =
(

α 0
0 β

)
, the mode ξ = 0 is unstable for all η between

the roots of the polynomial (in η)

4αβη2 − 2(αgv + β fu)η + |J |, (48)

as soon as this polynomial has two real roots. This phenomenon is illustrated in Fig. 7.

7 Conclusion and Discussion

During development, many organs are characterised by a bilayer geometry, such as the
skin and internal epithelium. However, the precise effect of this bilayer coupling on
self-organisation dynamics is under-explored. In this study, we have investigated pat-
terning conditions for bilayer reaction-cross-diffusion systems with weak and strong
coupling.

Our analysis provides a quantitative description of this coupling effect and shows,
in particular, that not only can spatial patterns emerge from the coupling of two non-
patterning layers, but also that the coupling of two independent patterning layers
can stabilize a homogeneous equilibrium and thus diminish patterning. Furthermore,
the reaction-cross-diffusion systems investigated in this study show that the classical
paradigm of local activation and long-range inhibition can be weakened by consider-
ing alternative mechanisms specific to the bilayer geometry. In particular, we found
that different transport rates between the two layers, or the asymmetry of the equi-
librium states of the model components between the two layers, can have a critical
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influence on pattern formation. In the asymptotic regimes of weak and strong cou-
pling, we proved that these constraints are necessary to induce patterning between two
non-patterning layers andwe highlighted several explicit examples where they are suf-
ficient. Furthermore, we also classified the cases where the coupling has a negative
effect on patterning when one or both layers is independently in a patterning state. We
observed an additional complication that the layered coupling can disrupt the stabil-
ity of the homogeneous steady state that is required for Turing’s mechanism, further
highlighting the need to consider the coupled system rather than layers in isolation.
Further behaviours observed in these bilayer systems include a wave of patterning
induction, contrasting the behaviour of the classical Turing system, which patterns via
simultaneous self-organisation across the domain. In particular, the combined wave
and patterning dynamics bears some resemblance to cell density waves seen in feather
patterning. We note that feather placode formation is also typically accompanied by
an additional signalling-molecule wave (Ho et al. 2019), so this phenomenological
observation needs more careful study.

More generally, our analysis covers the cases of 1D-1D and 1D-2D systems and
these findings offer the prospect of improving our understanding of patterning mech-
anisms under the control of signalling molecules, and responses to them, in organs
incorporating a bilayer structure in their development, such as the skin. Other organs
that exhibit an analogous bilayering alongside spatial patterning in development
include the villi of the gut and the branches of the lung, and various models for
these systems are reviewed in Almet et al. (2020); Miura (2015).

In addition to investigating this application to biological systems in detail, several
other extensions of this work could be considered. First of all, the models studied
in this paper are one-dimensional along the x-axis, as Turing patterning conditions
are independent of the dimension, modulo geometric effects on wavemode selection
(Krause et al. 2021). However, in order to quantitatively study the patterning dynamics
or to develop the analysis of pattern types, the models should be extended to a 2D
surface and a 2D or 3D bulk. This configuration would also be more realistic from
the perspective of prospective applications, such as feather array patterning (Ho et al.
2019). From a mathematical perspective, and following the seminal developments
of Shaw and Murray (1990) and Ermentrout (1991), one should not only study the
emergence of patterning but also the self-organized pattern shapes, requiring weakly-
nonlinear bifurcation analysis. Weakly nonlinear analysis in the 1D-1D setting has
been done in some special cases, e.g. (Catllá et al. 2012; Castelino et al. 2020), so
extending the present theory to this case would be challenging but plausible. In the
1D-2D setting, however, substantial new mathematics would need to be developed
to perform such analysis given the complexity of the eigenfunctions in this setting.
Another mathematical direction meriting further investigation is a consideration of
Hopf/wave bifurcations in these coupled systems, whereby linear instability leads to
spatiotemporally oscillating solutions. Such instabilities are not possible in the classi-
cal two-species case, but exist in three-species models or models incorporating inertial
(hyperbolic) effects (Krause et al. 2021; Ritchie et al. 2022). Regarding potential bio-
logical applications, see, for example, Cavallo et al. (2020).

Furthermore, when the bulk has a non-zero depth along the y-axis, another gener-
alisation could consider when the two layers do not admit the same equilibrium state.
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This would lead to a non-homogeneous equilibrium state, constant along the x-axis of
the interface, but possessing a gradient along the y-axis. Studying the linear stability
of such a system would require perturbing about a heterogeneous steady state and,
for instance, may further localise patterning to near the interface, in contrast to the
situation obtained in Fig. 5. We remark that even in simple 1D scenarios, spatial het-
erogeneity often requires the study of specific asymptotic regimes to make progress
(Gaffney et al. 2023). Another direction is to consider the influence of the interface
shape and mechanical structure on patterning. For instance, a fundamental question
is whether a local deformation of the interface could have an influence on patterning,
noting that the self-organisation is associatedwith a local mechanical compression and
deformation of the epithelium (Glover et al. 2017; Ho et al. 2019), as well as motivat-
ing earlier and more recent theoretical work (Maini and Murray 1992; Oliveira et al.
2019).

In summary, we have derived conditions for self organisation for a coupled bilayer
system, with reaction-cross-diffusion dynamics in each layer, under a number of lim-
iting cases, such as thin layers and weak or strong coupling. The exploration of these
conditions has revealed how the bilayering influences pattern formation, and can act to
enhance or inhibit the prospect of patterning. In particular, our study emphasises that a
detailed comparison of theory with observation for developmental periodic-structure
formation, or chemical patterning in layered reaction-diffusion systems (Dúzs et al.
2019), has to accommodate the prospect that considering the layers in isolation is
insufficient to determine the presence, or absence, of self-organisation.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11538-023-01237-1.
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A Numerical Methods

The code used to produce all the simulations and plots presented in this article is freely
accessible at

https://github.com/antoinediez/BilayerReactionCrossDiffusion

It is written in the Julia programming language and is based on the following open
source libraries.

• All the plots and videos are produced using the Makie.jl data visualization
ecosystem developed by Danisch and Krumbiegel (2021).

• The bifurcation curves and instability regions in the (η, δ) plane for the 1D-1D
case are computed using the Routh-Hurwitz criterion and the explicit equations
Eqs. (20)-(21). Once the reaction terms have been specified by a formula, all the
computations which define the dispersion relations and the Routh-Hurwitz cri-
terion only involve differentiation and polynomial calculus so they can be done
entirely symbolically. For this, we use the Symbolics.jl package developed
by Gowda et al. (2021). In order to compute the bifurcation curves, we com-
pute the numerical solution of the dispersion relation using the nonlinear solver
NLsolve.jl developed by Mogensen et al. (2020). The advantage of this sym-
bolic approach is that the code is entirely independent of the particular form of
the reaction functions. Running the code then only requires the user to specify
the reaction functions by their symbolic formula. In the code provided, a model
(i.e. a set of reaction functions) can be defined as a Julia function using the syntax
detailed in the script TuringSpace/models.jl. TheTuring space can then be
computed automatically by running the script TuringSpace/main.jl after
specifying the set of modes to investigate and the desired bifurcation parameters.

• The simulations of the 1D-1D and 1D-2D systems are implemented using a
classical method of lines with an upwind scheme for chemotaxis (Hundsdor-
fer and Verwer 2003) and implicit adaptive time-stepping using the ODE solver
DifferentialEquations.jl developed by Rackauckas and Nie (2017).
More precisely, the problem is classically discretized in space on a grid of size
Nx × Ny in 2D and of size Nx in 1D. In our simulations, we chose Nx = Ny with
a value ranging from 56 to 256 (for the different simulations and values, we have
checked that the results shown do not depend on the discretization size). TheLapla-
cian is discretized on each grid cell using a standard central differences five-point
stencil discretization in 2D and a three-point discretization in 1D. For the chemo-
taxis term, using a cell-centered finite volume approach, the space derivative along
each dimension is computed as a flux difference where the flux at each cell bound-
ary is computed via a third order upwind scheme (Hundsdorfer and Verwer 2003,
Section I.3). Once all the spatial derivatives and reaction terms in each cell have
been computed, we obtain a high-dimensional ODE system (of size Nx ×Nx ×Ny

in the 1D-2D case) in time which is solved using an implicit adaptive Euler
scheme. In order to reduce the computation time, a sparsity pattern associated with
this high-dimensional system is computed automatically beforehand, again using
the routines implemented in DifferentialEquations.jl. Each simulation
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presented in this article can be reproduced using the code provided by running the
script BilayerRCD/main.jl, potentially after changing the parameters which
are indicated in the caption of the figure corresponding to this simulation.

B Supplementary videos

This article is supplemented with the following illustrative videos which show exam-
ple simulations of 1D-1D and 1D-2D reaction-diffusion-chemotaxis systems. These
videos can be accessed online along with the numerical code to reproduce them at

https://github.com/antoinediez/BilayerReactionCrossDiffusion

Video 1 Example of patterning with small coupling in Fig.2b with η = 0.01 and
dvS = δc(0) + 1

2δ
′
c(0) < δc(0).

Video 2 Example of surface-driven patterning for the 1D-2D system described in
Fig.4a.

Video 3 Example of bulk-driven patterning for the 1D-2D system described in Fig.4b.

Video 4 Wave patterning in the 1D-2D system described in Fig.5.

Video 5 Example of stabilization of a homogeneous equilibriumusing a large coupling
in the system described in Fig.6b with η = 200 and dvS = 232 > δc(0).

Video 6 Example of patterning with large coupling for the system described in Fig.3b
with η = 100 and dvS = 15.
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